A Portable Vibration System to Induce and Evaluate Susceptibility to Red Drupelet Reversion in Blackberry Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Portable Vibrator System
2.2. Blackberry Fruit
2.3. Laboratory Test to Induce RDR
2.4. Analysis of RDR Susceptibility in Blackberry Cultivars
2.5. Fruit Visual Inspection
2.6. Objective Color Analysis
2.7. Statistical Analyses
3. Results
3.1. Portable Vibration System Induce RDR
3.2. Analysis of RDR Susceptibility in Blackberry Cultivars
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Edgley, M.; Close, D.C.; Measham, P.F. Red drupelet reversion in blackberries: A complex of genetic and environmental factors. Sci. Hortic. 2020, 272, 109555. [Google Scholar] [CrossRef]
- Pérez-Pérez, G.; Fabela-Gallegos, M.; Vázquez-Barrios, M.; Rivera-Pastrana, D.; Palma-Tirado, L.; Mercado-Silva, E.; Escalona, V. Effect of the transport vibration on the generation of the color reversion in blackberry fruit. In Proceedings of the VIII International Postharvest Symposium: Enhancing Supply Chain and Consumer Benefits-Ethical and Technological Issues 1194, Cartagena, Spain, 21–24 June 2016; pp. 1329–1336. [Google Scholar]
- Flores-Sosa, A.R.; Soto-Magaña, D.; Gonzalez-de la Vara, L.E.; Sanchez-Segura, L.; Bah, M.; Rivera-Pastrana, D.M.; Nava, G.M.; Mercado-Silva, E.M. Red drupelet reversion in blackberries caused by mechanical damage is not linked to a reduction in anthocyanin content. Postharvest Biol. Technol. 2021, 180, 111618. [Google Scholar] [CrossRef]
- Dagdelen, C.; Aday, M.S. The effect of simulated vibration frequency on the physico-mechanical and physicochemical properties of peach during transportation. LWT 2021, 137, 110497. [Google Scholar] [CrossRef]
- Wei, X.; Xie, D.; Mao, L.; Xu, C.; Luo, Z.; Xia, M.; Zhao, X.; Han, X.; Lu, W. Excess water loss induced by simulated transport vibration in postharvest kiwifruit. Sci. Hortic. 2019, 250, 113–120. [Google Scholar] [CrossRef]
- Zhou, R.; Su, S.; Yan, L.; Li, Y. Effect of transport vibration levels on mechanical damage and physiological responses of Huanghua pears (Pyrus pyrifolia Nakai, cv. Huanghua). Postharvest Biol. Technol. 2007, 46, 20–28. [Google Scholar] [CrossRef]
- Edgley, M.; Close, D.; Measham, P. Nitrogen application rate and harvest date affect red drupelet reversion and postharvest quality in ‘Ouachita’blackberries. Sci. Hortic. 2019, 256, 108543. [Google Scholar] [CrossRef]
- Edgley, M.; Close, D.C.; Measham, P.F. Effects of climatic conditions during harvest and handling on the postharvest expression of red drupelet reversion in blackberries. Sci. Hortic. 2019, 253, 399–404. [Google Scholar] [CrossRef]
- McCoy, J.E.; Clarke, J.R.; Salgado, A.A.; Jecmen, A. Evaluation of harvest time/temperature and storage temperature on postharvest incidence of red drupelet reversion development and firmness of blackberry (Rubus L. subgenus Rubus Watson). Discov. Stud. J. Dale Bump. Coll. Agric. Food Life Sci. 2016, 17, 59–65. [Google Scholar]
- Yin, M.H. Studies in Blackberry: Development and Implementation of a Phenotyping Protocol for Blackberry Seedling Populations and Impact of Time of Day of Harvest on Red Drupelet Reversion for University of Arkansas Blackberry Genotypes; University of Arkansas: Fayetteville, AR, USA, 2017. [Google Scholar]
- Salgado, A.A.; Clark, J.R. “Crispy” blackberry genotypes: A breeding innovation of the University of Arkansas blackberry breeding program. HortScience 2016, 51, 468–471. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.J.; Lee, M.Y.; Shon, J.C.; Kwon, Y.S.; Liu, K.-H.; Lee, C.H.; Ku, K.-M. Untargeted and targeted metabolomics analyses of blackberries–Understanding postharvest red drupelet disorder. Food Chem. 2019, 300, 125169. [Google Scholar] [CrossRef]
- Fischer, D.; Craig, W.; Watada, A.; Douglas, W.; Ashby, B. Simulated in-transit vibration damage to packaged fresh market grapes and strawberries. Appl. Eng. Agric. 1992, 8, 363–366. [Google Scholar] [CrossRef] [Green Version]
- La Scalia, G.; Aiello, G.; Miceli, A.; Nasca, A.; Alfonzo, A.; Settanni, L. Effect of Vibration on the Quality of Strawberry Fruits Caused by Simulated Transport. J. Food Process Eng. 2016, 39, 140–156. [Google Scholar] [CrossRef]
- La Scalia, G.; Enea, M.; Micale, R.; Corona, O.; Settanni, L. Damage to strawberries caused by simulated transport. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2015, 9, 480–485. [Google Scholar]
- Khodaei, M.; Seiiedlou, S.; Sadeghi, M. The evaluation of vibration damage in fresh apricots during simulated transport. Res. Agric. Eng. 2019, 65, 112–122. [Google Scholar] [CrossRef]
- Walkowiak-Tomczak, D.; Idaszewska, N.; Łysiak, G.P.; Bieńczak, K. The effect of mechanical vibration during transport under model conditions on the shelf-life, quality and physico-chemical parameters of four apple cultivars. Agronomy 2021, 11, 81. [Google Scholar] [CrossRef]
- Lawrence, B.; Melgar, J.C. Harvest, handling, and storage recommendations for improving postharvest quality of blackberry cultivars. HortTechnology 2018, 28, 578–583. [Google Scholar] [CrossRef]
- Edgley, M.; Close, D.C.; Measham, P.F.; Nichols, D.S. Physiochemistry of blackberries (Rubus L. subgenus Rubus Watson) affected by red drupelet reversion. Postharvest Biol. Technol. 2019, 153, 183–190. [Google Scholar] [CrossRef]
- McGuire, R.G. Reporting of objective color measurements. HortScience 1992, 27, 1254–1255. [Google Scholar] [CrossRef] [Green Version]
- Acıcan, T.; Alibaş, K.; Özelkök, I. Mechanical damage to apples during transport in wooden crates. Biosyst. Eng. 2007, 96, 239–248. [Google Scholar] [CrossRef]
- Segantini, D.M.; Threlfall, R.; Clark, J.R.; Brownmiller, C.R.; Howard, L.R.; Lawless, L.J. Changes in fresh-market and sensory attributes of blackberry genotypes after postharvest storage. J. Berry Res. 2017, 7, 129–145. [Google Scholar] [CrossRef]
- Armour, M.E.; Worthington, M.; Clark, J.R.; Threlfall, R.T.; Howard, L. Effect of Harvest Time and Fruit Firmness on Red Drupelet Reversion in Blackberry. HortScience 2021, 56, 889–896. [Google Scholar] [CrossRef]
- Worthington, M.; Clark, J.; Threlfall, R.; Sebesta, B. Evaluation of Red Drupelet Reversion in Blackberries Using High-Throughput Digital Image Analysis. Available online: file:///C:/Users/MDPI/Downloads/2017R-02.pdf (accessed on 6 July 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-Sosa, A.R.; Fabela-Gallegos, M.J.; Cruz-Acevedo, M.E.; Rivera-Pastrana, D.M.; Nava, G.M.; Mercado-Silva, E.M. A Portable Vibration System to Induce and Evaluate Susceptibility to Red Drupelet Reversion in Blackberry Cultivars. Horticulturae 2022, 8, 631. https://doi.org/10.3390/horticulturae8070631
Flores-Sosa AR, Fabela-Gallegos MJ, Cruz-Acevedo ME, Rivera-Pastrana DM, Nava GM, Mercado-Silva EM. A Portable Vibration System to Induce and Evaluate Susceptibility to Red Drupelet Reversion in Blackberry Cultivars. Horticulturae. 2022; 8(7):631. https://doi.org/10.3390/horticulturae8070631
Chicago/Turabian StyleFlores-Sosa, Angel R., Manuel J. Fabela-Gallegos, Mauricio E. Cruz-Acevedo, Dulce M. Rivera-Pastrana, Gerardo M. Nava, and Edmundo M. Mercado-Silva. 2022. "A Portable Vibration System to Induce and Evaluate Susceptibility to Red Drupelet Reversion in Blackberry Cultivars" Horticulturae 8, no. 7: 631. https://doi.org/10.3390/horticulturae8070631
APA StyleFlores-Sosa, A. R., Fabela-Gallegos, M. J., Cruz-Acevedo, M. E., Rivera-Pastrana, D. M., Nava, G. M., & Mercado-Silva, E. M. (2022). A Portable Vibration System to Induce and Evaluate Susceptibility to Red Drupelet Reversion in Blackberry Cultivars. Horticulturae, 8(7), 631. https://doi.org/10.3390/horticulturae8070631