Apiaceae Family as a Valuable Source of Biocidal Components and their Potential Uses in Agriculture
Abstract
:1. Introduction
2. Phytochemicalsin Apiaceae Extracts
3. Biocidal Effects of Apiaceae Extracts
4. Potential Use of Apiaceae Extracts as Agrochemicals
4.1. Insecticidal Activity for Crops and Stored Producs Protection
4.1.1. Insecticidal Activity to Protect Crops
4.1.2. Insecticidal Activity to Protect Stored Products
4.2. Herbicidal/Phytotoxic Activity against Weeds
4.3. Antimicrobial Activity against Phytopathogens
5. Future Trends
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ahmad, B.S.; Talou, T.; Saad, Z.; Hijazi, A.; Ahmad, B.S.; Talou, T.; Saad, Z.; Hijazi, A.; Merah, O.; Apiaceae, T. The Apiaceae: Ethnomedicinal Family as Source for Industrial Uses. Ind. Crops Prod. 2017, 109, 661–671. [Google Scholar] [CrossRef] [Green Version]
- Aćimović, M.G. Nutraceutical Potential of Apiaceae. In Bioactive Molecules in Food; Mérillon, J.-M., Ramawat, K.G., Eds.; Reference Series in Phytochemistry; Springer International Publishing: Cham, Switzerland, 2019; pp. 1311–1341. ISBN 978-3-319-78030-6. [Google Scholar]
- Aćimović, M.G.; Milićb, N.B. Perspectives of the Apiaceae Hepatoprotective Effects—A Review. Nat. Prod. Commun. 2017, 12, 309–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa, R.M.O.F.; Cunha, A.C.; Fernandes-Ferreira, M. The Potential of Apiaceae Species as Sources of Singular Phytochemicals and Plant-Based Pesticides. Phytochemistry 2021, 187, 112714. [Google Scholar] [CrossRef] [PubMed]
- Christensen, L.P.; Brandt, K. Bioactive Polyacetylenes in Food Plants of the Apiaceae Family: Occurrence, Bioactivity and Analysis. J. Pharm. Biomed. Anal. 2006, 41, 683–693. [Google Scholar] [CrossRef]
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators. Int. J. Environ. Res. Public Health 2011, 8, 1402–1419. [Google Scholar] [CrossRef]
- Piri, A.; Sahebzadeh, N.; Zibaee, A.; Sendi, J.J.; Shamakhi, L.; Shahriari, M. Toxicity and Physiological Effects of Ajwain (Carum copticum, Apiaceae) Essential Oil and Its Major Constituents against Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Chemosphere 2020, 256, 127103. [Google Scholar] [CrossRef]
- Rajput, P.; Thakur, A.; Devi, P. Chapter 5—Emerging Agrochemicals Contaminants: Current Status, Challenges, and Technological Solutions. In Agrochemicals Detection, Treatment and Remediation; Prasad, M.N.V., Ed.; Butterworth-Heinemann: Oxford, UK, 2020; pp. 117–142. ISBN 978-0-08-103017-2. [Google Scholar]
- Ramírez-Gómez, X.S.; Jiménez-García, S.N.; Campos, V.B.; Campos, M.L.G. Plant Metabolites in Plant Defense Against Pathogens; IntechOpen: London, UK, 2019; ISBN 978-1-78985-116-8. [Google Scholar]
- Zaynab, M.; Fatima, M.; Abbas, S.; Sharif, Y.; Umair, M.; Zafar, M.H.; Bahadar, K. Role of Secondary Metabolites in Plant Defense against Pathogens. Microb. Pathog. 2018, 124, 198–202. [Google Scholar] [CrossRef]
- Naboulsi, I.; Aboulmouhajir, A.; Kouisni, L.; Bekkaoui, F.; Yasri, A. Plants Extracts and Secondary Metabolites, Their Extraction Methods and Use in Agriculture for Controlling Crop Stresses and Improving Productivity: A Review. Acad. J. Med. Plants 2018, 6, 223–240. [Google Scholar]
- Boulogne, I.; Petit, P.; Ozier-lafontaine, H.; Loranger-merciris, G.; Boulogne, I.; Petit, P.; Ozier-lafontaine, H.; Desfontaines, L.; Loranger-Merciris, G. Insecticidal and Antifungal Chemicals Produced by Plants: A Review. Environ. Chem. Lett. 2012, 10, 325–347. [Google Scholar] [CrossRef] [Green Version]
- Duško, B.L.; Comiæ, L.; Sukdolak, S. Antibacterial Activity of Some Plants from Family Apiaceae in Relation to Selected Phytopathogenic Bacteria. Kragujev. J. Sci. 2006, 28, 65–72. [Google Scholar]
- Ferrie, A.M.R.; Caswell, K.L. Chapter 13—Applications of Doubled Haploidy for Improving Industrial Oilseeds. In Industrial Oil Crops; McKeon, T.A., Hayes, D.G., Hildebrand, D.F., Weselake, R.J., Eds.; AOCS Press: Champaign, IL, USA, 2016; pp. 359–378. ISBN 978-1-893997-98-1. [Google Scholar]
- Chaubey, M.K. Biological Effects of Essential Oils Against Rice Weevil Sitophilus oryzae L. (Coleoptera: Curculionidae). J. Essent. Oil Bear. Plants 2012, 15, 809–815. [Google Scholar] [CrossRef]
- Petretto, G.L.; Fancello, F.; Bakhy, K.; Faiz, C.A.; Sibawayh, Z.; Chessa, M.; Zara, S.; Sanna, M.L.; Maldini, M.; Rourke, J.P.; et al. Chemical Composition and Antimicrobial Activity of Essential Oils from Cuminum cyminum L. Collected in Different Areas of Morocco. Food Biosci. 2018, 22, 50–58. [Google Scholar] [CrossRef] [Green Version]
- El Karkouri, J.; Bouhrim, M.; Al Kamaly, O.M.; Mechchate, H.; Kchibale, A.; Adadi, I.; Amine, S.; Alaoui Ismaili, S.; Zair, T. Chemical Composition, Antibacterial and Antifungal Activity of the Essential Oil from Cistus ladanifer L. Plants 2021, 10, 2068. [Google Scholar] [CrossRef]
- Gazim, Z.C.; Demarchi, I.G.; Lonardoni, M.V.C.; Amorim, A.C.L.; Hovell, A.M.C.; Rezende, C.M.; Ferreira, G.A.; de Lima, E.L.; de Cosmo, F.A.; Cortez, D.A.G. Acaricidal Activity of the Essential Oil from Tetradenia riparia (Lamiaceae) on the Cattle Tick Rhipicephalus (Boophilus) microplus (Acari; Ixodidae). Exp. Parasitol. 2011, 129, 175–178. [Google Scholar] [CrossRef] [Green Version]
- Abdulmanea, K.; Prokudina, E.A.; Lanková, P.; Vaníčková, L.; Koblovská, R.; Zelený, V.; Lapčík, O. Immunochemical and HPLC Identification of Isoflavonoids in the Apiaceae Family. Biochem. Syst. Ecol. 2012, 45, 237–243. [Google Scholar] [CrossRef]
- Sadaoui, N.; Bec, N.; Barragan-Montero, V.; Kadri, N.; Cuisinier, F.; Larroque, C.; Arab, K.; Khettal, B. The Essential Oil of Algerian Ammodaucus leucotrichus Coss. & Dur. and Its Effect on the Cholinesterase and Monoamine Oxidase Activities. Fitoterapia 2018, 130, 1–5. [Google Scholar] [CrossRef]
- Nikolić, M.; Marković, T.; Ćirić, A.; Glamočlija, J.; Marković, D.; Soković, M. Susceptibility of Oral candida Spp.: Reference Strains and Clinical Isolates to Selected Essential Oils of Apiaceae Species. Lek. Sirovine 2016, 35, 151–162. [Google Scholar] [CrossRef]
- Singh, G.; Maurya, S.; de Lampasona, M.P.; Catalan, C. Chemical Constituents, Antimicrobial Investigations, and Antioxidative Potentials of Anethum graveolens L. Essential Oil and Acetone Extract: Part 52. J. Food Sci. 2005, 70, M208–M215. [Google Scholar] [CrossRef]
- Aćimović, M.G.; Pavlović, S.D.; Varga, A.O.; Filipović, V.M.; Cvetković, M.T.; Stanković, J.M.; Čabarkapa, I.S. Chemical Composition and Antibacterial Activity of Angelica Archangelica Root Essential Oil. Nat. Prod. Commun. 2017, 12, 205–206. [Google Scholar] [CrossRef] [Green Version]
- Sipailiene, A.; Venskutonis, P.R.; Sarkinas, A.; Cypiene, V. Composition and Antimicrobial Activity of Celery (Apium graveolens) Leaf and Root Extracts Obtained with Liquid Carbon Dioxide. Acta Hortic. 2005, 677, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Alsalman, A.-H.; Aboalhaija, N.; Talib, W.; Abaza, I.; Afifi, F. Evaluation of the Single and Combined Antibacterial Efficiency of the Leaf Essential Oils of Four Common Culinary Herbs: Dill, Celery, Coriander and Fennel Grown in Jordan. J. Essent. Oil Bear. Plants 2021, 24, 317–328. [Google Scholar] [CrossRef]
- Maggi, F.; Giuliani, C.; Fico, G.; Ricciutelli, M.; Bramucci, M.; Quassinti, L.; Petrelli, D.; Vitali, L.A.; Cianfaglione, K.; Tirillini, B.; et al. Secondary Metabolites, Secretory Structures and Biological Activity of Water Celery (Apium nodiflorum (L.) Lag.) Growing in Central Italy. Plant Biosyst.—Int. J. Deal. All Asp. Plant Biol. 2019, 153, 325–335. [Google Scholar] [CrossRef]
- López, S.; Lima, B.; Aragón, L.; Espinar, L.A.; Tapia, A.; Zacchino, S.; Zygadlo, J.; Feresin, G.E.; López, M.L. Essential Oil of Azorella Cryptantha Collected in Two Different Locations from San Juan Province, Argentina: Chemical Variability and Anti-Insect and Antimicrobial Activities. Chem. Biodivers. 2012, 9, 1452–1464. [Google Scholar] [CrossRef] [PubMed]
- Abou El-Soud, N.H.; Deabes, M.M.; Abou El-Kassem, L.; Khalil, M.Y. Antifungal Activity of Family Apiaceae Essential Oils. J. Appl. Sci. Res. 2012, 8, 4964–4973. [Google Scholar]
- Synowiec, A.; Możdżeń, K.; Krajewska, A.; Landi, M.; Araniti, F. Carum carvi L. Essential Oil: A Promising Candidate for Botanical Herbicide against Echinochloa crus-galli (L.) P. Beauv. in Maize Cultivation. Ind. Crops Prod. 2019, 140, 111652. [Google Scholar] [CrossRef]
- Hajlaoui, H.; Arraouadi, S.; Noumi, E.; Aouadi, K.; Adnan, M.; Khan, M.A.; Kadri, A.; Snoussi, M. Antimicrobial, Antioxidant, Anti-Acetylcholinesterase, Antidiabetic, and Pharmacokinetic Properties of Carum carvi L. and Coriandrum sativum L. Essential Oils Alone and in Combination. Molecules 2021, 26, 3625. [Google Scholar] [CrossRef]
- Abdolahi, A.; Hassani, A.; Ghosta, Y.; Javadi, T.; Meshkatalsadat, M.H. Essential Oils as Control Agents of Postaharvest Alternaria and Penicillium Rots on Tomato Fruits. J. Food Saf. 2010, 30, 341–352. [Google Scholar] [CrossRef]
- Khalil, N.; Ashour, M.; Fikry, S.; Singab, A.N.; Salama, O. Chemical Composition and Antimicrobial Activity of the Essential Oils of Selected Apiaceous Fruits. Future J. Pharm. Sci. 2018, 4, 88–92. [Google Scholar] [CrossRef]
- Fang, R.; Jiang, C.H.; Wang, X.Y.; Zhang, H.M.; Liu, Z.L.; Zhou, L.; Du, S.S.; Deng, Z.W. Insecticidal Activity of Essential Oil of Carum carvi Fruits from China and Its Main Components against Two Grain Storage Insects. Molecules 2010, 15, 9391–9402. [Google Scholar] [CrossRef]
- Simic, A.; Rančic, A.; Sokovic, M.D.; Ristic, M.; Grujic-Jovanovic, S.; Vukojevic, J.; Marin, P.D. Essential Oil Composition of Cymbopogon Winterianus. and Carum carvi. and Their Antimicrobial Activities. Pharm. Biol. 2008, 46, 437–441. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Marimuthu, P.; de Heluani, C.S.; Catalan, C.A.N. Antioxidant and Biocidal Activities of Carum Nigrum (Seed) Essential Oil, Oleoresin, and Their Selected Components. J. Agric. Food Chem. 2006, 54, 174–181. [Google Scholar] [CrossRef]
- Oyedeji, O.A.; Afolayan, A.J. Chemical Composition and Antibacterial Activity of the Essential Oil of Centella asiatica Growing in South Africa. Pharm. Biol. 2005, 43, 249–252. [Google Scholar] [CrossRef] [Green Version]
- Petrović, G.M.; Stamenković, J.G.; Kostevski, I.R.; Stojanović, G.S.; Mitić, V.D.; Zlatković, B.K. Chemical Composition of Volatiles; Antimicrobial, Antioxidant and Cholinesterase Inhibitory Activity of Chaerophyllum aromaticum L. (Apiaceae) Essential Oils and Extracts. Chem. Biodivers. 2017, 14, e1600367. [Google Scholar] [CrossRef]
- Lakušić, B.; Slavkovska, V.; Pavlović, M.; Milenković, M.; Stanković, J.A.; Couladis, M. Chemical Composition and Antimicrobial Activity of the Essential Oil from Chaerophyllum aureum L. (Apiaceae). Nat. Prod. Commun. 2009, 4, 115–118. [Google Scholar] [CrossRef] [Green Version]
- Hayta, S.; Celikezen, F.C. Evaluation of Essential Oil Composition, Antioxidant and Antimicrobial Properties of Chaerophyllum Crinitum Boiss (Apiaceae) from Turkey: A Traditional Medicinal Herb. J. Biol. Sci. 2016, 16, 72–76. [Google Scholar] [CrossRef] [Green Version]
- Shafaghat, A. Comparison of the Antimicrobial Activity and Chemical Constituents of the Essential Oil and Hexanic Extract from Chaerophyllum Macropodum. J. Essent. Oil Bear. Plants 2017, 20, 835–843. [Google Scholar] [CrossRef]
- Lee, M.-J.; Lee, S.-E.; Kang, M.-S.; Park, B.; Lee, S.-G.; Lee, H.-S. Acaricidal and Insecticidal Properties of Coriandrum sativum Oils and Their Major Constituents Extracted by Three Different Methods against Stored Product Pests. Appl. Biol. Chem. 2018, 61, 481–488. [Google Scholar] [CrossRef] [Green Version]
- Khani, A.; Rahdari, T. Chemical Composition and Insecticidal Activity of Essential Oil from Coriandrum sativum Seeds against Tribolium confusum and Callosobruchus maculatus. ISRN Pharm. 2012, 2012, 263517. [Google Scholar] [CrossRef] [Green Version]
- Amini, S.; Tajabadi, F.; Khani, M.; Labbafi, M.R.; Tavakoli, M. Identification of the Seed Essential Oil Composition of Four Apiaceae Species and Comparison of Their Biological Effects on Sitophilus oryzae L. and Tribolium castaneum (Herbst.). J. Med. Plants 2018, 17, 68–76. [Google Scholar]
- Alves-Silva, J.M.; Guerra, I.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Figueirinha, A.; Salgueiro, L. Chemical Composition of Crithmum maritimum L. Essential Oil and Hydrodistillation Residual Water by GC-MS and HPLC-DAD-MS/MS, and Their Biological Activities. Ind. Crops Prod. 2020, 149, 112329. [Google Scholar] [CrossRef]
- D’Agostino, G.; Giambra, B.; Palla, F.; Bruno, M.; Badalamenti, N. The Application of the Essential Oils of Thymus vulgaris L. and Crithmum maritimum L. as Biocidal on Two Tholu Bommalu Indian Leather Puppets. Plants 2021, 10, 1508. [Google Scholar] [CrossRef] [PubMed]
- Pasias, I.N.; Ntakoulas, D.D.; Raptopoulou, K.; Gardeli, C.; Proestos, C. Chemical Composition of Essential Oils of Aromatic and Medicinal Herbs Cultivated in Greece—Benefits and Drawbacks. Foods 2021, 10, 2354. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R.; Maggi, F.; Lupidi, G.; Cianfaglione, K.; Dauvergne, X.; Bruno, M.; Benelli, G. Efficacy of Sea Fennel (Crithmum maritimum L., Apiaceae) Essential Oils against Culex quinquefasciatus Say and Spodoptera littoralis (Boisd.). Ind. Crops Prod. 2017, 109, 603–610. [Google Scholar] [CrossRef]
- Suresh, U.; Murugan, K.; Panneerselvam, C.; Aziz, A.T.; Cianfaglione, K.; Wang, L.; Maggi, F. Encapsulation of Sea Fennel (Crithmum maritimum) Essential Oil in Nanoemulsion and SiO2 Nanoparticles for Treatment of the Crop Pest Spodoptera Litura and the Dengue Vector Aedes Aegypti. Ind. Crops Prod. 2020, 158, 113033. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Petrelli, R.; Cappellacci, L.; Canale, A.; Senthil-Nathan, S.; Maggi, F. Not Just Popular Spices! Essential Oils from Cuminum cyminum and Pimpinella anisum Are Toxic to Insect Pests and Vectors without Affecting Non-Target Invertebrates. Ind. Crops Prod. 2018, 124, 236–243. [Google Scholar] [CrossRef]
- Abbdellaoui, M.; Bouhlali, E.D.T.; Rhaffari, L.E. Chemical Composition and Antioxidant Activities of the Essential Oils of Cumin (Cuminum cyminum) Conducted Under Organic Production Conditions. J. Essent. Oil Bear. Plants 2019, 22, 1500–1508. [Google Scholar] [CrossRef]
- Attia, S.; Grissa, K.L.; Lognay, G.; Heuskin, S.; Mailleux, A.C.; Hance, T. Chemical Composition and Acaricidal Properties of Deverra Scoparia Essential Oil (Araliales: Apiaceae) and Blends of Its Major Constituents against Tetranychus urticae (Acari: Tetranychidae). J. Econ. Entomol. 2011, 104, 1220–1228. [Google Scholar] [CrossRef]
- Glamoclija, J.M.; Sokovic, M.D.; Šiljegovic, J.D.; Ristic, M.S.; Ciric, A.D.; Grubišic, D.V. Chemical Composition and Antimicrobial Activity of Echinophora spinosa L. (Apiaceae) Essential Oil. Rec. Nat. Prod. 2011, 5, 319–323. [Google Scholar]
- Kremer, D.; Zovko Končić, M.; Kosalec, I.; Košir, I.J.; Potočnik, T.; Čerenak, A.; Srečec, S.; Dunkić, V.; Vuko, E. Phytochemical Traits and Biological Activity of Eryngium amethystinum and E. alpinum (Apiaceae). Horticulturae 2021, 7, 364. [Google Scholar] [CrossRef]
- Casiglia, S.; Bruno, M.; Rosselli, S.; Senatore, F. Chemical Composition and Antimicrobial Activity of the Essential Oil from Flowers of Eryngium triquetrum (Apiaceae) Collected Wild in Sicily. Nat. Prod. Commun. 2016, 11, 1019–1024. [Google Scholar] [CrossRef] [Green Version]
- Merad, N.; Andreu, V.; Chaib, S.; de Carvalho Augusto, R.; Duval, D.; Bertrand, C.; Boumghar, Y.; Pichette, A.; Djabou, N. Essential Oils from Two Apiaceae Species as Potential Agents in Organic Crops Protection. Antibiotics 2021, 10, 636. [Google Scholar] [CrossRef]
- Karakaya, S.; Göger, G.; Bostanlik, F.D.; Demirci, B.; Duman, H.; Kiliç, C.S. Comparison of the Essential Oils of Ferula orientalis L., Ferulago Sandrasica Peşmen and Quézel, and Hippomarathrum microcarpum Petrov and Their Antimicrobial Activity. Turk. J. Pharm. Sci. 2019, 16, 69–75. [Google Scholar] [CrossRef]
- Moghaddam, M.; Mehdizadeh, L.; Mirzaei Najafgholi, H.; Ghasemi Pirbalouti, A. Chemical Composition, Antibacterial and Antifungal Activities of Seed Essential Oil of Ferulago Angulata. Int. J. Food Prop. 2018, 21, 158–170. [Google Scholar] [CrossRef] [Green Version]
- Karakaya, S.; Koca, M.; Sytar, O.; Dursunoglu, B.; Ozbek, H.; Duman, H.; Guvenalp, Z.; Kılıc, C.S. Antioxidant and Anticholinesterase Potential of Ferulago Cassia with Farther Bio-Guided Isolation of Active Coumarin Constituents. South Afr. J. Bot. 2019, 121, 536–542. [Google Scholar] [CrossRef]
- Dikpınar, T.; Süzgeç-Selçuk, S.; Çelik, B.Ö.; Uruşak, E.A. Antimicrobial Activity of Rhizomes of Ferulago Trachycarpa Boiss. and Bioguided Isolation of Active Coumarin Constituents. Ind. Crops Prod. 2018, 123, 762–767. [Google Scholar] [CrossRef]
- Tavakoli, S.; Yassa, N.; Delnavazi, M.R.; Akhbari, M.; Hadjiakhoondi, A.; Hajimehdipoor, H.; Khalighi-Sigaroodi, F.; Hajiaghaee, R. Chemical Composition and Biological Activities of the Essential Oils from Different Parts of Ferulago trifida Boiss. J. Essent. Oil Res. 2017, 29, 407–419. [Google Scholar] [CrossRef]
- Sayed Ahmad, B.; Talou, T.; Saad, Z.; Hijazi, A.; Cerny, M.; Kanaan, H.; Chokr, A.; Merah, O. Fennel Oil and By-Products Seed Characterization and Their Potential Applications. Ind. Crops Prod. 2018, 111, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Teke, M.A.; Mutlu, Ç. Insecticidal and Behavioral Effects of Some Plant Essential Oils against Sitophilus granarius L. and Tribolium castaneum (Herbst). J. Plant Dis. Prot. 2021, 128, 109–119. [Google Scholar] [CrossRef]
- Kaur, P.; Gupta, S.; Kaur, K.; Kaur, N.; Kumar, R.; Bhullar, M.S. Nanoemulsion of Foeniculum Vulgare Essential Oil: A Propitious Striver against Weeds of Triticum Aestivum. Ind. Crops Prod. 2021, 168, 113601. [Google Scholar] [CrossRef]
- Torbati, M.; Nazemiyeh, H.; Lotfipour, F.; Asnaashari, S.; Nemati, M.; Fathiazad, F. Composition and Antibacterial Activity of Heracleum Transcaucasicum and Heracleum Anisactis Aerial Parts Essential Oil. Adv. Pharm. Bull. 2013, 3, 415–418. [Google Scholar] [CrossRef] [Green Version]
- Moradalizadeh, M.; Akhgar, M.R.; Rajaei, P.; Faghihi-Zarandi, A. Chemical Composition of the Essential Oils of Levisticum Officinale Growing Wild in Iran. Chem. Nat. Compd. 2012, 47, 1007–1009. [Google Scholar] [CrossRef]
- Liu, Z.L.; Chu, S.S.; Jiang, G.H. Insecticidal Activity and Composition of Essential Oil of Ostericum sieboldii (Apiaceae) against Sitophilus zeamais and Tribolium castaneum. Rec. Nat. Prod. 2011, 5, 74–81. [Google Scholar]
- Brusotti, G.; Ibrahim, M.F.; Dentamaro, A.; Gilardoni, G.; Tosi, S.; Grisoli, P.; Dacarro, C.; Guglielminetti, M.L.; Hussain, F.H.S.; Caccialanza, G.; et al. Chemical Composition and Antimicrobial Activity of the Volatile Fractions from Leaves and Flowers of the Wild Iraqi Kurdish Plant Prangos Peucedanifolia FENZL. Chem. Biodivers. 2013, 10, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; Stojković, D.; Mahomoodally, M.F.; Jugreet, B.S.; Paksoy, M.Y.; Ivanov, M.; Gašić, U.; Gallo, M.; Montesano, D. Comprehensive Biological and Chemical Evaluation of Two Seseli Species (S. Gummiferum and S. Transcaucasicum). Antioxidants 2021, 10, 1510. [Google Scholar] [CrossRef] [PubMed]
- Rosato, A.; Maggi, F.; Cianfaglione, K.; Conti, F.; Ciaschetti, G.; Rakotosaona, R.; Fracchiolla, G.; Clodoveo, M.L.; Franchini, C.; Corbo, F. Chemical Composition and Antibacterial Activity of Seven Uncommon Essential Oils. J. Essent. Oil Res. 2018, 30, 233–243. [Google Scholar] [CrossRef]
- Gandomi, H.; Abbaszadeh, S.; Jebellijavan, A.; Sharifzadeh, A. Chemical Constituents, Antimicrobial and Antioxidative Effects of Trachyspermum ammi Essential Oil. J. Food Processing Preserv. 2014, 38, 1690–1695. [Google Scholar] [CrossRef]
- Demirci, B.; Yasdikcioǧlu, G.K.; Başer, K.H.C. Sesquiterpene Hydrocarbons of the Essential Oil of Actinolema Macrolema Boiss. Turk. J. Chem. 2013, 37, 917–926. [Google Scholar] [CrossRef]
- Stefanovic, O.; Comic, L.; Stanojevic, D.; Solujic-Sukdolak, S. Antibacterial Activity of Aegopodium podagraria L. Extracts and Interaction between Extracts and Antibiotics. Turk. J. Biol. 2009, 33, 145–150. [Google Scholar] [CrossRef]
- Pavela, R. Larvicidal Effects of Various Euro-Asiatic Plants against Culex quinquefasciatus Say Larvae (Diptera: Culicidae). Parasitol. Res. 2008, 102, 555–559. [Google Scholar] [CrossRef]
- Fairouz, B.; Nora, C.; Salima, K.G. Insecticidal Effect of Ammi visnaga L. (Apiaceae: Apial) Methanolic Extract against a Citrus Pest, Toxoptera aurantii (Aphididae: Homoptera) under Controlled Conditions. J. Entomol. Zool. Stud. 2016, 4, 230–235. [Google Scholar]
- Meepagala, K.M.; Estep, A.S.; Becnel, J.J. Mosquitocidal Activity of Extracts from Ammi visnaga (Apiaceae) Seeds. J. Agric. Chem. Environ. 2016, 05, 170–178. [Google Scholar] [CrossRef] [Green Version]
- Ghoneim, K.; Mohammad, A.; Al-Daly, A.; Amer, M.; Khadrawy, F.; Mahmoud, M.A. Metabolic Responsiveness of Desert Locust Schistocerca gregaria (Forskal) (Orthoptera: Acrididae) to the Khella Plant Ammi visnaga L. (Apiaceae) Extracts. Int. J. Adv. Life Sci. 2014, 7, 204–216. [Google Scholar]
- Sebaa, A.; Marouf, A.; Kambouche, N.; Derdour, A. Phytochemical Composition, Antioxidant and Antimicrobial Activities of Ammodaucus leucotrichus Fruit from Algerian Sahara. Orient. J. Chem. 2018, 34, 519–525. [Google Scholar] [CrossRef] [Green Version]
- Chaubey, M.K. Insecticidal Activity of Trachyspermum ammi (Umbelliferae), Anethum graveolens (Umbelliferae) and Nigella Sativa (Ranunculaceae) Essential Oils against Stored-Product Beetle Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). Afr. J. Agric. Res. 2007, 2, 596–600. [Google Scholar] [CrossRef]
- Kostić, I.; Lazarević, J.; Šešlija Jovanović, D.; Kostić, M.; Marković, T.; Milanović, S. Potential of Essential Oils from Anise, Dill and Fennel Seeds for the Gypsy Moth Control. Plants 2021, 10, 2194. [Google Scholar] [CrossRef]
- Evergetis, E.; Michaelakis, A.; Haroutounian, S.A. Essential Oils of Umbelliferae (Apiaceae) Family Taxa as Emerging Potent Agents for Mosquito Control. In Integrated Pest Management and Pest Control—Current and Future Tactics; Soloneski, S., Ed.; InTech: London, UK, 2012; pp. 613–638. ISBN 978-953-51-0050-8. [Google Scholar]
- Karakas, M. Use of Aromatic Plant Extracts as Bio-Insecticides for the Control of Stored-Product Insect, Sitophilus granarius. Int. J. Entomol. Res. 2017, 2, 27–29. [Google Scholar]
- Din, Z.U.; Shad, A.A.; Bakht, J.; Ullah, I.; Jan, S. In Vitro Antimicrobial, Antioxidant Activity and Phytochemical Screening of Apium graveolens. Pak. J. Pharm. Sci. 2015, 28, 1699–1704. [Google Scholar]
- Sousa, R.M.O.F.; Rosa, J.S.; Oliveira, L.; Cunha, A.; Fernandes-Ferreira, M. Activities of Apiaceae Essential Oils against Armyworm, Pseudaletia unipuncta (Lepidoptera: Noctuidae). J. Agric. Food Chem. 2013, 61, 7661–7672. [Google Scholar] [CrossRef]
- Ebadollahi, A.; Mahboubi, M. Insecticidal Activity of the Essential Oil Isolated from Azilia Eryngioides (PAU) Hedge et Lamond against Two Beetle Pests. Chil. J. Agric. Res. 2011, 71, 406–411. [Google Scholar] [CrossRef] [Green Version]
- Lima, B.; Sanchez, M.; Agüero, M.B.; Tapia, A.; Palermo, J.A.; Feresin, G.E. Antibacterial Activity of Extracts and Compounds Isolated from the Andean Medicinal Plant Azorella Cryptantha (Clos) Reiche, Apiaceae. Ind. Crops Prod. 2015, 64, 152–157. [Google Scholar] [CrossRef]
- Ben-Khalifa, N.E.; Chaieb, I.; Laarif, A.; Haouala, R. Insecticidal Activity of Six Apiaceae Essential Oils against Spodoptera littoralis Biosduval (Lepidoptera: Noctuidae). J. New Sci. 2018, 55, 3603–3609. [Google Scholar]
- Rajkumar, S.; Jebanesan, A. Larvicidal and Adult Emergence Inhibition Effect of Centella asiatica Brahmi (Umbelliferae) against Mosquito Culex quinquefasciatus Say (Diptera: Culicidae). Afr. J. Biomed. Res. 2005, 8, 31–33. [Google Scholar] [CrossRef] [Green Version]
- Idris, F.N.; Nadzir, M.M. Antimicrobial Activity of Centella asiatica on Aspergillus Niger and Bacillus Subtilis. Chem. Eng. Trans. 2017, 56, 1381–1386. [Google Scholar] [CrossRef]
- Shafaghat, A. Antibacterial Activity and Composition of Essential Oils from Flower, Leaf and Stem of Chaerophyllum Macropodum Boiss. from Iran. Nat. Prod. Commun. 2009, 4, 861–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matasyoh, J.C.; Maiyo, Z.C.; Ngure, R.M.; Chepkorir, R. Chemical Composition and Antimicrobial Activity of the Essential Oil of Coriandrum sativum. Food Chem. 2009, 113, 526–529. [Google Scholar] [CrossRef]
- Pereira, C.G.; Moraes, C.B.; Franco, C.H.; Feltrin, C.; Grougnet, R.; Barbosa, E.G.; Panciera, M.; Correia, C.R.D.; Rodrigues, M.J.; Custódio, L. In Vitro Anti-Trypanosoma Cruzi Activity of Halophytes from Southern Portugal Reloaded: A Special Focus on Sea Fennel (Crithmum maritimum L.). Plants 2021, 10, 2235. [Google Scholar] [CrossRef]
- Chaubey, M.K. Evaluation of Insecticidal Properties of Cuminum cyminum and Piper Nigrum Essential Oils against Sitophilus zeamais. J. Entomol. 2017, 14, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Hrudová, E.; Kocourková, B.; Zelená, V. Insecticidal Effect of Carrot (Daucus Carota) and Lovage (Levisticum Officinale) (Apiaceae) Extracts against Tribolium confusum Jacquelin Du Duval, 1868 (Coleoptera, Tenebrionidae). Acta Univ. Agric. Silvic. Mendel. Brun. 2014, 54, 165–168. [Google Scholar] [CrossRef] [Green Version]
- Mouloud, G.; Rabah, B.; Khellaf, R. Antimicrobial and Antioxidant Activity of Methanol Extract of Echinophora spinosa L. from Jijel, Algeria. Alger. J. Biosci. 2020, 1, 24–29. [Google Scholar] [CrossRef]
- Pavela, R.; Maggi, F.; Cianfaglione, K.; Canale, A.; Benelli, G. Promising Insecticidal Efficacy of the Essential Oils from the Halophyte Echinophora spinosa (Apiaceae) Growing in Corsica Island, France. Environ. Sci. Pollut. Res. 2020, 27, 14454–14464. [Google Scholar] [CrossRef]
- Lingaraju, D.P.; Sudarshana, M.S.; Mahendra, C.; Rao, K.P. Phytochemical Screening and Antimicrobial Activity of Leaf Extracts of Eryngium foetidum L. (Apiaceae). Indo Am. J. Pharm. Res. 2016, 6, 4339–4344. [Google Scholar]
- Sumitha, K.V.; Prajitha, V.; Sandhya, V.N.; Anjana, S.; Thoppil, J.E. Potential Larvicidal Principles in Eryngium foetidum L. (Apiaceae), An Omnipresent Weed, Effective Against Aedes Albopictus Skuse. J. Essent. Oil-Bear. Plants 2014, 17, 1279–1286. [Google Scholar] [CrossRef]
- Zengin, G.; Mahomoodally, M.F.; Paksoy, M.Y.; Picot-Allain, C.; Glamocilja, J.; Sokovic, M.; Diuzheva, A.; Jekő, J.; Cziáky, Z.; Rodrigues, M.J.; et al. Phytochemical Characterization and Bioactivities of Five Apiaceae Species: Natural Sources for Novel Ingredients. Ind. Crops Prod. 2019, 135, 107–121. [Google Scholar] [CrossRef]
- Kahraman, C.; Topcu, G.; Bedir, E.; Tatli, I.I.; Ekizoglu, M.; Akdemir, Z.S. Phytochemical Screening and Evaluation of the Antimicrobial and Antioxidant Activities of Ferula Caspica M. Bieb. Extracts. Saudi Pharm. J. 2019, 27, 525–531. [Google Scholar] [CrossRef]
- Ramezanipour, O.; Yakhcha, M. Study on the Effect of Ferula Pseudalliacea (Family: Apiacea) Extract on Varroa Destructor (Acari: Varroidae) Infestation in Honeybee (Hymenoptera: Apidae, Apis Melifera). Iran. Vet. J. 2020, 15, 85–92. [Google Scholar] [CrossRef]
- Zengin, G.; Sinan, K.I.; Ak, G.; Mahomoodally, M.F.; Paksoy, M.Y.; Picot-Allain, C.; Glamocilja, J.; Sokovic, M.; Jekő, J.; Cziáky, Z.; et al. Chemical Profile, Antioxidant, Antimicrobial, Enzyme Inhibitory, and Cytotoxicity of Seven Apiaceae Species from Turkey: A Comparative Study. Ind. Crops Prod. 2020, 153, 112572. [Google Scholar] [CrossRef]
- Goodarzi, S.; Tavakoli, S.; Abai, M.R.; Amini, Z.; Vatandoost, H.; Yassa, N.; Hadjiakhoondi, A.; Tofighi, Z. Strong Insecticidal Potential of Methanol Extract of Ferulago trifida Fruits against Anopheles Stephensi as Malaria Vector. Environ. Sci. Pollut. Res. 2019, 26, 7711–7717. [Google Scholar] [CrossRef]
- Ebadollahi, A. Susceptibility of Two Sitophilus Species (Coleoptera: Curculionidae) to Essential Oils from Foeniculum Vulgare and Satureja hortensis. Ecol. Balk. 2011, 3, 1–8. [Google Scholar]
- Modise, S.A.; Ashafa, A.O.T. Larvicidal, Pupicidal and Insecticidal Activities of Cosmos Bipinnatus, Foeniculum Vulgare and Tagetes Minuta against Culex quinquefasciatus Mosquitoes. Trop. J. Pharm. Res. 2016, 15, 965–972. [Google Scholar] [CrossRef] [Green Version]
- Al-Mekhlafi, F.A.; Abutaha, N.; Al-Doaiss, A.A.; Ahmed Al- Keridis, L.; Alsayadi, A.I.; Ali El Hadi Mohamed, R.; Wadaan, M.A.; Elfaki Ibrahim, K.; Al-Khalifa, M.S. Target and Non-Target Effects of Foeniculum Vulgare and Matricaria Chamomilla Combined Extract on Culex Pipiens Mosquitoes. Saudi J. Biol. Sci. 2021, 28, 5773–5780. [Google Scholar] [CrossRef]
- Torbati, M.; Nazemiyeh, H.; Lotfipour, F.; Nemati, M.; Asnaashari, S.; Fathiazad, F. Chemical Composition and in Vitro Antioxidant and Antibacterial Activity of Heracleum Transcaucasicum and Heracleum Anisactis Roots Essential Oil. BioImpacts 2014, 4, 69–74. [Google Scholar] [PubMed]
- Sedaghat, M.M.; Sanei Dehkordi, A.; Abai, M.R.; Khanavi, M.; Mohtarami, F.; Salim Abadi, Y.; Rafi, F.; Vatandoost, H. Larvicidal Activity of Essential Oils of Apiaceae Plants against Malaria Vector, Anopheles Stephensi. Iran. J. Arthropod-Borne Dis. 2011, 5, 51–59. [Google Scholar] [PubMed]
- Izakmehri, K.; Saber, M.; Mehrvar, A.; Hassanpouraghdam, M.B.; Vojoudi, S. Lethal and Sublethal Effects of Essential Oils from Eucalyptus Camaldulensis and Heracleum persicum against the Adults of Callosobruchus maculatus. J. Insect Sci. 2013, 13, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rančić, A.; Soković, M.; Vukojević, J.; Simić, A.; Marin, P.; Duletić-Laušević, S.; Djoković, D. Chemical Composition and Antimicrobial Activities of Essential Oils of Myrrhis odorata (L.) Scop, Hypericum perforatum L. and Helichrysum arenarium (L.) Moench. J. Essent. Oil Res. 2005, 17, 341–345. [Google Scholar] [CrossRef]
- Matejić, J.S.; Džamić, A.M.; Mihajilov-krstev, T.; Ranđelović, V.N. Antimicrobial Potential of Essential Oil from Pastinaca sativa L. Biol. Nyssana 2014, 5, 31–35. [Google Scholar]
- Vitalini, S.; Palmioli, A.; Orlando, F.; Scarì, G.; Airoldi, C.; De Noni, I.; Bocchi, S.; Iriti, M. Phytotoxicity, Nematicidal Activity and Chemical Constituents of Peucedanum ostruthium (L.) W.D.J.Koch (Apiaceae). Ind. Crops Prod. 2021, 166, 113499. [Google Scholar] [CrossRef]
- Mohamed, H.S.A.A.; Abdelgadir, W.S.; Almagboul, A.Z.I. In Vitro Antimicrobial Activity of Anise Seed (Pimpinella anisum L.). Int. J. Adv. Res. 2015, 3, 359–367. [Google Scholar]
- Soni, R.; Sharma, G.; Jasuja, N.D. Essential Oil Yield Pattern and Antibacterial and Insecticidal Activities of Trachyspermum ammi and Myristica Fragrans. Scientifica 2016, 2016, 1428194. [Google Scholar] [CrossRef] [Green Version]
- Chaubey, M.K. Study of Insecticidal Properties of Trachyspermum ammi and Mentha Arvensis Essential Oils against Sitophilus zeamais L. (Coleoptera: Curculionidae). Curr. Life Sci. 2017, 4, 10–17. [Google Scholar] [CrossRef]
- Bisrat, D.; Jung, C. Insecticidal Toxicities of Three Main Constituents Derived from Trachyspermum ammi (L.) Sprague Ex Turrill Fruits against the Small Hive Beetles, Aethina Tumida Murray. Molecules 2020, 25, 1100. [Google Scholar] [CrossRef] [Green Version]
- Chaudhari, A.K.; Singh, V.K.; Kedia, A.; Das, S.; Dubey, N.K. Essential Oils and Their Bioactive Compounds as Eco-Friendly Novel Green Pesticides for Management of Storage Insect Pests: Prospects and Retrospects. Environ. Sci. Pollut. Res. 2021, 28, 18918–18940. [Google Scholar] [CrossRef]
- Jankowska, M.; Rogalska, J.; Wyszkowska, J.; Stankiewicz, M. Molecular Targets for Components of Essential Oils in the Insect Nervous System—A Review. Molecules 2017, 23, 34. [Google Scholar] [CrossRef] [Green Version]
- Prakash, B.; Kumar, A.; Singh, P.P.; Das, S.; Dubey, N.K. Chapter 16—Prospects of Plant Products in the Management of Insect Pests of Food Grains: Current Status and Future Perspectives. In Natural Bioactive Compounds; Sinha, R.P., Häder, D.-P., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 317–335. ISBN 978-0-12-820655-3. [Google Scholar]
- Rattan, R.S. Mechanism of Action of Insecticidal Secondary Metabolites of Plant Origin. Crop Prot. 2010, 29, 913–920. [Google Scholar] [CrossRef]
- Ivănescu, B.; Burlec, A.F.; Crivoi, F.; Roșu, C.; Corciovă, A. Secondary Metabolites from Artemisia Genus as Biopesticides and Innovative Nano-Based Application Strategies. Molecules 2021, 26, 3061. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Alqarawi, A.A.; Abd_Allah, E.F. Bioherbicides: Current Knowledge on Weed Control Mechanism. Ecotoxicol. Environ. Saf. 2018, 158, 131–138. [Google Scholar] [CrossRef]
- Verdeguer, M.; Sánchez-Moreiras, A.M.; Araniti, F. Phytotoxic Effects and Mechanism of Action of Essential Oils and Terpenoids. Plants 2020, 9, 1571. [Google Scholar] [CrossRef]
- Raveau, R.; Fontaine, J.; Lounès-Hadj Sahraoui, A. Essential Oils as Potential Alternative Biocontrol Products against Plant Pathogens and Weeds: A Review. Foods 2020, 9, 365. [Google Scholar] [CrossRef] [Green Version]
- Ebadollahi, A. Plant Essential Oils from Apiaceae Family as Alternatives to Conventional Insecticides. Ecol. Balk. 2013, 5, 149–172. [Google Scholar]
- Pavela, R. Acaricidal Properties of Extracts and Major Furanochromenes from the Seeds of Ammi visnaga Linn. against Tetranychus urticae Koch. Ind. Crops Prod. 2015, 67, 108–113. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Ricciutelli, M.; Lupidi, G.; Maggi, F. Efficacy of the Volatile Oil from Water Celery (Helosciadium nodiflorum, Apiaceae) against the Filariasis Vector Culex quinquefasciatus, the Housefly Musca Domestica, and the African Cotton Leafworm Spodoptera littoralis. Chem. Biodivers. 2017, 14, e1700376. [Google Scholar] [CrossRef]
- Bell, C.H. 15—Pest Control of Stored Food Products: Insects and Mites. In Hygiene in Food Processing, 2nd ed.; Lelieveld, H.L.M., Holah, J.T., Napper, D., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2014; pp. 494–538. ISBN 978-0-85709-429-2. [Google Scholar]
- Fouad, H.A.; de Souza Tavares, W.; Zanuncio, J.C. Toxicity and Repellent Activity of Monoterpene Enantiomers to Rice Weevils (Sitophilus oryzae). Pest Manag. Sci. 2021, 77, 3500–3507. [Google Scholar] [CrossRef] [PubMed]
- Rosa, J.S.; Oliveira, L.; Sousa, R.M.O.F.; Escobar, C.B.; Fernandes-Ferreira, M. Bioactivity of Some Apiaceae Essential Oils and Their Constituents against Sitophilus zeamais (Coleoptera: Curculionidae). Bull. Entomol. Res. 2020, 110, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Kaur, V.; Kaur, R.; Bhardwaj, U. A Review on Dill Essential Oil and Its Chief Compounds as Natural Biocide. Flavour Fragr. J. 2021, 36, 412–431. [Google Scholar] [CrossRef]
- Azirak, S.; Karaman, S. Allelopathic Effect of Some Essential Oils and Components on Germination of Weed Species. Acta Agric. Scand. Sect. B Soil Plant Sci. 2008, 58, 88–92. [Google Scholar] [CrossRef]
- Sabzi Nojadeh, M.; Pouresmaeil, M.; Younessi-Hamzekhanlu, M.; Venditti, A. Phytochemical Profile of Fennel Essential Oils and Possible Applications for Natural Antioxidant and Controlling Convolvulus arvensis L. Nat. Prod. Res. 2021, 35, 4164–4168. [Google Scholar] [CrossRef] [PubMed]
- Pujari, J.D.; Yakkundimath, R.; Byadgi, A.S. Image Processing Based Detection of Fungal Diseases in Plants. Procedia Comput. Sci. 2015, 46, 1802–1808. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.N.; Monteiro, V.N.; Steindorff, A.S.; Gomes, E.V.; Noronha, E.F.; Ulhoa, C.J. Trichoderma/Pathogen/Plant Interaction in Pre-Harvest Food Security. Fungal Biol. 2019, 123, 565–583. [Google Scholar] [CrossRef]
- Carmona-Hernandez, S.; Reyes-Pérez, J.J.; Chiquito-Contreras, R.G.; Rincon-Enriquez, G.; Cerdan-Cabrera, C.R.; Hernandez-Montiel, L.G. Biocontrol of Postharvest Fruit Fungal Diseases by Bacterial Antagonists: A Review. Agronomy 2019, 9, 121. [Google Scholar] [CrossRef] [Green Version]
- Di Napoli, M.; Varcamonti, M.; Basile, A.; Bruno, M.; Maggi, F.; Zanfardino, A. Anti-Pseudomonas Aeruginosa Activity of Hemlock (Conium maculatum, Apiaceae) Essential Oil. Nat. Prod. Res. 2019, 33, 3436–3440. [Google Scholar] [CrossRef]
- Mith, H.; Duré, R.; Delcenserie, V.; Zhiri, A.; Daube, G.; Clinquart, A. Antimicrobial Activities of Commercial Essential Oils and Their Components against Food-Borne Pathogens and Food Spoilage Bacteria. Food Sci. Nutr. 2014, 2, 403–416. [Google Scholar] [CrossRef] [Green Version]
- Mostafa, A.A.; Al-Askar, A.A.; Almaary, K.S.; Dawoud, T.M.; Sholkamy, E.N.; Bakri, M.M. Antimicrobial Activity of Some Plant Extracts against Bacterial Strains Causing Food Poisoning Diseases. Saudi J. Biol. Sci. 2018, 25, 361–366. [Google Scholar] [CrossRef]
- Duarte, A.; Luís, Â.; Oleastro, M.; Domingues, F.C. Antioxidant Properties of Coriander Essential Oil and Linalool and Their Potential to Control Campylobacter Spp. Food Control 2016, 61, 115–122. [Google Scholar] [CrossRef]
- Kačániová, M.; Galovičová, L.; Ivanišová, E.; Vukovic, N.L.; Štefániková, J.; Valková, V.; Borotová, P.; Žiarovská, J.; Terentjeva, M.; Felšöciová, S.; et al. Antioxidant, Antimicrobial and Antibiofilm Activity of Coriander (Coriandrum sativum L.) Essential Oil for Its Application in Foods. Foods 2020, 9, 282. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Kumar Singh, V.; Kumar Dwivedy, A.; Kumar Chaudhari, A.; Deepika; Kishore Dubey, N. Nanostructured Pimpinella anisum Essential Oil as Novel Green Food Preservative against Fungal Infestation, Aflatoxin B1 Contamination and Deterioration of Nutritional Qualities. Food Chem. 2021, 344, 128574. [Google Scholar] [CrossRef]
- El-Soud, N.H.A.; Deabes, M.; El-Kassem, L.A.; Khalil, M. Chemical Composition and Antifungal Activity of Ocimum basilicum L. Essential Oil. Open Access Maced. J. Med. Sci. 2015, 3, 374. [Google Scholar] [CrossRef] [Green Version]
- Lasram, S.; Zemni, H.; Hamdi, Z.; Chenenaoui, S.; Houissa, H.; Saidani Tounsi, M.; Ghorbel, A. Antifungal and Antiaflatoxinogenic Activities of Carum carvi L., Coriandrum sativum L. Seed Essential Oils and Their Major Terpene Component against Aspergillus Flavus. Ind. Crops Prod. 2019, 134, 11–18. [Google Scholar] [CrossRef]
- Alinezhad, S.; Kamalzadeh, A.; Shams-Ghahfarokhi, M.; Rezaee, M.-B.; Jaimand, K.; Kawachi, M.; Zamani, Z.; Tolouei, R.; Razzaghi-Abyaneh, M. Search for Novel Antifungals from 49 Indigenous Medicinal Plants: Foeniculum Vulgare and Platycladus Orientalis as Strong Inhibitors of Aflatoxin Production by Aspergillus Parasiticus. Ann. Microbiol. 2011, 61, 673–681. [Google Scholar] [CrossRef]
- Kedia, A.; Prakash, B.; Mishra, P.K.; Dubey, N.K. Antifungal and Antiaflatoxigenic Properties of Cuminum cyminum (L.) Seed Essential Oil and Its Efficacy as a Preservative in Stored Commodities. Int. J. Food Microbiol. 2014, 168–169, 1–7. [Google Scholar] [CrossRef]
- Maurya, A.; Kumar, S.; Singh, B.K.; Chaudhari, A.K.; Dwivedy, A.K.; Prakash, B.; Dubey, N.K. Mechanistic Investigations on Antifungal and Antiaflatoxigenic Activities of Chemically Characterised Carum carvi L. Essential Oil against Fungal Infestation and Aflatoxin Contamination of Herbal Raw Materials. Nat. Prod. Res. 2021, 1–6. [Google Scholar] [CrossRef]
- Hazrati, H.; Saharkhiz, M.J.; Niakousari, M.; Moein, M. Natural Herbicide Activity of Satureja hortensis L. Essential Oil Nanoemulsion on the Seed Germination and Morphophysiological Features of Two Important Weed Species. Ecotoxicol. Environ. Saf. 2017, 142, 423–430. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascual-Villalobos, M.J.; Cantó-Tejero, M.; Vallejo, R.; Guirao, P.; Rodríguez-Rojo, S.; Cocero, M.J. Use of Nanoemulsions of Plant Essential Oils as Aphid Repellents. Ind. Crops Prod. 2017, 110, 45–57. [Google Scholar] [CrossRef]
- Venkadesaperumal, G.; Rucha, S.; Sundar, K.; Shetty, P.H. Anti-Quorum Sensing Activity of Spice Oil Nanoemulsions against Food Borne Pathogens. LWT Food Sci. Technol. 2016, 66, 225–231. [Google Scholar] [CrossRef]
Botanical Name | Common Name | Part | Extract | Main Compounds with Biocidal Activity | Reference |
---|---|---|---|---|---|
Aegopodium podagraria | Goutweed Ground Elder | Leaf | Ethanolic extracts | Quercetin-3-O-glucoside (399 mg/kg), apigenin (1.3 mg/kg), rutin (0.7 mg/kg) | [19] |
Ammi visnaga | Toothpick weed, Khella | Seeds | Ethanolic extracts | Quercetin-3-O-glucoside (49.5 mg/kg), rutin (24 mg/kg), kaempferol (11 mg/kg), biochanin A (40 mg/kg), genistein (23 mg/kg) | [19] |
Ammodaucus leucotrichus | Woolly Cumin | Aerial parts | Essential oil | Perillaldehyde (58.3%), D-limonene (23.33%), α-pinene (5.74%), β-pinene (2.26%) | [20] |
Anethum graveolens | Dill | Seeds | Essential oil | Carvone (42%), limonene (32%), dill ether, α-phellandrene (14.2), cymene (2%) | [21] |
Carvone (55.2%), limonene (16.6%), dill apiole (14.4%), linalool (3.7%) | [22] | ||||
Angelica archangelica | Garden Angelica | Root | Essential oil | α-Pinene (29.7%), δ-3-carene (14.2%), β-phellandrene + limonene (13.2%) | [23] |
Angelica sylvestris | Wild angelica | Leaf | Ethanolic extract | Quercetin 3-O-glucoside (20.5 mg/kg), rutin (136 mg/kg), formononetin (12.4 mg/kg) | [19] |
Anthriscus cerefolium | Chervil | Leaf | Ethanolic extract | Naringin (6.5 mg/kg), quercetin 3-O-glucoside (5.3 mg/kg) | [19] |
Anthriscus sylvestris | Cow parsley, Wild chervil | Leaf | Ethanolic extract | Rutin (8.0 mg/kg), quercetin 3-O-glucoside (3.8 mg/kg) | [19] |
Apium graveolens | Celery | Leaf, Root | CO2-extract | Leaf: Limonene (32.16%)Root: Limonene (21.87%), carvone (17.71%) | [24] |
Apium graveolens | Celery | Leaves | Essential oil | β-Pinene (39.63%), limonene (15.11%), cis-ocimene (16.18%), γ-terpinene (7.73%), β-selinene (3.81%) | [25] |
Apium nodiflorum | Water celery | Aerial parts | Essential oil | Myristicin (47.0%), limonene (16.7%), terpinolene (9.9%), (Z)-β-ocimene (6.1%) | [26] |
Azorella cryptantha | Aerial parts | Essential oil | α-Pinene (9.6–21.9%), α-thujene (5.7–12.5%), β-pinene (1.5–5.9%) | [27] | |
Carum carvi | Caraway | Seeds | Essential oil | Carvone (70.1%), γ-terpinene (12.6%), limonene (5.1%) | [28] |
Carvone (66.4%), limonene (32.5%) | [29] | ||||
γ-Terpinene (31.03%), β-pinene (18.77%), p-cymene (17.16%), carvone (12.20%) | [30] | ||||
Carum carvi | Caraway | Fruits | Essential oil | 2-Caren-10-al (34.03%), anethole (28.46%), d-terpinene (16.06%), p-cymene (5.59%), limonene (3.55%) | [31] |
Carvone (50.6%), limonene (46.48%) | [32] | ||||
(R)-Carvone (37.98%), D-limonene (26.55%), α-pinene (5.21), cis-carveol (5.01%), β-myrcene (4.67%) | [33] | ||||
Carvone (46.62%), limonene (45.49%) | [34] | ||||
Carum nigrum | Seeds | Essential oil | Dillapiole (29.9%), germacrene B (21.4%), β-caryophyllene (7.8%) | [35] | |
Carum copticum | Ajowan | Fruits | Essential oil | Thymol (63.17%), p-cymene (21.4%), d-terpinene (13.76%) | [31] |
Centella aciatica | Gotu Kola, Centella, Indian penny | Leaves | Essential oil | α-Humulene (21.06%), β-caryophyllene (19.08%), bicyclogermacrene (11.22%), germacrene B (6.29%), myrcene (6.55%), γ-terpinene (5.77%) | [36] |
Chaerophyllum aromaticum | Root | Essential oil and methanolic extract | Viridiflorol (22.2%), germacrene d (5.1%), m-cresol (1.6%), limonene (2.1%), α-pinene (0.8%) | [37] | |
Chaerophyllum aureum | - | Fruits and aerial parts | Essential oil | Sabinene (18.5–31.6%), p-cymene (7.9–25.4%) and limonene (1.9–10.9%) | [38] |
Chaerophyllum crinitum | - | Aerial parts | Essential oil | α-Terpinolene (20.3%), α-terpineol (7.2%), limonene (5.8%) | [39] |
Chaerophyllum macropodum | - | Aerial parts | Essential oils and hexane extracts | Trans-β-ocimene (21.2–22.8%), cis-β- ocimene (8.5–10.0%), p-cymene (1.4–10.3%), β-phellandrene (5.1–7.5%), γ-terpinene (1.1–9.2%), β-pinene (2.3–7.1%), (+) spathulenol (4.4–6.0%) | [40] |
Coriandrum sativum | Coriander | Seeds | Essential oil | Linalool (40.9%), geranyl acetate (12.8%), γ- terpinene (10.6%) | [28] |
Linalool (66.8%), α-pinene (7.79%), camphor (6.46%), terpinene (3.97%), limonene (3.79%) | [41] | ||||
Linalool (57.57%), geranyl acetate (15.09%), Camphor (3.02%), p-cymene (2.52%) | [42] | ||||
Linalool (58.80%), menthol (12.89%), α-pinene (5.29%), γ-terpinene (4.76%) | [43] | ||||
Linalool (76.41%), γ-terpinene (5.35%), α-pinene (4.44%), Camphor (2.20%) | [30] | ||||
Coriandrum sativum | Coriander | Fruits | Essential oil | Linalool (70.9%), α-pinene (4.17%), p-cymene (3.63%) | [32] |
Crithmum maritimum | Sea Fennel | Aerial parts | Essential oil | γ-Terpinene (33.6 %), sabinene (32.0 %), thymol methyl ether (15.7 %) | [44] |
β-myrcene (13.66%), p-cymene (11.67%), β-phellandrene (6.57%), α-pinene (5.51%), camphene (5.16%) | [45] | ||||
Crithmum maritimum | Sea Fennel | - | Essential oil | Sabinene (49.45%), γ-terpinene (31.37%), pinenes (9.57%), limonene (2.73%) | [46] |
Crithmum maritimum | Sea fennel | Aerial parts and seeds | Essential oil | Dillapiole (55.7 and 39.9%), myristicin (4.4 and 12.8%), γ-terpinene (14.0 and 21.2%), thymol methyl ether (11.8 and 11.1%), α-pinene (2.3 and 4.7%), sabinene (4.7 and 1.6%), p-cymene (3.5 and 4.6%), respectively. | [47] |
Crithmum maritimum | Sea fennel | Seeds | Essential oil | Dillapiol (39.9%), γ-terpinene (21.2%), myristicin (12.8%), thymol methyl ether (11.1%), α-pinene (4.7%), p-cymene (4.6%) | [48] |
Crithmum maritimum | Sea fennel | Leaves | Essential oil | α-Phellandrene (71.05%), dill ether (10.83%), limonene (10.74%), p-cymene (2.12%) | [25] |
Cuminum cyminum | Cumin | Seeds | Essential oil | β-Pinene, p-cymene, γ-terpinene, cuminal, α-terpinen-7-aI and γ-terpinen-7-a | [16] |
γ-Terpinen-7-al (35.3%), cumin aldehyde (21.8%), α-terpinen-7-al (15.4%), γ-terpinene (12.5%), β-pinene (6.4%) | [49]. | ||||
Cuminaldehyde (30.42–33.24 %), γ-terpinen-7-al (20.54–28.36 %), α-terpinen-7-al (about 13 %), γ-terpinene (6.15–12.60 %), β-cymene (4.19–5.38 %), β-pinene (3.10–5.36 %) | [50] | ||||
Cuminum cyminum | Cumin | Fruits | Essential oil | Cuminaldehyde (25.17%), p-cymene (17.5%), β-pinene (13.56%) | [32] |
Daucus carota | Wild carrot | Leaf | Ethanolic extract | Quercetin-3-O-glucoside (68.4 mg/kg), rutin (9.5 mg/kg) | [19] |
Deverra scoparia | Aerial parts | Essential oil | α-Pinene (31.95%), sabinene (17.24%), Δ 3 -carene (16.85%), ocimene (9.75%), myrcene (3.46%), terpinene-4-ol (2.84%), eugenol (1.8%) | [51] | |
Echinophora spinosa | Prickly Parsnip | Air dried plants | Essential oil | δ3-carene (60.86%), α-phellandrene (7.12%), p-cymene (6.22%), myrcene (4.82%), β-phellandrene (2.73%) | [52] |
Eryngium alpinum | Alpine Sea Holly | Aerial parts | Essential oil | Caryophyllene oxide (27.9%), bicyclogermacrene (13.2%), germacrene D (8.2%) | [53] |
Eryngium amethystinum | Amethyst Sea Holly | Aerial parts | Essential oil | β-Caryophyllene (15.2%), α-pinene (10.2%), 2,3,6-trimethylbenzaldehyde (9.3%) | [53] |
Eryngium triquetrum | Choukzerk | Flowers | Essential oil | Pulegone (50.6%), piperitenone (30.5%), menthone (7.0%), limonene (1.3%) | [54] |
Eryngium triquetrum | Choukzerk | Aerial parts | Essential oil | Falcarinol (74.8%), octane (5.6%) | [55] |
Ferula orientalis | Aerial parts | Essential oil | α-Pinene (75.9%), camphene (3.4%), p-cymene (2.2%) | [56] | |
Ferulago sandrasica | Roots | Essential oil | Limonene (28.9%), α-pinene (15.6%), terpinolene (13.9%) | [56] | |
Ferulago angulata | Seeds | Essential oil | (Z)-β-Ocimene (19.93%), α-pinene (15.50%), p-cymene (7.67%), sabinene (7.49%), β-phellandrene (5.5%), α-phellandrene (4.95%), γ-terpinene (3.3%) | [57] | |
Ferulago cassia | Root | Dichloromethane (CH2Cl2) extract | Coumarins; peucedanol, suberosin, grandivitinol, umbelliferone | [58] | |
Ferulago trachycarpa | Rhizomes of plant | Dichloromethane, n-hexane, and methanolic extract | Coumarins; crenulatin, suberosin, marmesin senecioate | [59] | |
Ferulago trifida | Flowers | Essential oil | (E)-β-Ocimene (37.3%), α-pinene (16.3%), bornyl acetate (9.4%), cis-verbenol (8.6%), γ-terpinene (7.5%), α-limonene (4.3%), β-myrcene (2.8%) | [60] | |
Stems | α-Pinene (22.6%), (E)-β-ocimene (20.7%), trans-verbenol (22.1%), bornyl acetate (8.5%), α-limonene (3.3%) | ||||
Leaves | (E)-β-Ocimene (22.6%), α-pinene (19.6%), bornyl acetate (16.7%), cis-verbenol (10.4%), β-myrcene (3.2%) | ||||
Fruits | (E)-β-Ocimene (30.5%), α-pinene (18.0%), bornyl acetate (11.0%), α-terpinolene (9.4%) | ||||
Foeniculum vulgare | Fennel | Seeds | Essential oil | Estragole (50.1%), limonene (20.2%) | [28] |
Essential oil | Trans-anethole (65.1%), fenchone (25.6%), methyl chavicol (3.4%), α-pinene (1.5%), limonene (1.3%) | [21] | |||
Essential oil | Trans-anethole, fenchone, anisketone, p-anisaldehyde, d-limonene, estragol, estragol, carvone | [61] | |||
Essential oil | Estragole (71.64%) | [62] | |||
Essential oil | E-Anethol (76.22%), estragole (9.54%), fenchone (10.91%) | [43] | |||
Essential oil | Estragole (43.38%), anethole (29.34%), fenchone (15.16%), Limonene (5.02%) | [63] | |||
Ethanolic extract | Rutin (62 mg/kg), quercetin 3-O-glucoside (60.0 mg/kg) | [19] | |||
Foeniculum vulgare | Fennel | Fruits | Essential oil | Trans-Anethole (64.42%), fenchone (14.59%), methyl cavicol (6.62%), limonene (3.37%) | [31] |
Foeniculum vulgare | Fennel | Leaves | Essential oil | E-Anethol (41.18%), z-anethol (26.49%), β-phellandrene (5.38%), fenchone (2.46%) | [25] |
Heracleum anisactis | Aerial parts | Essential oil | Myristicin (95.15%) | [64] | |
Heracleum transcaucasicum | Aerial parts | Essential oil | Myristicin (96.87%) | [64] | |
Hippomarathrum microcarpum | Aerial parts | Essential oil | β-Caryophyllene (31.4%), caryophyllene oxide (23.1%), β-phellandrene (4.6%), Germacrene D (4.2%), α-pinene (3.0%) | [56] | |
Levisticum officinale | Lovage | leaf and seed | Essential oil | γ-Terpinene (14.52% and 12.37%), β-phellandrene (13.85% and 15.54%), (Z)-β-ocimene (12.91% and 23.70%) | [65] |
Ostericum sieboldii | Water Dropwort | Myristicin (30.31%), α-terpineol (9.92%), α-cadinol (7.29%), β-farnesene (6.26%), linalool (5.94%) | [66] | ||
Pastinaca sativa | Wild parsnip | Leaf | Ethanolic extract | Rutin (652 mg/kg), quercetin 3-O-glucoside (517 mg/kg) | [19] |
Petroselinum hortense | Parsley | Seeds | Essential oil | α-Pinene (42.15%), β-pinene (30.21%), β-phellandrene (6.03%), myristicine (4.37%), limonene (2.02%), sabinene (2.26%), myrtenal (2.14%) | [43] |
Pimpinella anisum | Anise | Seeds | Essential oil | E-Anethol (76.56%), estragole (13.01%), linalool (7.42%) | [43] |
Essential oil | Trans-anethole (80.8%), 1,8-cineol (4.7%), linalool (1.5%) | [21] | |||
Essential oil | (E)-Anethole (93%) | [49]. | |||
Ethanolic extract | Rutin (13.0 mg/kg), quercetin 3-O-glucoside (6.5 mg/kg) | [19] | |||
Pimpinella saxifraga | Burnet saxifrage | Leaf | Ethanolic extract | Quercetin 3-O-glucoside (421.2 mg/kg), rutin (205.2 mg/kg), apigenin (62.0 mg/kg), quercetin (20.4 mg/kg) | [19] |
Prangos peucedanifolia | Flower | Essential oil | β-pinene (35.58%), α-pinene (22.13%), β-phellandrene (12.54%), myrcene (8.27%), γ-terpinene (5.97%), α-phellandrene (3.23%) | [67] | |
Leaves | Essential oil | m-Cresol (50.38%), trans-p-menth-2-en-1-ol (6.63%), γ-terpineol (3.9%), α-terpinen-7-al (3.83%), and β-pinene (3.63%) | [67] | ||
Seseli gummiferum | Moon Carrot | Aerial parts | Methanolic and water extracts | Chlorogenic acid (211 and 199 µg/g), Gallic acid (37.81 and 22.27 µg/g), p-coumaric acid (18.69 and 27.16 µg/g), rutin (15.22 and 14.42 µg/g) | [68] |
Sison amomum | Stone Parsley | Flowering aerial parts | Essential oil | Sabinene (54.4%), β-phellandrene (16.6%), germacrene D (6.7%), terpinen-4-ol (3.8%), γ-terpinene (2.4%), myrcene (2.0%) | [69] |
Smyrnium olusatrum | Alexander, Horse parsley | Roots | Essential oil | Furanoeremophilone (31.5%), furanodiene (19.1%), (E)-β-caryophyllene (11%), β-pinene (3%) | [55] |
Trachyspermum ammi | Ajwain, Ajowan caraway | Seeds | Essential oil | Thymol (63.4%), p-cymene (19%), γ -terpinene (16.9%) | [70] |
Botanical Name | Common Name | Biocidal Effect | Results/Mechanisms | References |
---|---|---|---|---|
Actinolema macrolema | Antibacterial activity (Staphylococcus epidermidis) Antifungal activity (Candida albicans) | MIC using microdilution broth assay 62.5 (S. epidermidis) 125 (C. albicans) µg/mL. | [71] | |
Aegopodium podagraria | Goutweed Ground Elder | Antibacterial activity (Enterobacter cloacae, Klebsiella pneumonia, Pseudomonas fluorescens, Bacillus subtilis, Bacillus mycoides, Staphylococcus aureus) | MIC using tube dilution method 1.25–5.00 mg/mL (in ethanol extract). | [72] |
Ammi visnaga | Toothpick Weed, Khella | Larvicidal activity (Culex quinquefasciatus) | LD50 = 9 ppm. | [73] |
Insecticidal activity (Toxoptera aurantii) | LD50 of seed extract 0.054 ng/aphids | [74] | ||
Larvicidal activity (Aedes aegypt) | Khellin, a major compound showed 100% and 93% mortality at 1 µg/µL and at 0.5 µg/µL. | [75] | ||
Insecticidal activity (Schistocerca gregaria) | LC50 of ethanol, petroleum ether and n-butanol extracts (21.0, 12.0 and 22.5%, respectively. | [76] | ||
Ammodaucus leucotrichus | Wooly Cumin | Antibacterial (Klebsilla pneumonia) and Antifungal (Trichophyton rubrum, Candida albicans) activities | Inhibition zones in disc diffusion method 6–20 mm. | [77] |
Anethum graveolens | Dill | Insecticidal activity (Tribolium castaneum) | Fumigant toxicity (LC50 14.78 µL), repellency, and reduces oviposition potential. | [78] |
Insecticidal activity (Lymantria dispar) | Antifeedant activity at concentration of 0.5 and 1% of EO (Tot = 59.18 and 56.12, respectively). | [79] | ||
Antifungal activity (Candida spp.) | MIC and MFC were 0.63–2.5 mg/mL and 1.25–5 mg/mL, respectively. | [21] | ||
Antifungal activity (Penicillium citrinum, Penicillium veridicatum, Aspergillus flavus, Aspergillus terreus, Aspergillus niger, Fusarium graminearum), antibacterial activity (Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Salmonella typhi, Escherchia coli, Bacillus cereus) | Antifungal activity by inverted petri dish method 27.5–100% at 6 µL. Inhibition zones determined by agar well diffusion method 13.2–25.3 mm (bacteria). | [22] | ||
Angelica archangelica | Garden Angelica | Antibacterial activity against Staphylococcus aureus and Escherichia coli | MIC using broth microdilution method = 14.2 μL/mL (S. aureus) and 28.4 μL/mL (E. coli). | [23] |
Angelica sylvestris | Wild Angelica | Larvicidal activity (Culex pipiens) | LC50 > 150 mg/L. | [80] |
Anthriscus cerefolium | Chervil | Insecticidal activity (wheat granary weevil Sitophilus granaries) | Repellent (62%) and lethal activity (54%). | [81] |
Apium graveolens | Celery | Antibacterial activity (Staphylococcus aureus, Salmonella typhi) | MIC 0.12 µg/mL (S. aureus) and 0.5 µg/mL (S. typhi). | [82] |
Insecticidal activity against Pseudaletia unipuncta (Armyworm) | Antifeedant/feeding deterrence index (84%), growth inhibitory (91%), fumigant and contact toxicant action (100% after 24 h). | [83] | ||
Antibacterial activity against Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Enterococcus faecalis | 11.5–40 mm inhibition zone in agar diffusion method. | [24] | ||
Azilia eryngioides | Insecticidal activity (Sitophilus granaries, Tribolium castaneum) | Fumigant toxicity 24-LC50 were 20.05 µL/L (S. granaries) and 46.48 µL/L (T. castaneum). | [84] | |
Azorella cryptantha | Repellent activity on Triatoma infestans, insecticidal activity against Ceratitis capitata, antifungal (dermatophytes Microsporum gypseum, Trichophyton rubrum, Trichophyton mentagrophytes), antibacterial (Escherichia coli and Yersinia enterocolitica) | Repellent activity (92–100%), insecticidal contact toxicity (LD50 at 72 h <11 mg/fly), MIC (microbroth dilution method) of dermatophytes and bacteria 125–1000 µg/mL. | [27] | |
Antibacterial activity (Escherichia coli, Salmonella enteritidis) | MIC (microbroth dilution method) values of S. enteritidis and E. coli 125–250 µg/mL and 500 µg/mL, respectively. | [85] | ||
Carum carvi | Caraway | Antifungal activity (Aspergillus flavus) and inhibition of aflatoxin production | Complete inhibition of A. flavus growth and afltoxin B1 production at 1000 ppm caraway EO. | [28] |
Insecticidal activity (African cotton leafworm Spodoptera littoralis) | Fumigant toxicity LD50 41.45 μL/L air. | [86] | ||
Insecticidal activity against Sitophilus zeamais and Tribolium castaneum | Contact (LD50 3.07 and 3.39 µg/adult) and fumigant (LC50 3.37 and 2.53 mg/L air) toxicity against S. zeamais and T. castaneum, respectively, and may be attributed to strong contact and fumigant toxicity of (R)-carvone and D-limonene. | [33] | ||
Herbicidal activity against barnyard grass Echinochloa crus-galli | Causing leaf injuries and reduction in biomass, impaired photosynthetic activity and plant metabolism. | [29] | ||
Antibacterial (S. epidermidi, S. aureus, M. luteus, E. faecalis, B. cereus, E. coli, L. monocytogenes, S. typhimurium) Antifungal (C. albicans, C. glabrata, C. parapsilosis, C. kruse, S. cerevisae) | Inhibition zone 11.00 to 25.00 mm diameter in disc-diffusion assay. MIC = 0.059 to 1.875 mg/mL (bacteria), 0.029–0.059 mg/mL (fungi). AChE inhibition (IC50 = 0.82 mg/mL) α-Glucosidase inhibition (IC50 = 6.83 mg/mL). | [30] | ||
Carum copticum | Ajowan | Antifungal activities against Penicillium digitatum and Alternaria alternata | Mycelial growth inhibition 67.78% (A. alternata) and 44.88% (P. digitatum). Thymol may cause severe damage to cell walls, cell membranes and cellular organelles, such as mitochondria in fungi. | [31] |
Carum nigrum | Antifungal activity (Penicillium citrinum, Penicillium purpurogenum, Aspergillus flavus, Aspergillus terreus, Aspergillus niger, Fusarium graminearum), antibacterial activity (Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Salmonella typhimurium, Escherchia coli, Bacillus cereus) | Antifungal activity by inverted petri dish method 34–100% at 3000 ppm. Inhibition zones determined by agar well diffusion method 17.9 mm to complete inhibition at 3000 ppm (bacteria). | [35] | |
Centella asiatica | Gotu Kola, Centella, Indian penny | Larvicidal activity (Culex quinquefasciatus) | Larvicidal activity (24 h-LC50 was 1.12–6.84 ppm at the temperatures of 31–19 °C) and acts as adult emergence inhibitor. | [87] |
Antibacterial activity (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Shigella sonnei) | MIC using microplate dilution method ranging from 1.25 to 0.039 mg/mL. | [36] | ||
Antifungal (Aspergillus niger) and Antibacterial (Bacillus subtilis) activity | 6.3–15.4 mm (A. niger) and 8.4–16.4 mm (B. subtilis) inhibition zone in disc diffusion method. | [88] | ||
Chaerophyllum aromaticum | Antibacterial activity | Bactericidal activity of Root EO against Bacillus spizizenii and Staphylococcus aureus (diameter of zone of inhibition 17 mm and 35 mm). BChE inhibitory activity of EO from root (47.65%) and aerial (50.88%). | [37] | |
Chaerophyllum aureum | Antibacterial activity (Staphylococcus aureus, Staphylococcus epidermidis, Micrococcus luteus, and Escherichia coli) | 10.0–22.3 mm inhibition zone in agar diffusion method. Mechanisms of inhibition may be attributed to cell membrane damage due to hydrophobicity and impairment of bacterial enzyme. | [38] | |
Chaerophyllum crinitum | Antifungal (Candida tropicalis) and antibacterial (Acinetobacter baumannii, Staphylococcus aureus) activities | Inhibition zone 16–10 mm diameter in disc diffusion method. | [39] | |
Chaerophyllum macropodum | Antibacterial activity (Escherichia coli, Salmonella typhi) | Inhibition zone 6–12 mm diameter in disc diffusion method. | [89] | |
Antibacterial activity against Staphylococcus epidermidis, Bacillus subtilis, Staphylococcus aureus, Escherichia coli | Inhibition zone 10.7–18.1 mm diameter in agar disc diffusion method. | [40] | ||
Coriandrum sativum | Coriander | Antifungal activity (Aspergillus flavus) and inhibition of aflatoxin production | Complete inhibition of A. flavus growth and afltoxin B1 production at 1000 ppm coriander EO. | [28] |
Acaricidal and insecticidal activities (Plodia interpunctella, Sitotroga cerealella and Tyrophagus putresceentiae) | Fumigant toxicity (LD50 4.19–18.76 µg/cm3), contact toxicity (LD50 19.29 µg/cm2 for T. putresceentiae). | [41] | ||
Insecticidal activity (Callosobruchus maculatus, Tribolium confusum) | Insect mortality LC50 of C. maculatus and T. confusum were 1.34 and 318.02 μL/L air, respectively. | [42] | ||
Antibacterial activity (Staphylococcus aureus, Bacillus spp., Escherichia coli, Salmonella typhi, Klebsiella pneumonia, Proteus mirabilis) | MIC 108–217 mg/mL. | [90] | ||
Antibacterial (S. epidermidi, S. aureus, M. luteus, E. faecalis, B. cereus, E. coli, L. monocytogenes, S. typhimurium) Antifungal (C. albicans, C. glabrata, C. parapsilosis, C. kruse, S. cerevisae) | Inhibition zone 8.33 to 21.66 mm diameter in disc diffusion assay. MIC = 0.234 to 1.875 mg/mL (bacteria), 0.234–0.469 mg/mL (fungi). AChE inhibition (IC50 = 0.68 mg/mL) α-Glucosidase inhibition (IC50 = 6.24 mg/mL). | [30] | ||
Crithmum maritimum | Sea Fennel | Antiparasitic activity (Trypanosoma cruzi) | EC50 = 17.7 µg/mL. | [91] |
Antifungal properties against Candida albicans, Cryptococcus neoformans and several dermatophytes and Aspergillus spp. | C. neoformans 260 μg/mL (MIC), C. albicans (Inhibition of biofilm formation and germ tube formation). | [44] | ||
Larvicidal (Spodoptera littoralis; tobacco cut worm), AChE inhibitory activities | Toxicity 62.3–71.7 μg/larva (LD50). AChE inhibitory activity 7.4 mg/mL (IC50). | [47] | ||
Cuminum cyminum | Cumin | Insecticidal activity (Sitophilus zeamais) | Contact (LC50 0.246 µL/cm2 area) and fumigant (LC50 0.346 µL/cm3 air) toxicity, inhibition of AChE activity. | [92] |
Antifungal activity (Candida albicans, Lachancea thermotolerans, Metschnikowia pulcherrima) | MIC ≤ 0.5 mg/mL. | [16] | ||
Insecticidal activity against peach-potato aphid (Myzus persicae), tobacco cutworm/cotton leaf worm (Spodoptera littoralis), and two insect vectors, common housefly (Musca domestica) and lymphatic filariasis and Zika virus vector Culex quinquefasciatus | LD50 = 3.2 mL/L (M. persicae), 100 μg/larva (S. littoralis), 31.8 μg/adult (M. domestica), 40.5 µL/L (C. quinquefasciatus). | [49]. | ||
Daucus carota | Wild Carrot | Insecticidal activity (Tribolium confusum) | 100% efficacy in dose of 1 mL. | [93] |
Antibacterial activity (Agrobacterium tumefaciens, Erwinia carotovora, Pseudomonas fluorescens, Pseudomonas glycinea) | 28.66–100% of antibacterial activities in disc diffusion method. | [13] | ||
Deverra scoparia | Acaricidal activity against Tetranychus urticae (two-spotted spider mite) | Toxicity LD50 1.79 mg/L and decreased fecundity. | [51] | |
Echinophora spinosa | Prickly Parsnip | Antibacterial (Escherichia coli, Pseudomonas aeruginosa) and antifungal activity (Trichoderma viride) | MIC in microdilution technique were 0.0625 (E. coli), 0.25 (P. aeruginosa), and 0.0625 (T. viride) mg/mL. | [52] |
Antibacterial (Bacillus subtilis, Escherichia coli, Proteus mirabilis) and antifungal activity (Candida albicans, Aspergillus niger) | Inhibition zone 2–30.5 mm diameter in disc diffusion assay. | [94] | ||
Insecticidal activity (Culex quinquefasciatus, Spodoptera littoralis, Musca domestica) | Toxicity LC50 15.7 mg/L (C. quinquefasciatus), LD50 38.3 μg/adult (M. domestica), 86.3 μg/larva (S. littoralis). | [95] | ||
Eryngium alpinum | Alpine Sea Holly | Antibacterial (Escherichia coli, Staphylococcus aureus), antifungal (Candida albicans, Microsporum gypseum) | MIC 0.08–1.94 mg/mL using microdilution assay. | [53] |
Eryngium amethystinum | Amethyst sea holly | Antibacterial (Escherichia coli, Staphylococcus aureus), antifungal (Candida albicans) | MIC 0.06–1.94 mg/mL using microdilution assay. | [53] |
Eryngium foetidum | Culantro, Mexican coriander, long coriander | Antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, antifungal activity against Candida albicans | Inhibition zone 12–28 mm in agar well diffusion method MIC 1.56–200 µg/mL in microbroth dilution method. | [96] |
Larvicidal activity (Aedes albopictus) | 24 h-LC50 s 33.3 ppm. | [97] | ||
Eryngium triquetrum | Choukzerk | Antibacterial (Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis) and antifungal (Candida albicans) activities | MIC using broth dilution method = 6.25–25 µg/mL. | [54] |
Herbicidal activity (Lepidium sativum), antibacterial activities against Pectobacterium atrosepticum (potato blackleg disease), and Gram-negative soil bacterium (Pseudomonas cichorii) Antifungal and fumigant activity against Fusarium graminearum (cereal fusarium) and Botrytis cinerea (grey rot in tomatoes, strawberries) | Inhibition of germination, growth, and photosynthesis (43%) of L. sativum, inhibition of 85% Pectobacterium, 100% Pseudomonas, fumigant toxicity with lack of growth on F. graminearum and moderate inhibition (43%) on B. cinerea. | [55] | ||
Falcaria vulgaris | Antifungal (Aspergillus fumigatus) | 0.140 mg/mL (MIC using microdilution method). Cholinesterase inhibition (AChE and BChE). | [98] | |
Ferula caspica | Antibacterial activity (Staphylococcus aureus, Enterococcus faecalis) | MIC in broth microdilution method 32–64 μg/mL. | [99] | |
Ferula orientalis | Antibacterial (Staphylococcus aureus) and antifungal (Candida albicans) activities | Determined by direct bioautography | [56] | |
Ferula pseudalliacea | Insecticidal activity (Varroa destructor) | Highest (30.72%) mortality was at 36 h. | [100] | |
Ferula rigidula | Antifungal activity (Aspergillus ochraceus, Trichoderma viride), Antibacterial (Pseudomonas aeruginosa) | MIC determined by microdilution method were 0.27 (bacteria) and 0.10 (fungi) mg/mL. Enzymatic inhibitory activities against AChE, BChE, tyrosinase, α-amylase, and α-glucosidase. | [101] | |
Ferulago angulata | Antibacterial activity against Bacillus thuringiensis, Erwinia amylovora, Xanthomonas oryzae Antifungal activity against Colletotrichum tricbellum, Fusarium oxysporum | MIC = 8 (B. thuringiensis), 12.5 (E. amylovora), and 12 (X. oryzae) μL/mL. 47.8–100% fungal growth inhibition in agar dilution method 52.5–100% in disc diffusion method at concentration of 800 μL/L. | [57] | |
Ferulago cassia | Anticholinesterase activity | Cholinesterase inhibition (AChE and BChE). | [58] | |
Ferulago sandrasica | Antibacterial (Staphylococcus aureus) and antifungal (Candida albicans) activity | Determined by direct bioautography. | [56] | |
Ferulago trachycarpa | Antibacterial activity against Staphylococcus aureus and E. faecalis (dichloromethane and n-hexane extract), Antifungal activity against Candida albicans, Candida tropicalis, Candida parapsilosis (all extracts) | MIC in microdilution method 3.9–625 mg/L. | [59] | |
Ferulago trifida | Larvicidal activity (Anopheles stephensi) cytotoxic activity and inhibition of AChE activity | LC50 = 116.54 ppm. | [60,102] | |
Foeniculum vulgare | Fennel | Insecticidal activity (Sitophilus granaries, Sitophilus oryzae) | Fumigation toxicity 27.3 µL/L air (S. granaries) and 44.16 µL/L air (S. oryzae) (LC50). | [103] |
Insecticidal activity (African cotton leafworm Spodoptera littoralis) | Fumigant toxicity LD50 51.2 μL/L air. | [86] | ||
Larvicidal, pupicidal, and insecticidal activity (Culex quinquefasciatus) | Larvicidal activity with LC50 = 0.10 mg/mL, LD50 = 7.52/min. | [104] | ||
Larvicidal and ovicidal activities (Culex pipiens) | Larvicidal activity with 24 h-LC50 = 148.3 µg/mL. | [105] | ||
Insecticidal activity (Lymantria dispar) | Antifeedant activity at concentration of 1% EO (77.68 Tot). | [79] | ||
Insecticidal activity (Sitophilus granaries, Tribolium castaneum) | 100% (T. castaneum) and 43.58% (S. granaries) fumigant toxicity. | [62] | ||
Antifungal activities against Penicillium digitatum and Alternaria alternata | Mycelial growth inhibition 13.94% (A. alternata) and 55.39% (P. digitatum). | [31] | ||
Insecticidal activity against Tribolium castaneum and Sitophilus oryzae | Fumigant toxicity [91.28 and 254.71 μL/L air, respectively (LC50)] and repellency effects. | [43] | ||
Herbicidal activity against weeds of wheats (Phalaris minor, Avena ludoviciana, broad-leaved weeds, Rumex dentatus, and Medicago denticulate) | Inhibition of germination and seedling. | [63] | ||
Heracleum anisactis | Antibacterial activity (Escherichia coli, Staphylococcus epidermidis, Staphylococcus aureus) | 11–13 mm inhibition zone in agar disc diffusion method, MIC in broth dilution method 1.1–1.5 v/v. | [106] | |
Heracleum persicum | Persian Hogweed | Larvicidal activity (Anopheles stephensi) | 24 h-LC50 = 26–336 ppm | [107] |
Insecticidal (Callosobruchus maculatus) | Fumigant toxicity 24 h-LC50 = 136.4 µL/L air and higher oviposition deterrence property. | [108] | ||
Hippomarathrum microcarpum | Antibacterial (Staphylococcus aureus) and antifungal (Candida albicans) activity | Determined by direct bioautography. | [56] | |
Levisticum officinale | Lovage | Insecticidal activity (Tribolium confusum) | 100% efficacy in dose of 2 mL. | [93] |
Myrrhis odorata | Sweet Cicely | Antifungal activity (Cladosporium cladosporioides, Aspergillus niger, Aspergillus flavus, Trichoderma viride) | MIC for fungi were 0.5–1.0 mg/mL in microdilution test. | [109] |
Ostericum sieboldii | Water Dropwort | Insecticidal activity against the red flour beetle (Tribolium castaneum) and maize weevil (Sitophilus zeamais) | Contact toxicity against T. castaneum and S. zeamais with LD50 values of 8.47 and 13.82 µg/adult, respectively. Fumigant toxicity LC50 values of 20.92 and 27.39 mg/L air, respectively. | [66] |
Pastinaca sativa | Parsnip | Antibacterial activity (Bacillus cereus) | MIC in microwell dilution assay 0.72 mg/mL. | [110] |
Petroselinum crispum | Parsley | Insecticidal activity against Pseudaletia unipuncta (Armyworm) | Antifeedant/feeding deterrence index (99.7%), and contact toxicant action (93% after 48 h). | [83] |
Peucedanum ostruthium | Masterwort | Phytotoxic activity (Lolium multiflorum, Echinochloa oryzoides), nematicidal (Panagrolaimus rigidus) | Decreased germination and significant impact on L. multiflorum root and shoot growth. Nematicidal activity of leaves extract: 85.6% and 90.5% mortality of larvae and adults of P. rigidus. | [111] |
Pimpinella anisum | Anise | Insecticidal activity (Lymantria dispar) | Antifeedant activity at concentration of 1% EO (Tot 119.26). | [79] |
Antibacterial (Bacillus subtilis, Klebsiella pneumonia) and antifungal (Aspergillus niger, Candida albicans) activities | 11–40 mm inhibition in cup plate–agar diffusion method. | [112] | ||
Insecticidal activity against Tribolium castaneum and Sitophilus oryzae | Fumigant toxicity [43.75 and 292.04 μL/L air, respectively (LC50), and repellency effects. | [43] | ||
Insecticidal activity against peach-potato aphid (Myzus persicae), tobacco cutworm/cotton leaf worm (Spodoptera littoralis), and two insect vectors, common housefly (Musca domestica) and lymphatic filariasis and Zika virus vector Culex quinquefasciatus | M. persicae (4.3 mL/L), S. littoralis (57.3 μg/larva), M. domestica (54.8 μg/adult), C. quinquefasciatus (25.4 µL/L) (LD50). | [49]. | ||
Prangos peucedanifolia | Antifungal (Trichophyton rubrum) and antibacterial activities (Streptococcus mutans, Streptococcus pyogenes, and Staphylococcus aureus) | MIC determined by twofold serial broth dilution method were 2000 (T. rubrum) and ≤1.19 (bacteria) µg/mL. | [67] | |
Antibacterial activity (Pseudomonas aeruginosa, Escherichia coli, Bacillus cereus, Listeria monocytogenes, Salmonella typhimurium), Antifungal activity (Aspergillus ochraceus, Trichoderma viride, Aspergillus versicolor), inhibition of α-glucosidase | MIC determined by microdilution method were 0.27–0.56 (bacteria) and 0.22–0.27 (fungi) mg/mL. Enzymatic inhibitory activities against AChE, tyrosinase, α-amylase, and α-glucosidase. | [101] | ||
Seseli gummiferum | Moon Carrot | Antibacterial action against Staphylococcus lugdunensis | Enzymatic inhibitory activities against AChE, BChE, tyrosinase, and α-amylase MIC = 0.025–0.5 mg/mL. | [68] |
Sison amomum | Stone Parsley | Antibacterial (Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii) | MIC using microdilution method = 2.0–4.1 mg/mL. | [69] |
Smyrnium olusatrum | Alexanders, Horse Parsley | Herbicidal activity (Lepidium sativum) Antifungal activity against Fusarium graminearum and Zymoseptoria tritici Fumigant toxicity (Fusarium graminearum, Botrytis cinerea) | Inhibition of germination, growth, and photosynthesis (74%) of L. sativum, lack of growth on F. graminearum and 83% inhibition on Z. tritici mycelial growth at low concentration 0.142 µL/mL air. Fumigant toxicity with lack of growth on F. graminearum and 48% inhibition on B. cinerea at 0.142 µL/mL air. | [55] |
Trachyspermum ammi | Ajwain, Ajowan caraway | Antibacterial activity (Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Salmonella typhimurium, Escherichia coli), Antifungal activity (Penicillium citrinum, Penicillium chrysogenum, Aspergillus flavus, Aspergillus niger, Aspergillus parasiticus) | Inhibition zone in disc diffusion method = 34–39 mm (bacteria) and >80 mm (fungi). MIC using broth microdilution method = 500 ppm (bacteria) and 1000–2000 ppm (fungi). | [70] |
Insecticidal activity (Tribolium castaneum) | Fumigant toxicity (LC50 11.6 µL), repellency, and reduces oviposition potential. | [78] | ||
Insecticidal activity against rice weevil (Sitophilus oryzae), | Repellent activity (95% at 1.2% EO), fumigant toxicity [0.37 μL/cm3 (LC50)], AChE inhibition. | [15] | ||
Insecticidal activity (Plodia interpunctella) Antibacterial activity S. aureus, E. coli, P. vulgaris, B. subtilis, K. pneumoniae, and B. megaterium | Fumigant toxicity (LC50 4.33 µL/L air) MIC (dilution method) = 8–14 µL at 25% v/v EO. | [113] | ||
Insecticidal activity (maize weevil Sitophilus zeamais) | Repellent activity, fumigation (LC50 0.385 μL/cm3 air), contact toxicity (0.317 μL/cm2), and oviposition inhibitory effect. | [114] | ||
Insecticidal activity (Aethina tumida) | Contact (LD50 66.64 µg/adult) and fumigant (LC50 89.03 mg/L air) toxicity may be attributed to the presence of thymol compound. | [115] |
Insects/Weeds/Phytopathogens | Effects | Apiaceae | References |
---|---|---|---|
Insecticidal activity to protect crops | |||
Myzus persicae (Peach-potato aphid) | Agricultural pest | C. cyminum, P. anisum | [49] |
Spodoptera littoralis (Tobacco cutworm/cotton leafworm) | Affects maize, cotton, cereals, potatoes, tobacco, tomato, vegetables, and ornamental plants. | C. carvi, F. vulgare, C. cyminum, C. caraway, C. sativum, D. carota, P. anisum, C. maritimum, H. nodiflorum | [47,49,86] |
Spodoptera litura (Tobacco cutworm/cotton leafworm/armyworm) | Agricultural pest, affecting many crops. | C. maritimum | [48]. |
Tetranychus urticae | Affects numerous plants (around 1200 species), including major food crops and ornamental plants. | A. visnaga | [125] |
Tuta absoluta | Tomato | C. capticum | [7] |
Insecticidal activity to protect stored products | |||
Culex quinquefasciatus | Lymphatic filariasis and Zika virus vector | P. anisum | [49] |
Musca domestica (Common housefly) | Storage pests, Insect vectors | C. cyminum, P. anisum | [49,130] |
Sitophilus oryzae (Rice weevil) | Storage pests | F. vulgare, P. hortense, C. sativum, P. anisum, T. ammi | [15,43] |
Sitophilus zeamais (Maize weevils) | Stored grain pest | C. carvi, A. graveolens, C. cyminum, P. crispum | [33,129] |
Tribolium castaneum (Red flour beetles) | Storage pests | F. vulgare, P. hortense, C. sativum, P. anisum, C. carvi, A. graveolens | [33,43,130] |
Tyrophagus putrescentiae (Mould or cheese mite) | Storage pests, disseminate toxic fungi and induce allergic reactions among workers engaged in agriculture and food industries. | C. sativum | [41] |
Callosobruchus maculatus (Cowpea weevils) Tribolium confusum (Confused flour beetle) Periplaneta americana (American cockroach) | Storage pests | A. graveolens | [130] |
Plodia interpunctella (Indian meal moth) Sitotroga cerealella (Grain moth) | Affect stored products, such as grains, flours, feeds, dried nuts, and fruits. | C. sativum | [41] |
Herbicidal/phytotoxic activity against weeds | |||
Convolvulus arvensis (Field bindweed) | Common weed over the world | F. vulgare | [132]. |
Echinochloa crus-galli (Barnyard grass, a typical maize weed) | Maize weed | C. carvi | [29] |
Lepidium sativum (watercress) | E. triquetrum, S. olusatrum | [55] | |
Amaranthus retroflexus, Centaurea salsotitialis, Raphanus raphanistrum, Rumex nepalensis, Sonchus oleraceus, and Sinapis arvensis | Common weeds | C. carvi | [131] |
Grass weeds, Phalaris minor and Avena ludoviciana, broad-leaved weeds, Rumex dentatus and Medicago denticulate | Weeds of wheat (Triticum aestivum) | F. vulgare | [63] |
Antimicrobial activity against phytopathogens | |||
Alternaria alternata | Phytopathogens; postharvest pathogens in tomato fruits | C. copticum, F. vulgare, A. graveolens, F. angulate | [31,57,130] |
Penicillium digitatum | Postharvest pathogens in tomato fruits | C. copticum, F. vulgare | [31] |
Pectobacterium atrosepticum | Potato blackleg disease | E. triquetrum, S. olusatrum | [55] |
Pseudomonas cichorii | Soil bacterium causing disease of lettuce, celery, and chrysanthemum | ||
Bacteria (Erwinia amylovora, Xanthomonas oryzae, Pseudomonas syringae, Pectobacterium carotovorum, Ralstonia solanacearum, Bacillus thuringiensis), and fungi (Culvularia fallax, Macrophomina phaseolina, Fusarium oxysporum, Cytospora sacchari, Colletotrichum tricbellum) | Phytopathogens | F. angulate | [57] |
Bacteria; Agrobacterium radiobacter pv tumefaciens, Erwinia carotowora, Pseudomonas fluorescens, and Pseudomonas glycinea | Phytopathogenic bacteria | T. anthriscus, A. podagraria, D. carota, H. sphondyilium, P. saxifrage, P. sativa, A. silvestris, F. vulgare | [13] |
Fusarium graminearum | Cereal fusarium/wheat head blight fungus | E. triquetrum, S. olusatrum | [55] |
Botrytis cinerea | Grey rot on tomatoes, strawberries | ||
Zymoseptoria tritici | Septoria blight | ||
Aspergillus flavus | Food spoilage and foodborne fungi, production of aflatoxins in cereals, dried fruits, and spices | C. carvi, C. sativum, T. ammi, C. nigrum, A. graveolens | [35,70,130,143] |
Aspergillus niger | Food spoilage and foodborne fungus | A. graveolens, C. nigrum, T. ammi | [35,70,130] |
Aspergillus oryzae | Foodborne pathogens | A. graveolens | [130] |
Aspergillus parasiticus | Food spoilage and foodborne fungus, Production of aflatoxins B1 and G1 | F. vulgare, T. ammi | [70,144] |
Bacillus cereus | Food spoilage and foodborne pathogenic bacteria | C. nigrum, T. ammi | [35,70] |
Bacillus subtilis | Foodborne pathogenic bacteria | A. graveolens, C. sativum | [130,140] |
Campylobacter jejuni and Campylobacter coli | Foodborne pathogens | C. sativum | [139] |
Escherichia coli | Food spoilage and foodborne bacteria | T. ammi, A. graveolens | [70,130] |
Pseudomonas aeruginosa | Foodborne pathogens | C. maculatum, A. graveolens, C. nigrum | [35,130,136] |
Staphylococcus aureus | Food spoilage and foodborne pathogenic bacteria | C. cyminum, A. graveolens, T. ammi | [70,130,138] |
Stenotropomonas maltophilia (Bacteria), Penicillium expansum (fungi-producing mycotoxin) | Foodborne pathogens | C. sativum | [140] |
Penicillium purpurogenum, Acrophialophora fusispora | Foodborne pathogenic fungi | C. nigrum | [35] |
Bacteria (Listeria monocytogenes, Salmonella typhimurium), Fungi (Penicillium citrinum, Penicillium chrysogenum) | Food spoilage and foodborne bacteria and fungi | T. ammi | [70] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thiviya, P.; Gunawardena, N.; Gamage, A.; Madhujith, T.; Merah, O. Apiaceae Family as a Valuable Source of Biocidal Components and their Potential Uses in Agriculture. Horticulturae 2022, 8, 614. https://doi.org/10.3390/horticulturae8070614
Thiviya P, Gunawardena N, Gamage A, Madhujith T, Merah O. Apiaceae Family as a Valuable Source of Biocidal Components and their Potential Uses in Agriculture. Horticulturae. 2022; 8(7):614. https://doi.org/10.3390/horticulturae8070614
Chicago/Turabian StyleThiviya, Punniamoorthy, Niroshan Gunawardena, Ashoka Gamage, Terrence Madhujith, and Othmane Merah. 2022. "Apiaceae Family as a Valuable Source of Biocidal Components and their Potential Uses in Agriculture" Horticulturae 8, no. 7: 614. https://doi.org/10.3390/horticulturae8070614
APA StyleThiviya, P., Gunawardena, N., Gamage, A., Madhujith, T., & Merah, O. (2022). Apiaceae Family as a Valuable Source of Biocidal Components and their Potential Uses in Agriculture. Horticulturae, 8(7), 614. https://doi.org/10.3390/horticulturae8070614