The Dynamic Evaporation Characteristics of Thiophanate-Methyl Droplets and Their Enhancement under Different Wind Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Full Factors Experiment Setup
3. Results and Discussion
3.1. Pure Water Droplet Geometric Evolution
3.2. Evaporation Dynamic Characteristics of Thiophanate-Methyl
3.2.1. Contact Angle
3.2.2. Droplet Height
3.3. Dynamic Evaporation Rate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, Y.-S.; Lee, K.-S.; Kim, H.-G.; Lee, G.-J. Biocontrol of Large Patch Disease in Zoysiagrass (Zoysia japonica) by Bacillus subtilis SA-15: Identification of Active Compounds and Synergism with a Fungicide. Horticulturae 2021, 8, 34. [Google Scholar] [CrossRef]
- Hou, R.; Shi, J.; Ma, X.; Wei, H.; Hu, J.; Tsang, Y.F.; Gao, M.-T. Effect of Phenolic Acids Derived from Rice Straw on Botrytis Cinerea and Infection on Tomato. Waste Biomass Valorization 2020, 11, 6555–6563. [Google Scholar] [CrossRef]
- Oginawati, K.; Susetyo, S.H.; Rahmawati, S.I.; Kurniawan, S.B.; Abdullah, S.R.S. Distribution of Organochlorine Pesticide Pollution in Water, Sediment, Mollusk, and Fish at Saguling Dam, West Java, Indonesia. Toxicol. Res. 2022, 38, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Canella Vieira, B.; Coura Oliveira, M.; Sousa Alves, G.; Golus, J.A.; Schroeder, K.; Smeda, R.J.; Rector, R.J.; Kruger, G.R.; Werle, R. Hooded Broadcast Sprayer for Particle Drift Reduction. Pest Manag. Sci. 2022, 78, 1519–1528. [Google Scholar] [CrossRef]
- Appah, S.; Zhou, H.; Wang, P.; Ou, M.; Jia, W. Charged Monosized Droplet Behaviour and Wetting Ability on Hydrophobic Leaf Surfaces Depending on Surfactant-Pesticide Concentrate Formulation. J. Electrost. 2019, 100, 103356. [Google Scholar] [CrossRef]
- Zhou, H.; Jia, W.; Li, Y.; Ou, M. Method for Estimating Canopy Thickness Using Ultrasonic Sensor Technology. Agriculture 2021, 11, 1011. [Google Scholar] [CrossRef]
- Bourguet, D.; Guillemaud, T. The Hidden and External Costs of Pesticide Use. In Sustainable Agriculture Reviews; Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer International Publishing: Cham, Switzerland, 2016; Volume 19, pp. 35–120. ISBN 978-3-319-26776-0. [Google Scholar]
- Sun, S.; Sidhu, V.; Rong, Y.; Zheng, Y. Pesticide Pollution in Agricultural Soils and Sustainable Remediation Methods: A Review. Curr. Pollut. Rep. 2018, 4, 240–250. [Google Scholar] [CrossRef]
- Zhou, Z.; Cao, C.; Cao, L.; Zheng, L.; Xu, J.; Li, F.; Huang, Q. Effect of Surfactant Concentration on the Evaporation of Droplets on Cotton (Gossypium hirsutum L.) Leaves. Colloids Surf. B Biointerfaces 2018, 167, 206–212. [Google Scholar] [CrossRef]
- Gimenes, M.J.; Zhu, H.; Raetano, C.G.; Oliveira, R.B. Dispersion and Evaporation of Droplets Amended with Adjuvants on Soybeans. Crop Prot. 2013, 44, 84–90. [Google Scholar] [CrossRef]
- Appah, S.; Jia, W.; Ou, M.; Wang, P.; Gong, C. Investigation of Optimum Applied Voltage, Liquid Flow Pressure, and Spraying Height for Pesticide Application by Induction Charging. Appl. Eng. Agric. 2019, 35, 795–804. [Google Scholar] [CrossRef]
- Wang, Z.; Lan, L.; He, X.; Herbst, A. Dynamic Evaporation of Droplet with Adjuvants under Different Environment Conditions. Int. J. Agric. Biol. Eng. 2020, 13, 1–6. [Google Scholar] [CrossRef]
- Dorr, G.J.; Forster, W.A.; Mayo, L.C.; McCue, S.W.; Kempthorne, D.M.; Hanan, J.; Turner, I.W.; Belward, J.A.; Young, J.; Zabkiewicz, J.A. Spray Retention on Whole Plants: Modelling, Simulations and Experiments. Crop Prot. 2016, 88, 118–130. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.-L.; Zhu, H.; Ling, P. Amendment of Herbicide Spray Solutions with Adjuvants to Modify Droplet Spreading and Fading Characteristics on Weeds. Appl. Eng. Agric. 2019, 35, 713–721. [Google Scholar] [CrossRef]
- Defraeye, T.; Verboven, P.; Derome, D.; Carmeliet, J.; Nicolai, B. Stomatal Transpiration and Droplet Evaporation on Leaf Surfaces by a Microscale Modelling Approach. Int. J. Heat Mass Transf. 2013, 65, 180–191. [Google Scholar] [CrossRef]
- Deveau, J. Six Elements of Effective Spraying in Orchards and Vineyards; Ministry of Agriculture, Food and Rural Affairs: Toronto, ON, Canada, 2009.
- Ranta, O.; Marian, O.; Muntean, M.V.; Molnar, A.; Ghețe, A.B.; Crișan, V.; Stănilă, S.; Rittner, T. Quality Analysis of Some Spray Parameters When Performing Treatments in Vineyards in Order to Reduce Environment Pollution. Sustainability 2021, 13, 7780. [Google Scholar] [CrossRef]
- Yu, Y.; Zhu, H.; Frantz, J.M.; Reding, M.E.; Chan, K.C.; Ozkan, H.E. Evaporation and Coverage Area of Pesticide Droplets on Hairy and Waxy Leaves. Biosyst. Eng. 2009, 104, 324–334. [Google Scholar] [CrossRef]
- Ramsey, R.J.L.; Stephenson, G.R.; Hall, J.C. A Review of the Effects of Humidity, Humectants, and Surfactant Composition on the Absorption and Efficacy of Highly Water-Soluble Herbicides. Pestic. Biochem. Physiol. 2005, 82, 162–175. [Google Scholar] [CrossRef]
- Delcour, I.; Spanoghe, P.; Uyttendaele, M. Literature Review: Impact of Climate Change on Pesticide Use. Food Res. Int. 2015, 68, 7–15. [Google Scholar] [CrossRef]
- Januszkiewicz, K.; Mrozek-Niećko, A.; Różański, J. Effect of Surfactants and Leaf Surface Morphology on the Evaporation Time and Coverage Area of ZnIDHA Droplets. Plant Soil 2019, 434, 93–105. [Google Scholar] [CrossRef]
- Van den Brink, P.J.; Alix, A.; Thorbek, P.; Baveco, H.; Agatz, A.; Faber, J.H.; Brown, A.R.; Marshall, S.; Maltby, L. The Use of Ecological Models to Assess the Effects of a Plant Protection Product on Ecosystem Services Provided by an Orchard. Sci. Total Environ. 2021, 798, 149329. [Google Scholar] [CrossRef]
- Picknett, R.G.; Bexon, R. The Evaporation of Sessile or Pendant Drops in Still Air. J. Colloid Interface Sci. 1977, 61, 336–350. [Google Scholar] [CrossRef]
- Jaynes, D.B.; RooowsKi, A.S. Applicability of Pick’s Law to Gas Diffusion. Soil Sci. Soc. Am. J. 1983, 47, 6. [Google Scholar] [CrossRef]
- Burkhardt, J.; Hunsche, M. “Breath Figures” on Leaf Surfaces—Formation and Effects of Microscopic Leaf Wetness. Front. Plant Sci. 2013, 4, 422. [Google Scholar] [CrossRef] [Green Version]
- Josyula, T.; Wang, Z.; Askounis, A.; Orejon, D.; Harish, S.; Takata, Y.; Mahapatra, P.S.; Pattamatta, A. Evaporation Kinetics of Pure Water Drops: Thermal Patterns, Marangoni Flow, and Interfacial Temperature Difference. Phys. Rev. E 2018, 98, 052804. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Leeladhar, R.; Kang, Y.T.; Choi, C.-H. Evaporation Kinetics of Sessile Water Droplets on Micropillared Superhydrophobic Surfaces. Langmuir 2013, 29, 6032–6041. [Google Scholar] [CrossRef]
- Prakash, J.; Sikarwar, B.S.; Agarwal, B.K. Flow and Thermal Field in Sessile Droplet Evaporation at Various Environmental Conditions. Heat Transf. 2021, 50, 4535–4551. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, H.; Ozkan, H.E.; Thistle, H.W. Evaporation Rate and Development of Wetted Area of Water Droplets with and without Surfactant at Different Locations on Waxy Leaf Surfaces. Biosyst. Eng. 2010, 106, 58–67. [Google Scholar] [CrossRef]
- Lim, T.; Han, S.; Chung, J.; Chung, J.T.; Ko, S.; Grigoropoulos, C.P. Experimental Study on Spreading and Evaporation of Inkjet Printed Pico-Liter Droplet on a Heated Substrate. Int. J. Heat Mass Transf. 2009, 52, 431–441. [Google Scholar] [CrossRef]
- Sweers, H.E. A Nomogram to Estimate the Heat-Exchange Coefficient at the Air-Water Interface as a Function of Wind Speed and Temperature; a Critical Survey of Some Literature. J. Hydrol. 1976, 30, 375–401. [Google Scholar] [CrossRef]
- Birdi, K.S.; Vu, D.T.; Winter, A. A Study of the Evaporation Rates of Small Water Drops Placed on a Solid Surface. J. Phys. Chem. 1989, 93, 3702–3703. [Google Scholar] [CrossRef]
- Rowan, S.M.; Newton, M.I.; McHale, G. Evaporation of Microdroplets and the Wetting of Solid Surfaces. J. Phys. Chem. 1995, 99, 13268–13271. [Google Scholar] [CrossRef]
Wind Speed | 0 m/s | 0.5 m/s | 1 m/s | 1.5 m/s | 2.0 m/s |
---|---|---|---|---|---|
Left Time | 4357 s | 2849 s | 2544 s | 1670 s | 1266 s |
PPM | 1250 | 1176 | 1111 | 1053 | 1000 | Pure Water |
---|---|---|---|---|---|---|
Initial contact angle/° | 63 ± 1 | 63 ± 1 | 67 ± 1 | 65 ± 1 | 65 ± 1 | 64 ± 1 |
Concentration/ppm | 1250 | 1176 | 1111 | 1053 | 1000 | Pure Water |
---|---|---|---|---|---|---|
Initial Height/μm | 99.00 | 106.40 | 104.00 | 104.8 | 104.60 | 99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Ou, M.; Jia, W.; Zhou, H.; Dai, S.; Dong, X.; Wang, X.; Jiang, L.; Lu, W.; Wang, M. The Dynamic Evaporation Characteristics of Thiophanate-Methyl Droplets and Their Enhancement under Different Wind Conditions. Horticulturae 2022, 8, 721. https://doi.org/10.3390/horticulturae8080721
Wang G, Ou M, Jia W, Zhou H, Dai S, Dong X, Wang X, Jiang L, Lu W, Wang M. The Dynamic Evaporation Characteristics of Thiophanate-Methyl Droplets and Their Enhancement under Different Wind Conditions. Horticulturae. 2022; 8(8):721. https://doi.org/10.3390/horticulturae8080721
Chicago/Turabian StyleWang, Guanqun, Mingxiong Ou, Weidong Jia, Huitao Zhou, Shiqun Dai, Xiang Dong, Xiaowen Wang, Li Jiang, Wei Lu, and Ming Wang. 2022. "The Dynamic Evaporation Characteristics of Thiophanate-Methyl Droplets and Their Enhancement under Different Wind Conditions" Horticulturae 8, no. 8: 721. https://doi.org/10.3390/horticulturae8080721
APA StyleWang, G., Ou, M., Jia, W., Zhou, H., Dai, S., Dong, X., Wang, X., Jiang, L., Lu, W., & Wang, M. (2022). The Dynamic Evaporation Characteristics of Thiophanate-Methyl Droplets and Their Enhancement under Different Wind Conditions. Horticulturae, 8(8), 721. https://doi.org/10.3390/horticulturae8080721