Oligosaccharins Used Together with Tebuconazole Enhances Resistance of Kiwifruit against Soft Rot Disease and Improves Its Yield and Quality
Abstract
:1. Introduction
2. Pathogen, Reagents and Methods
2.1. Experimental Materials
2.2. Field Site
2.3. Fungicide Toxicity Tests In Vitro
2.4. Field Control Experiment
2.5. Determination of Control Effects
2.6. Determination of Disease Resistance, Growth and Quality
2.7. Statistical Analysis
3. Results
3.1. Toxicity of Fungicides on B. dothidea RF-1
3.2. Management Effects of Tebuconazole and Oligosaccharins on Soft Rot
3.3. Effects of Tebuconazole and Oligosaccharins on Kiwifruit Resistance
3.4. Effects of Tebuconazole and Oligosaccharins on Kiwifruit Growth
3.5. Effects of Tebuconazole and Oligosaccharins on Kiwifruit’s Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, H.L.; Zhou, H.S.; Li, P.X. Lacquer Wax Coating Improves the Sensory and Quality Attributes of Kiwifruit during Ambient Storage. Sci. Hortic. 2019, 244, 31–41. [Google Scholar] [CrossRef]
- Wang, Q.P.; Zhang, C.; Li, J.H.; Wu, X.M.; Long, Y.H.; Su, Y. Intercropping Vicia sativa L. Improves the Moisture, Microbial Community, Enzyme Activity and Nutrient in Rhizosphere Soils of Young Kiwifruit Plants and Enhances Plant Growth. Horticulturae 2021, 7, 335. [Google Scholar] [CrossRef]
- Zhang, C.; Li, H.; Wu, X.; Su, Y.; Long, Y. Co-Application of Tetramycin and Chitosan in Controlling Leaf Spot Disease of Kiwifruit and Enhancing Its Resistance, Photosynthesis, Quality and Amino acids. Biomolecules 2022, 12, 500. [Google Scholar] [CrossRef]
- Hawthorne, B.T.; Rees-George, J.; Samuels, G.J. Fungi Associated with Leaf Spots and Post-harvest Fruit Rots of Kiwifruit (Actinidia chinensis) in New Zealand. N. Z. J. Bot. 1982, 20, 143–150. [Google Scholar] [CrossRef]
- Manning, M.A.; Meier, X.; Olsen, T.L.; Johnston, P.R. Fungi Associated with Fruit Rots of Actinidia chinensis ‘Hort16A’ in New Zealand. N. Z. J. Crop Hortic. Sci. 2003, 31, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Koh, Y.J.; Hur, J.S.; Jung, J.S. Postharvest Fruit Rots of Kiwifruit (Actinidia deliciosa) in Korea. N. Z. J. Crop Hortic. Sci. 2005, 22, 303–310. [Google Scholar] [CrossRef]
- Prodi, A.; Sandalo, S.; Tonti, S.; Nipoti, P.; Pisi, A. Phiaphora-like Fungi Associated with Kiwifruit Elephantiasis. Plant Physiol. 2008, 90, 487–494. [Google Scholar] [CrossRef]
- Luongo, L.; Santori, A.; Riccioni, L.; Belisario, A. Phomopsis sp. Associated with Post-harvest Fruit Rot of Kiwifruit in Italy. J. Plant Pathol. 2011, 93, 205–209. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, X.M.; Long, Y.H.; Li, M. Control of Soft rot in Kiwifruit by Pre-harvest Application of Chitosan Composite Coating and Its Effect on Preserving and Improving Kiwifruit Quality. Food Sci. 2016, 37, 274–281. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, C.; Long, Y.H.; Wang, Q.P.; Li, J.H.; Wu, X.M.; Li, M. The Effect of Preharvest 28.6% Chitosan Composite Film Sprays for Controlling the Soft Rot on Kiwifruit. Hortic. Sci. 2019, 46, 180–194. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Long, Y.H.; Li, J.H.; Li, M.; Xing, D.K.; An, H.M.; Wu, X.M.; Wu, Y.Y. A Chitosan Composite Film Sprayed before Pathogen Infection Effectively Controls Postharvest Soft Rot in Kiwifruit. Agronomy 2020, 10, 265. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Li, H.; Lei, Y.; Su, Y.; Long, Y. Chitosan as an Adjuvant to Improve Isopyrazam Azoxystrobin·against Leaf Spot Disease of Kiwifruit and Enhance Its Photosynthesis, Quality, and Amino Acids. Agriculture 2022, 12, 373. [Google Scholar] [CrossRef]
- Slusarenko, A.J.; Patel, A.; Portz, D. Control of Plant Diseases by Natural Products: Allicin from Garlic as a Case Study. Eur. J. Plant Pathol. 2008, 121, 313–322. [Google Scholar] [CrossRef]
- Borlinghaus, J.; Albrecht, F.; Gruhlke, M.C.H.; Nwachukwu, I.; Slusarenko, A.J. Allicin: Chemistry and Biological Properties. Molecules 2014, 19, 12591–12618. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.P.; Zhang, C.; Long, Y.H.; Wu, X.M.; Su, Y.; Lei, Y.; Ai, Q. Bioactivity and Control Efficacy of the Novel Antibiotic Tetramycin Against Various Kiwifruit Diseases. Antibiotics 2021, 10, 289. [Google Scholar] [CrossRef]
- Wang, Q.P.; Zhang, C.; Wu, X.M.; Long, Y.H.; Su, Y. Chitosan Augments Tetramycin Against Soft Rot in Kiwifruit and Enhances Its Improvement for Kiwifruit Growth, Quality and Aroma. Biomolecules 2021, 11, 1257. [Google Scholar] [CrossRef]
- Zhang, C.; Li, W.; Long, Y.; Su, Y.; Zhang, Q. Co-Application of Tetramycin and Matrine Improves Resistance of Kiwifruit against Soft Rot Disease and Enhances Its Quality and Amino Acids. Antibiotics 2022, 11, 671. [Google Scholar] [CrossRef]
- Paul, P.A.; Lipps, P.E.; Hershman, D.E.; McMullen, M.P.; Draper, M.A.; Madden, L.V. Efficacy of Triazole-based Fungicides for Fusarium Head Blight and Deoxynivalenol Control in Wheat: A Multivariate MetaAnalysis. Phytopathology 2008, 98, 999–1011. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.Y.; Zhu, Y.F.; Liu, Y.Y.; Deng, Y.Y.; Li, W.; Zhang, A.X.; Chen, H.G. Evaluation of Tebuconazole for the Management of Fusarium Head Blight in China. Australas. Plant Pathol. 2014, 43, 631–638. [Google Scholar] [CrossRef]
- Liu, N.; Dong, F.; Xu, J.; Liu, X.; Chen, Z.; Tao, Y.; Pan, X.; Chen, X.X.; Zheng, Y. Stereoselective Determination of Tebuconazole in Water and Zebrafish by Supercritical fluid Chromatography Tandem Mass Spectrometry. J. Agric. Food Chem. 2015, 63, 6297–6303. [Google Scholar] [CrossRef]
- Fustinoni, S.; Mercadante, R.; Polledri, E.; Rubino, F.M.; Mandic-Rajcevic, S.; Vianello, G.; Colosio, C.; Moretto, A. Biological Monitoring of Exposure to Tebuconazole in Winegrowers. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 643–649. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.H.; Morgan, D.P.; Felts, D.; Michailides, T.J. Sensitivity of Botryosphaeria dothidea from California Pistachio to Tebuconazole. Crop Prot. 2002, 21, 829–835. [Google Scholar] [CrossRef]
- Ochoa-Meza, L.C.; Quintana-Obregón, E.A.; VargasArispuro, I.; Falcón-Rodríguez, A.B.; Aispuro-Hernández, E.; Virgen-Ortiz, J.J.; Martínez-Téllez, M.Á. Oligosaccharins as Elicitors of Defense Responses in Wheat. Polymers 2021, 13, 3105. [Google Scholar] [CrossRef]
- Hernández, V.; Hellín, P.; Botella, M.Á.; Vicente, E.; Fenoll, J.; Flores, P. Oligosaccharins Alleviate Heat Stress in Greenhouse-Grown Tomatoes during the Spring-Summer Season in a Semi-Arid Climate. Agronomy 2022, 12, 802. [Google Scholar] [CrossRef]
- Díaz, V.B. Oligosacarinas (Oligosacáridos): Producción Químicay Aplicación a Los Cultivos Vegetales, 1st ed.; Autores de Argentina: Buenos Aires, Argentina, 2018. [Google Scholar]
- Thakur, M.; Sohal, B.S. Role of Elicitors in Inducing Resistance in Plants against Pathogen Infection: A Review. ISRN Biochem. 2013, 2013, 762412. [Google Scholar] [CrossRef] [Green Version]
- Boyzo-Marín, J.; Silva-Rojas, H.V.; Rebollar-Alviter, A. Biorational Treatments to Manage Dryberry of Blackberry Caused by Peronospora sparsa. Crop Prot. 2015, 76, 121–126. [Google Scholar] [CrossRef]
- Cui, K.; Shu, C.; Zhao, H.; Fan, X.; Cao, J.; Jiang, W. Preharvest Chitosan Oligochitosan and Salicylic Acid Treatments Enhance Phenol Metabolism and Maintain the Postharvest Quality of Apricots (Prunus armeniaca L.). Sci. Hortic. 2020, 267, 109334. [Google Scholar] [CrossRef]
- Costales, D.; Martínez, L.; Núñez, M. Efecto del Tratamiento de Semillas con Una Mezcla de Oligogalacturónidos Sobre Elcrecimiento de Plántulas de Tomate (Lycopersicum esculentum Mill). Cultiv. Tropicales 2007, 28, 85–91. [Google Scholar]
- Cabrera, J.C.; Wegria, G.; Onderwater, R.C.A.; González, G.; Napoles, M.C.; Falcon-Rodriguez, A.B.; Costales, D.; Rogers, H.J.; Diosdado, E.; González, S. Practical use of oligosaccharins in agriculture. Acta Hortic. 2013, 1009, 195–212. [Google Scholar] [CrossRef]
- Vlot, A.C.; Sales, J.H.; Lenk, M.; Bauer, K.; Brambilla, A.; Sommer, A.; Nayem, S. Systemic Propagation of Immunity in Plants. New Phytol. 2020, 229, 1234–1250. [Google Scholar] [CrossRef]
- Caffall, K.H.; Mohnen, D. The Structure, Function, and Biosynthesis of Plant Cell Wall Pectic Polysaccharides. Carbohydr. Res. 2009, 344, 1879–1900. [Google Scholar] [CrossRef]
- Verlee, A.; Mincke, S.; Stevens, C.V. Recent Developments in Antibacterial and Antifungal Chitosan and Its Derivatives. Carbohydr. Polym. 2017, 164, 268–283. [Google Scholar] [CrossRef]
- Lopez-Moya, F.; Suarez-Fernandez, M.; Lopez-Llorca, L.V. Molecular Mechanisms of Chitosan Interactions with Fungi and Plants. Int. J. Mol. Sci. 2019, 20, 332. [Google Scholar] [CrossRef] [Green Version]
- El-Mohamedya, R.S.R.; Abd El-Aziz, M.E.; Kamel, S. Antifungal Activity of Chitosan Nanoparticles against Some Plant Pathogenic Fungi In Vitro. Agric. Eng. Int. CIGR J. 2019, 21, 201–209. [Google Scholar]
- Chakraborty, M.; Hasanuzzaman, M.; Rahman, M.; Khan, M.; Bhowmik, P.; Mahmud, N.U.; Tanveer, M.; Islam, T. Mechanism of Plant Growth Promotion and Disease Suppression by Chitosan Biopolymer. Agriculture 2020, 10, 624. [Google Scholar] [CrossRef]
- Torres-Rodriguez, J.A.; Reyes-Pérez, J.J.; Castellanos, T.; Angulo, C.; Hernandez-Montiel, L.G. A Biopomyler with Antimicrobial Properties and Plant Resistance Inducer Against Phytopathogens: Chitosan. Not. Sci. Biol. 2021, 49, 1–15. [Google Scholar] [CrossRef]
- Ochoa-Villarreal, M.; Vargas-Arispuro, I.; Islas-Osuna, M.A.; Gonzalez-Aguilar, G.; Martínez-Tellez, A.M. Pectin-derived oligosaccharides increase color and anthocyanin content in flame seedless grapes. J. Sci. Food Agric. 2011, 91, 1928–1930. [Google Scholar] [CrossRef]
- He, Y.; Bose, S.K.; Wang, W.; Jia, X.; Lu, H.; Yin, H. Pre-harvest treatment of chitosan oligosaccharides improved strawberry fruit quality. Int. J. Mol. Sci. 2018, 19, 2194. [Google Scholar] [CrossRef] [Green Version]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs Over the 30 Years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef] [Green Version]
Fungicides | Dosage Forms | Manufactures | Manufacture Sites |
---|---|---|---|
80% Tebuconazole | WG | Meibang Pesticide Co., Ltd. | Shaanxi, China |
20% Eugenol | EW | Jianpai Agrochemical Co., Ltd. | Jiangsu, China |
125 g/L Epoxiconazole | SC | BASF Plant Protection (Jiangsu) Co., Ltd. | Jiangsu, China |
500 g/L Fluazinam | SC | Hetian Chemical Co. Ltd. | Zhejiang, China |
75% Trifloxystrobin tebuconazole | WG | Bayer Crop Science (China) Co., Ltd. | Zhejiang, China |
33.5% Oxine-copper | SC | Xingnong Pharmaceutical (China) Co., Ltd. | Shanghai, China |
10% Difenoconazole | WG | Ruidefeng Biotechnology Co., Ltd. | Guangdong, China |
25% Flutriafol | SC | Yancheng Limin Agrochemical Co., Ltd. | Jiangsu, China |
50% Azoxystrobin | WG | Guannong Agrochemical Co., Ltd. | Hebei, China |
40% Pyrimethanil | SC | Bayer Crop Science (China) Co., Ltd. | Zhejiang, China |
5% Oligosaccharins | AS | Kesheng Group Co., Ltd. | Jiangsu, China |
Nutrition Indices | Content (g kg−1) | Nutrition Indices | Content (mg kg−1) | Nutrition Indices | Content (mg kg−1) |
---|---|---|---|---|---|
Organic matter | 36.68 | Alkali-hydrolyzable nitrogen | 101.35 | Available zinc | 0.97 |
Total nitrogen | 1.51 | Available phosphorus | 8.96 | Available iron | 35.87 |
Total phosphorus | 1.73 | Available potassium | 2.31 | Available manganese | 19.24 |
Total potassium | 1.16 | Exchangeable magnesium | 320.05 | Available boron | 0.31 |
Fungicides | Regression Equation | Determination Coefficient (R2) | EC50 (mg kg−1) |
---|---|---|---|
Tebuconazole | y = 10.7335 + 1.8745 x | 0.9846 | 0.87 |
Flutriafol | y = 8.6168 + 1.2179 x | 0.9680 | 1.07 |
Epoxiconazole | y = 6.0359 + 0.3542 x | 0.9898 | 1.19 |
Trifloxystrobin tebuconazole | y = 11.4974 + 2.2281 x | 0.9869 | 1.21 |
Difenoconazole | y = 9.4045 + 1.7084 x | 0.9911 | 2.64 |
Fluazinam | y = 8.2184 + 0.9647 x | 0.9686 | 4.60 |
Oxine-copper | y = 7.6318 + 1.1672 x | 0.9833 | 5.56 |
Eugenol | y = 11.9786 + 1.9446 x | 0.9863 | 9.39 |
Azoxystrobin | y = 5.6272 + 0.8786 x | 0.9802 | 19.24 |
Pyrimethanil | y = 7.0833 + 1.2536 x | 0.9951 | 21.79 |
Oligosaccharins | y = 5.6260 + 0.9587 x | 0.9917 | 222.34 |
Treatments | Incidence Rate (%) | Control Effects (%) |
---|---|---|
T + O 5000 | 8.15 ± 1.70 fE | 84.83 ± 3.61 aA |
T 2500 | 15.19 ± 2.80 eD | 72.05 ± 3.59 bB |
O 2500 | 25.56 ± 1.11 dCD | 52.59 ± 4.20 dC |
T 5000 | 20.37 ± 1.70 cC | 62.17 ± 4.63 cC |
O 5000 | 35.93 ± 1.70 bB | 33.52 ± 1.02 eD |
Control | 54.07 ± 3.39 aA |
Treatments | Diameter (mm) | Fruit Shape Index | Fruit Volume (cm3) | Fruit Weight (g) | ||
---|---|---|---|---|---|---|
Longitudinal | Transverse | Lateral | ||||
T + O 5000 | 79.81 ± 1.10 a | 49.19 ± 1.22 a | 41.60 ± 0.76 a | 1.76 ± 0.03 b | 68.36 ± 1.53 a | 97.22 ± 2.19 a |
T 2500 | 78.14 ± 1.72 b | 49.08 ± 1.75 a | 40.21 ± 1.20 ab | 1.75 ± 0.07 b | 64.58 ± 3.82 b | 92.67 ± 1.42 b |
O 2500 | 78.70 ± 2.42 ab | 47.14 ± 1.37 ab | 38.70 ± 0.41 bc | 1.83 ± 0.09 ab | 60.07 ± 0.82 c | 89.66 ± 2.02 bc |
T 5000 | 77.72 ± 1.62 b | 46.53 ± 1.36 ab | 38.25 ± 1.19 cd | 1.83 ± 0.08 ab | 57.90 ± 2.23 c | 89.44 ± 1.23 bc |
O 5000 | 73.88 ± 1.90 c | 46.84 ± 1.66 ab | 37.31 ± 0.64 cd | 1.76 ± 0.05 b | 54.03 ± 1.74 d | 87.78 ± 1.72 c |
Control | 73.78 ± 1.62 c | 46.25 ± 0.59 b | 37.30 ± 1.26 d | 1.77 ± 0.08 b | 53.27 ± 1.29 d | 87.33 ± 1.28 c |
Treatments | Vitamin C (g kg−1) | Soluble Solid (%) | Dry Matter (%) | Total Soluble Sugar (%) | Titratable Acidity (%) | Sugar/Acid Ratio |
---|---|---|---|---|---|---|
T + O 5000 | 2.11 ± 0.14 a | 19.75 ± 0.17 a | 12.91 ± 0.06 a | 15.80 ± 0.18 a | 1.07 ± 0.02 ab | 12.06 ± 0.05 a |
T 2500 | 1.91 ± 0.10 b | 19.22 ± 0.23 b | 12.53 ± 0.17 ab | 15.07 ± 0.35 b | 1.11 ± 0.04 a | 11.19 ± 0.06 b |
O 2500 | 1.89 ± 0.13 b | 19.18 ± 0.18 bc | 12.59 ± 0.24 ab | 15.10 ± 0.14 b | 1.09 ± 0.01 a | 11.57 ± 0.11 ab |
T 5000 | 1.87 ± 0.12 b | 18.98 ± 0.18 bc | 12.39 ± 0.15 abc | 14.63 ± 0.13 bc | 1.12 ± 0.05 a | 11.07 ± 0.07 b |
O 5000 | 1.86 ± 0.12 b | 19.04 ± 0.39 bc | 12.59 ± 0.28 ab | 14.77 ± 0.16 bc | 1.10 ± 0.03 a | 11.44 ± 0.08 ab |
Control | 1.83 ± 0.05 b | 18.82 ± 0.59 bc | 12.06 ± 0.35 b | 14.60 ± 0.29 bc | 1.16 ± 0.03 a | 10.41 ± 0.16 bc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Long, Y.; Ai, Q.; Su, Y.; Lei, Y. Oligosaccharins Used Together with Tebuconazole Enhances Resistance of Kiwifruit against Soft Rot Disease and Improves Its Yield and Quality. Horticulturae 2022, 8, 624. https://doi.org/10.3390/horticulturae8070624
Wang Q, Long Y, Ai Q, Su Y, Lei Y. Oligosaccharins Used Together with Tebuconazole Enhances Resistance of Kiwifruit against Soft Rot Disease and Improves Its Yield and Quality. Horticulturae. 2022; 8(7):624. https://doi.org/10.3390/horticulturae8070624
Chicago/Turabian StyleWang, Qiuping, Youhua Long, Qiang Ai, Yue Su, and Yang Lei. 2022. "Oligosaccharins Used Together with Tebuconazole Enhances Resistance of Kiwifruit against Soft Rot Disease and Improves Its Yield and Quality" Horticulturae 8, no. 7: 624. https://doi.org/10.3390/horticulturae8070624
APA StyleWang, Q., Long, Y., Ai, Q., Su, Y., & Lei, Y. (2022). Oligosaccharins Used Together with Tebuconazole Enhances Resistance of Kiwifruit against Soft Rot Disease and Improves Its Yield and Quality. Horticulturae, 8(7), 624. https://doi.org/10.3390/horticulturae8070624