Effect of Treated Wastewater Irrigation on the Accumulation and Transfer of Heavy Metals in Lemon Trees Cultivated in Arid Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil and Water Analysis
2.3. Plant Material
2.4. Heavy Metals Analysis
2.5. Bioconcentration and Translocation Factors
2.6. Data Analysis
3. Results and Discussion
3.1. Chemical Analysis of Water and Soil
3.2. Effects of Irrigation with TWW on Nutrients and Heavy Metals Content in Lemon Trees
3.3. Effects of Irrigation with TWW on Bioconcentration Factor of Heavy Metals in Lemon Trees
3.4. Effects of Irrigation with TWW on Translocation Factor of Heavy Metals in Lemon Trees
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mancosu, N.; Snyder, R.L.; Kyriakakis, G.; Spano, D. Water scarcity and future challenges for food production. Water 2015, 7, 975–992. [Google Scholar] [CrossRef]
- Loutfy, N.M. Reuse of wastewater in Mediterranean region, Egyptian experience. In Waste Water Treatment and Reuse in the Mediterranean Region; Barceló, D., Petrovic, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 14, pp. 1–28. [Google Scholar] [CrossRef]
- Malato, S.; Oller, I.; Fernández-Ibánez, P.; Fuerhacker, M. Technologies for advanced wastewater treatment in the Mediterranean region. In Waste Water Treatment and Reuse in the Mediterranean Region; Barceló, D., Petrovic, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 14, pp. 1–28. [Google Scholar] [CrossRef]
- Rajsekhar, D.; Gorelick, S.M. Increasing drought in Jordan: Climate change and cascading Syrian land-use impacts on reducing transboundary flow. Sci. Adv. 2017, 3, e1700581. [Google Scholar] [CrossRef]
- Freiwan, M.; Kadioǧlu, M. Climate variability in Jordan. Int. J. Climatol. 2008, 28, 69–89. [Google Scholar] [CrossRef]
- Al-Sayaydeh, R.; Al-Bawalize, A.; Al-Ajlouni, Z.; Akash, M.W.; Abu-Elenein, J.; Al-Abdallat, A.M. Agronomic evaluation and yield performance of selected barley (Hordeum vulgare L.) landraces from Jordan. Int. J. Agron. 2019, 2019, 9575081. [Google Scholar] [CrossRef]
- Al-Bakri, J.; Suleiman, A.; Abdulla, F.; Ayad, J. Potential impact of climate change on rainfed agriculture of a semi-arid basin in Jordan. Phys. Chem. Earth Parts A/B/C 2011, 36, 125–134. [Google Scholar] [CrossRef]
- Osakabe, Y.; Osakabe, K.; Shinozaki, K.; Tran, L.S.P. Response of plants to water stress. Front. Plant Sci. 2014, 5, 86. [Google Scholar] [CrossRef]
- Qadir, M.; Bahri, A.; Sato, T.; Al-Karadsheh, E. Wastewater production, treatment, and irrigation in Middle East and North Africa. Irrig. Drain. Syst. 2010, 24, 37–51. [Google Scholar] [CrossRef]
- De las Heras, J.; Mañas, P. Reclaimed wastewater to irrigate olive groves and vineyards: Effects on soil properties. Agronomy 2020, 10, 649. [Google Scholar] [CrossRef]
- Moretti, M.; Van Passel, S.; Camposeo, S.; Pedrero, F.; Dogot, T.; Lebailly, P.; Vivaldi, G.A. Modelling environmental impacts of treated municipal wastewater reuse for tree crops irrigation in the Mediterranean coastal region. Sci. Total Environ. 2019, 660, 1513–1521. [Google Scholar] [CrossRef]
- Stietiya, M.H.; Duqqah, M.; Udeigwe, T.; Zubi, R.; Ammari, T. Fate and distribution of heavy metals in wastewater irrigated calcareous soils. Sci. World J. 2014, 2014, 865934. [Google Scholar] [CrossRef]
- Nawaz, H.; Anwar-ul-Haq, M.; Akhtar, J.; Arfan, M. Cadmium, chromium, nickel and nitrate accumulation in wheat (Triticum aestivum L.) using wastewater irrigation and health risks assessment. Ecotoxicol. Environ. Saf. 2021, 208, 111685. [Google Scholar] [CrossRef] [PubMed]
- Al-Habahbeh, K.A.; Al-Nawaiseh, M.B.; Al-Sayaydeh, R.S.; Al-Hawadi, J.S.; Albdaiwi, R.N.; Al-Debei, H.S.; Ayad, J.Y. Long-term irrigation with treated municipal wastewater from the wadi-musa region: Soil heavy metal accumulation, uptake and partitioning in olive trees. Horticulturae 2021, 7, 152. [Google Scholar] [CrossRef]
- Talon, M.; Caruso, M.; Gmitter, F.G., Jr. The Genus Citrus; Woodhead Publishing: Cambridge, UK, 2020; pp. 275–325. [Google Scholar]
- Wu, G.A.; Terol, J.; Ibanez, V.; Lopez-Garcia, A.; Estela, P.-R.; Carles, B. Genomics of the origin, evolution and domestication of citrus. Nature 2018, 544, 311–316. [Google Scholar] [CrossRef]
- Ribeiro, R.V.; Machado, E.C. Some aspects of citrus ecophysiology in subtropical climates: Re-visiting photosynthesis under natural conditions. Braz. J. Plant Physiol. 2007, 19, 393–411. [Google Scholar] [CrossRef]
- Simpson, C.R.; Nelson, S.D.; Melgar, J.C.; Jifon, J.; Schuster, G.; Volder, A. Effects of salinity on physiological parameters of grafted and ungrafted citrus trees. Sci. Hortic. 2015, 197, 483–489. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Rivero, R.M.; Martinez, V.; Gomez-Cadenas, A.; Arbona, V. Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC Plant Biol. 2016, 16, 105. [Google Scholar] [CrossRef]
- Ayoub, S.; Al-Shdiefat, S.; Rawashdeh, H.; Bashabsheh, I. Utilization of reclaimed wastewater for olive irrigation: Effect on soil properties, tree growth, yield and oil content. Agric. Water Manag. 2016, 176, 163–169. [Google Scholar] [CrossRef]
- Batarseh, M.I.; Rawajfeh, A.; Ioannis, K.K.; Prodromos, K.H. Treated Municipal Wastewater Irrigation Impact on Olive Trees (Olea Europaea L.) at Al-Tafilah, Jordan. Water Air Soil Pollut. 2010, 217, 185–196. [Google Scholar] [CrossRef]
- Rhoades, J.D. Soluble salts. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA, 1983; Volume 9, pp. 167–179. [Google Scholar] [CrossRef]
- Amundson, R.G.; Trask, J.; Pendall, E.A. rapid method of soil carbonate analysis using gas chromatography. Soil Sci. Soc. Am. J. 1988, 52, 880–883. [Google Scholar] [CrossRef]
- Atafar, Z.; Mesdaghinia, A.; Nouri, J.; Homaee, M.; Yunesian, M.; Ahmadimoghaddam, M.; Mahvi, A.H. Effect of fertilizer application on soil heavy metal concentration. Environ. Monit. Assess. 2010, 160, 83–89. [Google Scholar] [CrossRef]
- Estefan, G. Methods of Soil, Plant, and Water Analysis: A Manual for the West Asia and North Africa Region, 3rd ed.; ICARDA: Beirut, Lebanon, 2013; pp. 20–199. Available online: https://hdl.handle.net/20.500.11766/7512 (accessed on 1 June 2021).
- Pedrero, F.; Alarcón, J.J. Effects of treated wastewater irrigation on lemon trees. Desalination 2009, 246, 631–639. [Google Scholar] [CrossRef]
- JISM. Water—Reclaimed Grey Water (JS 1776:2013); Jordan Standards and Metrology Organization: Amman, Jordan, 2013; pp. 1–12. [Google Scholar]
- World Health Organization. Guidelines for the Safe Use of Wastewater, Excreta and Greywater; World Health Organization: Geneva, Switzerland, 2006; Volume 2. [Google Scholar]
- Mellem, J.J. Bioaccumulation of Cr, Hg, As, Pb, Cu and Ni with the ability for hyperaccumulation by Amaranthus dubius. Afr. J. Agric. Res. 2012, 7, 591–596. [Google Scholar] [CrossRef]
- Al-Khashman, O.A. Study of water quality of springs in Petra region, Jordan: A three-year follow-up. Water Resour. Manag. 2007, 21, 1145–1163. [Google Scholar] [CrossRef]
- Bedbabis, S.; Rouina, B.B.; Boukhris, M.; Ferrara, G. Effect of irrigation with treated wastewater on soil chemical properties and infiltration rate. J. Environ. Manag. 2014, 133, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Bourazanis, G.; Roussos, P.A.; Argyrokastritis, I.; Kosmas, C.; Kerkides, P. Evaluation of the use of treated municipal waste water on the yield, oil quality, free fatty acids’ profile and nutrient levels in olive trees cv Koroneiki, in Greece. Agric. Water Manag. 2016, 163, 1–8. [Google Scholar] [CrossRef]
- Ziadat, A.H.; Jiries, A.; Alojail, I. Accumulation of Heavy Metals on Soil Irrigated with Treated Wastewater at Al al-Bayt University-Jordan. In Proceedings of the Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 26 March–10 April 2019. [Google Scholar] [CrossRef]
- Manasreh, W.; Alzaydien, A.S. Analysis of Treated Wastewater Produced from Al-Lajoun Wastewater Treatment Plant, Jordan. E-J. Chem. 2009, 6, S287–S303. [Google Scholar] [CrossRef]
- Carey, R.O.; Migliaccio, K.W. Contribution of wastewater treatment plant effluents to nutrient dynamics in aquatic systems: A review. J. Environ. Manag. 2009, 44, 205–217. [Google Scholar] [CrossRef]
- Ofori, S.; Puškáčová, A.; Růžičková, I.; Wanner, J. Treated wastewater reuse for irrigation: Pros and cons. Sci. Total Environ. 2021, 760, 144026. [Google Scholar] [CrossRef]
- Gama-Rodrigues, A.C. Soil organic matter, nutrient cycling and biological dinitrogen-fixation in agroforestry systems. Agrofor. Syst. 2011, 81, 191–193. [Google Scholar] [CrossRef]
- Ye, Y.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Zhang, X.; Zhang, J.; Liang, S. Nutrient recovery from wastewater: From technology to economy. Bioresour. Technol. Rep. 2020, 11, 100425. [Google Scholar] [CrossRef]
- FAO/WHO. Codex Alimentarius. General Standard for Contaminants and Toxins in Food and Feed; Shedule 1 Maximum and Guidline Levels for Contaminants and Toxins in Food, Reference CX/FAC 02/16; Joint FAO/WHO Food Standards Programme, Codex Committee: Rotterdam, The Nertherlands, 2002. [Google Scholar]
- FAO/WHO. Joint AO/WHO Food Standards Program Codex Committee on Contaminants in Food; Food CF/5INF/1, Fifth Session; The Hague, The Netherlands, Codex Alimentarius Commission: Rome, Italy, 2011. [Google Scholar]
- Zekri, M.; Koo, R.C. Treated municipal wastewater for citrus irrigation. J. Plant Nutr. 1994, 17, 693–708. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Plant Physiology and Development, 4th ed.; Sinauer Associates Incorporated: Sunderland, UK, 2006; pp. 67–86. [Google Scholar]
- Pereira, B.F.F.; He, Z.L.; Stoffella, P.J.; Melfi, A.J. Reclaimed wastewater: Effects on citrus nutrition. Agric. Water Manag. 2011, 98, 1828–1833. [Google Scholar] [CrossRef]
- Reboll, V.; Cerezo, M.; Roig, A.; Flors, V.; Lapeña, L.; García-Agustín, P. Influence of wastewater vs groundwater on young Citrus trees. J. Sci. Food Agric. 2000, 80, 1441–1446. [Google Scholar] [CrossRef]
- Morgan, K.T.; Wheaton, T.A.; Parsons, L.R.; Castle, W.S. Effects of reclaimed municipal waste water on horticultural characteristics, fruit quality, and soil and leaf mineral concentration of citrus. Hortic. Sci. 2008, 43, 459–464. [Google Scholar] [CrossRef]
- Reich, P.B.; Ellsworth, D.S.; Walters, M.B.; Vose, J.M.; Gresham, C.; Volin, J.C.; Bowman, W.D. Generality of leaf trait relationships: A test across six biomes. Ecology 1999, 80, 1955–1969. [Google Scholar] [CrossRef]
- Pedrero, F.; Mounzer, O.; Alarcon, J.J.; Bayona, J.M.; Nicolás, E. The viability of irrigating mandarin trees with saline reclaimed water in a semi-arid Mediterranean region: A preliminary assessment. Irrig. Sci. 2013, 31, 759–768. [Google Scholar] [CrossRef]
- Anderson, L.L. Assessment of Thelypteris palustris, Asparagus sprengeri, and Lolium perenne for Their Potential Use in the Phytoremediation of Arsenic-Contaminated Soils. Ph.D. Thesis, Louisiana state university, Baton Rouge, LA, USA, 2007. Available online: https://digitalcommons.lsu.edu/gradschool_dissertations/2824/ (accessed on 1 December 2021).
- Chandra, R.; Kumar, V.; Singh, K. Hyperaccumulator versus nonhyperaccumulator plants for environmental waste management. In Phytoremediation of Environmental Pollutants, 1st ed.; Chandra, R., Dubey, N.K., Kumar, V., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 43–80. [Google Scholar]
- Luo, C.; Liu, C.; Wang, Y.; Liu, X.; Li, F.; Zhang, G.; Li, X. Heavy metal contamination in soils and vegetables near an e-waste processing site, south China. J. Hazard. Mater. 2011, 186, 481–490. [Google Scholar] [CrossRef]
- Mehmood, A.; Mirza, M.A.; Choudhary, M.A.; Kim, K.H.; Raza, W.; Raza, N.; Lee, S.S.; Zhang, M.; Lee, J.H.; Sarfraz, M. Spatial distribution of heavy metals in crops in a wastewater irrigated zone and health risk assessment. Environ. Res. 2019, 168, 382–388. [Google Scholar] [CrossRef]
- Ogunkunle, C.O.; Oyedeji, S.; Olafimihan, N.A.; Fatoba, P.O. Levels and mobility of Cu, Pb and Cd in citrus orchards of two contrasting ages in north-central region of Nigeria. Agric. Conspec. Sci. 2020, 85, 51–59. [Google Scholar]
- Trapp, S.; Rasmussen, D.; Samsøe-Petersen, L. Fruit tree model for uptake of organic compounds from soil. SAR QSAR Environ. Res. 2003, 14, 17–26. [Google Scholar] [CrossRef]
- Kelly-Vargas, K.; Cerro-Lopez, M.; Reyna-Tellez, S.; Bandala, E.R.; Sanchez-Salas, J.L. Biosorption of heavy metals in polluted water, using different waste fruit cortex. Phys. Chem. Earth Parts A/B/C 2012, 37, 26–29. [Google Scholar] [CrossRef]
- Khan, A.; Khan, S.K.M.A.; Khan, M.A.; Aamir, M.; Ullah, H.; Nawab, J.; Rehman, I.U.; Shah, J. Heavy metals effects on plant growth and dietary intake of trace metals in vegetables cultivated in contaminated soil. Int. J. Sci. Environ. 2019, 16, 2295–2304. [Google Scholar] [CrossRef]
- Hamilton, A.J.; Stagnitti, F.; Xiong, X.; Kreidl, S.L.; Benke, K.K.; Maher, P. Wastewater irrigation: The state of play. Vadose Zone J. 2007, 6, 823–840. [Google Scholar] [CrossRef]
- Tarchitzky, J.; Lerner, O.; Shani, U.; Arye, G.L.A.A.; Lowengart-Aycicegi, A.; Brener, A.; Chen, Y.J.E.J.O.S.S. Water distribution pattern in treated wastewater irrigated soils: Hydrophobicity effect. Eur. J. Soil Sci. 2007, 58, 573–588. [Google Scholar] [CrossRef]
Parameter | Unit | WMTP | AM |
---|---|---|---|
Sand | 20–200 µm, (% weight) | 71.21 ± 1.45 | 73.67 ± 1.62 |
Silt | 2–20 µm, (% weight) | 18.81 ± 1.54 | 16.42 ± 1.05 |
Clay | <20 µm, (% weight) | 9.99 ± 1.16 | 9.91 ± 1.37 |
EC | dS·m−1 | 2.10 ± 0.26 | 1.85 ± 0.91 |
pH | pH unit | 7.60 ± 0.79 | 7.80 ± 0.85 |
OM | g·kg−1 | 12.10 ± 1.28 | 3.40 ± 0.52 |
CaCO3 | g·kg−1 | 13.12 ± 1.22 | 15.92 ± 1.73 |
Parameter | WMTP | AM | JISM 1 | WHO 2 |
---|---|---|---|---|
pH | 7.57 ± 0.69 | 7.86 ± 0.54 | 6.0–9.0 | 6.5–8.0 |
EC (dS·m−1) | 2.68 ± 0.40 | 1.45 ± 0.22 | 1.0–3.0 | 0.7–3.0 |
BOD (mg·L−1) | 16.73 ± 1.50 | 0 | 60 | 300 |
COD (mg·L−1) | 34.13 ± 2.53 | 0 | 120 | 500 |
TDS (mg·L−1) | 629.05 ± 35.42 | 40.38 ± 3.12 | <2000 | 450–2000 |
SAR (ratio) | 8.38 ± 0.93 | 1.56 ± 0.57 | 9 | <13 |
Total Coliforms (MPN/100 mL) | 1.85 ± 0.06 | 0 | <10 | <9 |
Element | TWW | SW | JISM 1 | WHO 2 |
---|---|---|---|---|
PO4 (mg·L−1) | 15.67 ± 1.69 | 1.27 ± 0.02 | 30.00 | 30.00 |
NO3− (mg·L−1) | 20.81 ± 3.99 | 1.4 ± 0.50 | 45.00 | 50.00 |
N (mg·L−1) | 13.23 ± 1.62 | 0.7 ± 0.06 | 50.00 | 5.00–50.00 |
K (mg·L−1) | 27.84 ± 2.03 | 7.92 ± 1.00 | 80.00 | 80.00 |
Ca (mg·L−1) | 91.05 ± 7.11 | 112.2 ± 12.1 | 400.00 | 230.00 |
Na (mg·L−1) | 92.18 ± 5.87 | 53.16 ± 4.15 | 230.00 | 69.00–207.00 |
Cl (mg·L−1) | 118.25 ± 9.04 | 54.94 ± 5.38 | 400.00 | 140.00–350.00 |
Mg (mg·L−1) | 16.27 ± 1.43 | 27.50 ± 3.40 | 60.00 | 60.00 |
Fe (mg·L−1) | 4.55 ± 0.51 | 0.16 ± 0.01 | 5.00 | 0.10–1.50 |
Zn (mg·L−1) | 22.00 ± 0.13 | 28.00 ± 0.36 | 2.00 | <2.00 |
Mn (mg·L−1) | 0.02 ± 0.01 | 0.02 ± 0.001 | - | 0.20 |
Cu (mg·L−1) | 0.01 ± 0.001 | 0.02 ± 0.002 | - | 0.20 |
Cr (mg·L−1) | 0.64 ± 0.34 | 0.01 ± 0.001 | - | 0.02 |
Ni (mg·L−1) | 1.15 ± 0.10 | 0.05 ± 0.02 | - | 0.20 |
Cd (mg·L−1) | 0.83 ± 0.30 | 0.01 ± 0.002 | 0.01 | <0.01 |
Pb (mg·L−1) | 9.00 ± 1.21 | 0.03 ± 0.002 | 5.00 | <5.00 |
Element | WWTP | AM | FAO/WHO 2 |
---|---|---|---|
N total (g·kg−1) | 13.90 ± 1.10 | 3.20 ± 0.27 | - |
K (mg·kg−1) | 684.20 ± 25.00 | 245.10 ± 16.4 | - |
P (mg·kg−1) | 94.80 ± 5.03 | 76.80 ± 23.5 | - |
Na (mg·kg−1) | 394.10 ± 17.80 | 110.00 ± 6.14 | - |
Cl (mg·kg−1) | 584.10 ± 20.20 | 58.00 ± 4.81 | - |
Mg (mg·kg−1) | 140.00 ± 6.040 | 47.20 ± 3.27 | - |
Fe (mg·kg−1) | 21.60 ± 3.03 | 8.43 ± 1.50 | 50,000 |
Zn (mg·kg−1) | 11.30 ± 1.52 | 7.56 ± 4.63 | 60 |
Mn (mg·kg−1) | 27.10 ± 2.55 | 15.20 ± 1.03 | 2000 |
Cu (mg·kg−1) | 3.30 ± 0.21 | 3.60 ± 0.25 | 100 |
Cr (mg·kg−1) | 0.09 ± 0.01 | 0.03 ± 0.01 | 100 |
Ni (mg·kg−1) | 0.08 ± 0.01 | N.D. 1 | 50 |
Cd (mg·kg−1) | 0.03 ± 0.01 | 0.004 ± 0.001 | 3.0 |
Pb (mg·kg−1) | 2.44 ± 0.23 | 0.004 ± 0.001 | 100 |
N (g·kg−1) | K (g·kg−1) | Ca (g·kg−1) | Mg (g·kg−1) | |||||
Part | SW | TWW | SW | TWW | SW | TWW | SW | TWW |
Root | 7.32b 1 | 8.53b | 21.34ab | 24.27a | 11.82bc | 11.29bc | 3.88b | 5.78a |
Bark | 3.58c | 4.19c | 14.09d | 16.15cd | 10.28c | 9.82c | 1.49d | 2.57c |
Leaf | 13.13a | 15.35a | 17.08c | 18.91b | 17.88a | 11.85b | 3.95b | 5.98a |
Fruit | 2.19d | 5.12c | 13.16d | 14.61d | 0.81d | 0.74d | 0.38e | 0.46e |
Fe (mg·kg−1) | Zn (mg·kg−1) | Mn (mg·kg−1) | Cu (mg·kg−1) | |||||
Part | SW | TWW | SW | TWW | SW | TWW | SW | TWW |
Root | 294.50b | 431.63a | 69.44a | 19.83c | 9.63d | 12.54cd | 9.63d | 25.15b |
Bark | 138.56f | 182.18d | 13.81d | 12.56de | 13.19c | 23.15b | 17.44bc | 16.00c |
Leaf | 160.38e | 212.69c | 27.25b | 33.18b | 36.19a | 31.89ab | 21.10bc | 35.81a |
Fruit 2 | 9.26h | 38.65g | 10.50e | 20.61c | 0.12f | 0.84e | 0.40e | 17.25bc |
Cr (mg·kg−1) | Ni (mg·kg−1) | Cd (mg·kg−1) | Pb (mg·kg−1) | |||||
Part | SW | TWW | SW | TWW | SW | TWW | SW | TWW |
Root | 0.29d | 2.81a | 0.70d | 3.93bc | 1.30b | 0.40d | 3.20d | 27.20a |
Bark | 0.43d | 2.70ab | 0.70d | 2.95c | 1.58ab | 1.98a | 1.46e | 16.46b |
Leaf | 0.04f | 2.11bc | 0.41e | 4.60ab | 0.78c | 1.58ab | 1.00e | 16.86b |
Fruit | 0.15e | 1.46c | 0.40e | 5.15a | 0.05e | 0.46d | 1.27e | 7.46c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albdaiwi, R.N.; Al-Hawadi, J.S.; Al-Rawashdeh, Z.B.; Al-Habahbeh, K.A.; Ayad, J.Y.; Al-Sayaydeh, R.S. Effect of Treated Wastewater Irrigation on the Accumulation and Transfer of Heavy Metals in Lemon Trees Cultivated in Arid Environment. Horticulturae 2022, 8, 514. https://doi.org/10.3390/horticulturae8060514
Albdaiwi RN, Al-Hawadi JS, Al-Rawashdeh ZB, Al-Habahbeh KA, Ayad JY, Al-Sayaydeh RS. Effect of Treated Wastewater Irrigation on the Accumulation and Transfer of Heavy Metals in Lemon Trees Cultivated in Arid Environment. Horticulturae. 2022; 8(6):514. https://doi.org/10.3390/horticulturae8060514
Chicago/Turabian StyleAlbdaiwi, Randa N., Jehad S. Al-Hawadi, Ziad B. Al-Rawashdeh, Khaled A. Al-Habahbeh, Jamal Y. Ayad, and Rabea S. Al-Sayaydeh. 2022. "Effect of Treated Wastewater Irrigation on the Accumulation and Transfer of Heavy Metals in Lemon Trees Cultivated in Arid Environment" Horticulturae 8, no. 6: 514. https://doi.org/10.3390/horticulturae8060514
APA StyleAlbdaiwi, R. N., Al-Hawadi, J. S., Al-Rawashdeh, Z. B., Al-Habahbeh, K. A., Ayad, J. Y., & Al-Sayaydeh, R. S. (2022). Effect of Treated Wastewater Irrigation on the Accumulation and Transfer of Heavy Metals in Lemon Trees Cultivated in Arid Environment. Horticulturae, 8(6), 514. https://doi.org/10.3390/horticulturae8060514