Preharvest Foliar Applications of Citric Acid, Gibberellic Acid and Humic Acid Improve Growth and Fruit Quality of ‘Le Conte’ Pear (Pyrus communis L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Treatments, Experimental Site and Design
2.2. Vegetative Growth Attributes
2.3. Fruit Set Percentage, Fruit Drop and Yield
2.4. Fruit Physical Characteristics
2.5. Fruit Biochemical Characteristics
2.6. Leaf Minerals
2.7. Statistical Analysis
3. Results
3.1. Vegetative Growth Attributes
3.2. Fruit Set Percentage, Fruit Drop and Yield
3.3. Fruit Physical Characteristics
3.4. Fruit Biochemical Characteristics
3.5. Leaf Minerals
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Álvarez-Fernández, A.; García-Laviña, P.; Fidalgo, C.; Abadía, J.; Abadía, A.J.P. Foliar fertilization to control iron chlorosis in pear (Pyrus communis L.) trees. Plant Soil 2004, 263, 5–15. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2019: Safeguarding against Economic Slowdowns and Downturns; FAO: Rome, Italy, 2019; Licence: CC BY-NC-SA 3.0 IGO. Rome; 2019. [Google Scholar]
- Sharma, A.; Chetani, R. A review on the effect of organic and chemical fertilizers on plants. Int. J. Res. Appl. Sci. Eng. Technol. 2017, 5, 677–680. [Google Scholar] [CrossRef]
- Lin, W.; Lin, M.; Zhou, H.; Wu, H.; Li, Z.; Lin, W. The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS ONE 2019, 14, e0217018. [Google Scholar] [CrossRef]
- Mosa, W.F.; Ali, H.M.; Abdelsalam, N.R. The utilization of tryptophan and glycine amino acids as safe alternatives to chemical fertilizers in apple orchards. Environ. Sci. Pollut. Res. 2021, 28, 1983–1991. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, X.-X.; Guo, X.; Wang, D.; Chu, H. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biol. Biochem. 2015, 88, 9–18. [Google Scholar] [CrossRef]
- Nkoa, R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agron. Sustain. Dev. 2014, 34, 473–492. [Google Scholar] [CrossRef] [Green Version]
- Horrigan, L.; Lawrence, R.S.; Walker, P. How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environ. Health Perspect. 2002, 110, 445–456. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Fan, J.; Xing, Y.; Xu, G.; Wang, H.; Deng, J.; Wang, Y.; Zhang, F.; Li, P.; Li, Z. The effects of mulch and nitrogen fertilizer on the soil environment of crop plants. Adv. Agron. 2019, 153, 121–173. [Google Scholar]
- Du, Z.-L.; Wu, W.-L.; Zhang, Q.-Z.; Guo, Y.-b.; Meng, F.-q. Long-term manure amendments enhance soil aggregation and carbon saturation of stable pools in North China plain. J. Integr. Agric. 2014, 13, 2276–2285. [Google Scholar] [CrossRef]
- Mäder, P.; Fliessbach, A.; Dubois, D.; Gunst, L.; Fried, P.; Niggli, U. Soil fertility and biodiversity in organic farming. Science 2002, 296, 1694–1697. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, R.C.; Bairwa, H.L.; Kumar, U.; Javed, T.; Asad, M.; Lal, K.; Abdelsalam, N.R. Influence of organic manures on soil nutrient content, microbial population, yield and quality parameters of pomegranate (Punica granatum L.) cv. Bhagwa. PLoS ONE 2022, 17, e0266675. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Xu, Y.; Xiang, L.; Wang, G.; Shen, X.; Chen, X. Effects of a mixture of bacterial manureand biochar on soil environment and physiological characteristics of Mals huupehens seedlings. Chin. Agric. Sci. Bull. 2017, 33, 52–59. [Google Scholar]
- Xu, H.; Xiao, R.; Xiang, Z.; Huang, Y.; Luo, W.; Qin, Z. Effects of different ecological manage-ment on the soil microbial biomass and microbial population of tea plantation in hilly red soil region. Chin. J. Soil Sci. 2010, 41, 1355–1359. [Google Scholar]
- He, L.-L.; Zhong, Z.-K.; Yang, H.-M. Effects on soil quality of biochar and straw amendment in conjunction with chemical fertilizers. J. Integr. Agric. 2017, 16, 704–712. [Google Scholar] [CrossRef] [Green Version]
- Kandil, E.E.; Abdelsalam, N.R.; EL Aziz, A.A.A.; Ali, H.M.; Siddiqui, M.H. Efficacy of nanofertilizer, fulvic acid and boron fertilizer on sugar beet (Beta vulgaris L.) yield and quality. Sugar Tech. 2020, 22, 782–791. [Google Scholar] [CrossRef]
- Li, Y.C.; Li, Z.W.; Lin, W.W.; Jiang, Y.H.; Weng, B.Q.; Lin, W.X. Effects of biochar and sheep manure on rhizospheric soil microbial community in continuous ratooning tea orchards. Ying Yong Sheng Tai Xue Bao 2018, 29, 1273–1282. [Google Scholar] [CrossRef]
- Kandil, E.E.; Abdelsalam, N.R.; Mansour, M.A.; Ali, H.M.; Siddiqui, M.H. Potentials of organic manure and potassium forms on maize (Zea mays L.) growth and production. Sci. Rep. 2020, 10, 8752. [Google Scholar] [CrossRef]
- Trejo-Tellez, L.; Gomez-Merino, F.; Schmitt, J.M.; Vargas, D.A.; Medina, J. Citric Acid: Biosynthesis, Properties and Applications on Higher Plants; Nova Science Publishers, Inc.: New York, NY, USA, 2012; pp. 43–70. [Google Scholar]
- Khatun, M.R.; Mukta, R.H.; Islam, M.A.; Nazmul Huda, A.K.M. Insight into citric acid-induced chromium detoxification in rice (Oryza sativa. L). Int. J. Phytoremediation 2019, 21, 1234–1240. [Google Scholar] [CrossRef]
- Fayed, T. Effect of some antioxidants on growth, yield and bunch characteristics of Thompson seedless grapevine. Am.-Eurasian J. Agric. Environ. Sci. 2010, 8, 322–328. [Google Scholar]
- Amri, E.; Shahsavar, A.R. Comparative efficacy of citric acid and Fe (II) sulfate in the prevention of chlorosis in orange trees (Citrus sinensis L. cv ‘Darabi’). J. Biol. Chem. Environ. Sci. 2009, 3, 61–65. [Google Scholar]
- Maksoud, M.; Saleh, M.A.; El-Shamma, M.; Fouad, A.A. The beneficial effect of biofertilizers and antioxidants on olive trees under calcareous soil conditions. World J. Agric. Res. 2009, 5, 350–352. [Google Scholar]
- El-Badawy, H.; El-Gioushy, S.; Baiea, M.; EL-Khwaga, A. Effect of some antioxidants and nutrients treatments on vegetative growth and nutritional status of Washington navel orange trees. Middle East J. Agric. Res. 2017, 6, 87–98. [Google Scholar]
- Fayek, M.; Fayed, T.; El-Fakhrani, E.; Sayed, S.N. Yield and fruit quality of” Le-conte” pear trees as affected by compost tea and some antioxidants applications. J. Hortic. Sci.Ornam. Plants 2014, 6, 1–8. [Google Scholar] [CrossRef]
- Guneri, M.; Misirli, A.; Yokas, I. Citric acid treatments on the vegetative, fruit properties and yield in Interdonat lemon and Valencia orange. Afr. J. Agric. Res. 2012, 7, 5525–5529. [Google Scholar] [CrossRef]
- Mandour, M.A.; Metwaly, H.A.; Ali, A.M. Effect of foliar spray with amino acids, citric acid, some calcium compounds and mono-potassium phosphate on productivity, storability and controlling gray mould of strawberry fruits under sandy soil conditions. Zagazig J. Agric. Res. 2019, 46, 985–997. [Google Scholar] [CrossRef]
- Javed, T.; Ali, M.M.; Shabbir, R.; Anwar, R.; Afzal, I.; Mauro, R.P.J.B. Alleviation of Copper-Induced Stress in Pea (Pisum sativum L.) through Foliar Application of Gibberellic Acid. Biology 2021, 10, 120. [Google Scholar] [CrossRef]
- Rodrigues, C.; Vandenberghe, L.P.d.S.; de Oliveira, J.; Soccol, C.R. New perspectives of gibberellic acid production: A review. Crit. Rev. Biotechnol. 2012, 32, 263–273. [Google Scholar] [CrossRef]
- Sharma, G.; Ananda, S. Effect of pre-bloom foliar application of plant bioregulators on growth, fruiting and quality of apple under warmer agroclimatic conditions. In Proceedings of the VII International Symposium on Temperate Zone Fruits in the Tropics and Subtropics 662, Nauni, Solan, India, 21–25 October 2003; pp. 353–357. [Google Scholar]
- El-Shazly, S.M.; Eisa, A.M.; Moảtamed, A.M.H.; Kotb, H.R.M. Effect of some agro-chemicals preharvest foliar application on yield and fruit quality of ”Swelling” peach trees. Alex. J. Agric. Res. 2013, 58, 219–229. [Google Scholar]
- Ouma, G. Use of gibberellins to improve fruit set in pears after frost damage. J. Biol. Sci. 2008, 8, 213–216. [Google Scholar] [CrossRef] [Green Version]
- Davis, P. The plant hormones: Their nature, occurrence and functions. In Plant Hormones; Davis, P.J., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 1–15. [Google Scholar]
- Pal, P.; Yadav, K.; Kumar, K.; Singh, N. Effect of gibberellic acid and potassium foliar sprays on productivity and physiological and biochemical parameters of parthenocarpic cucumber cv. ‘Seven Star F1‘. J. Hortic. Res. 2016, 24, 93–100. [Google Scholar] [CrossRef] [Green Version]
- El-Sese, A.M.A. Effect of gibberellic acid (GA3) on yield and fruit characteristics of Balady mandarin. Assiut J. Agric. Sci. 2005, 36, 23–35. [Google Scholar]
- Sarkar, S.; Ghosh, B. Effect of growth regulators on biochemical compostion of mango cv. Amrapali. Ecol. Environ. 2005, 23, 379–380. [Google Scholar]
- Arunadevi, A.; Kumar, S.; Rajangam, J.; Venkatesan, K. Effect of plant growth regulators on growth, yield and quality of acid lime (Citrus aurantifolia Swingle.) var. PKM. J. Pharmacogn. Phytochem. 2019, 8, 3438–3441. [Google Scholar]
- Bons, H.K.; Kaur, N.; Rattanpal, H.S. Quality and Quantity Improvement of Citrus: Role of Plant Growth Regulators. Int. J. Agric. Environ. Biotechnol. 2015, 8, 433–447. [Google Scholar] [CrossRef]
- Dilip, W.; Singh, D.; Moharana, D.; Rout, S.; Patra, S.S. Effect of gibberellic acid (GA) different concentrations at different time intervals on seed germination and seedling growth of Rangpur Lime. J. Agroeco. Nat. Resour. Manag. 2017, 4, 157–165. [Google Scholar]
- Ennab, H.A. Moshtohor. Effect of GA3 and Sitofex (CPPU) Spraying on Yield and Fruit Quality of “Kelsey” Plum Trees (Prunus salicina Lindl.). Ann. Agric. Sci. Moshtohor. 2019, 57, 993–1002. [Google Scholar] [CrossRef]
- Talat, H.; Shafqat, W.; Qureshi, M.A.; Sharif, N.; Raza, M.K.; ud Din, S.; Ikram, S.; Jaskani, M.J. Effect of gibberellic acid on fruit quality of Kinnow mandarin. J. Glob. Innov. Agric. Soc. Sci. 2020, 8, 59–63. [Google Scholar] [CrossRef]
- Hegazi, A.; Samra, N.; El-Baz, E.; Khalil, B.M.; Gawish, M.S. Improving fruit quality of manfaloty and wonderfull pomegranates by using bagging and some spray treatments with gibberellic acid, calcium chloride and kaolin. J. Plant Prod. Sci. 2014, 5, 779–792. [Google Scholar] [CrossRef]
- Harhash, M.M.; Ali, M.A.; El-Megeed, A.; Ben Hifaa, A.B. Effect of Some Growth Regulators, Nutrient Elements and Kaolin on Cracking and Fruit Quality of Pomegranate ‘Wonderful’ Cultivar. J. Adv. Agric. Res. 2019, 24, 280–297. [Google Scholar] [CrossRef]
- Merwad, M.; Eisa, R.; Merwad, A.M.M. Effect of GA3 and some nutrients on pomegranate under South Sinai Governorate conditions. Int. J. Chemtech Res. 2016, 9, 104–113. [Google Scholar]
- Khalil, H.A. Improved yield, fruit quality, and shelf life in ‘Flame Seedless’ grapevine with pre-harvest foliar applications of forchlorfenuron, gibberellic acid, and abscisic acid. J. Hortic. Res. 2020, 28, 77–86. [Google Scholar] [CrossRef]
- Xu, Y.; Hou, X.; Feng, J.; Khalil-Ur-Rehman, M.; Tao, J. Transcriptome sequencing analyses reveals mechanisms of eliminated russet by applying GA3 and CPPU on ‘Shine Muscat’ grape. Sci. Hortic. 2019, 250, 94–103. [Google Scholar] [CrossRef]
- Askarieh, A.; Suleiman, S.; Tawakalna, M. Sweet Cherry (Prunus avium L.) Fruit Drop Reduction by Plant Growth Regulators (Naphthalene Acetic Acid NAA and Gibberellic Acid GA3). Am. J. Plant Sci. 2021, 12, 1338–1346. [Google Scholar] [CrossRef]
- Mikkelsen, R.L. Humic materials for agriculture. Better Crops 2005, 89, 6–10. [Google Scholar]
- Bakry, M.A.; Soliman, Y.R.; Moussa, S.A.M. Importance of micronutrients, organic manure and biofertilizer for improving maize yield and its components grown in desert sandy soil. Res. J. Agric. Biol. Sci. 2009, 5, 16–23. [Google Scholar]
- Cavalcante, I.; Silva-Matos, R.; Albano, F.; Silva Junior, G.; Silva, A.; Soares da Costa, L. Foliar spray of humic substances on seedling production of yellow passion fruit. J. Food Agric. Environ. 2013, 11, 301–304. [Google Scholar]
- Paksoy, M.; Türkmen, Ö.; Dursun, A. Effects of potassium and humic acid on emergence, growth and nutrient contents of okra (Abelmoschus esculentus L.) seedling under saline soil conditions. Afr. J. Biotechnol. 2010, 9, 5343–5346. [Google Scholar]
- Nardi, S.; Tosoni, M.; Pizzeghello, D.; Provenzano, M.; Cilenti, A.; Sturaro, A.; Rella, R.; Vianello, A. Chemical characteristics and biological activity of organic substances extracted from soils by root exudates. Soil Sci. Soc. Am. J. 2005, 69, 2012–2019. [Google Scholar] [CrossRef] [Green Version]
- Tarantino, A.; Lops, F.; Disciglio, G.; Lopriore, G. Effects of plant biostimulants on fruit set, growth, yield and fruit quality attributes of ‘Orange rubis®’ apricot (Prunus armeniaca L.) cultivar in two consecutive years. Sci. Hortic. 2018, 239, 26–34. [Google Scholar] [CrossRef]
- Shalan, A.M. Effect of bio-stimulant and soil amendment on vegetative growth, yield and fruit quality of Pyrus communis cv.’Le Conte’Pear trees. J. Plant Prod. Sci. 2014, 5, 1973–1987. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudi, M.; Samavat, S.; Mostafavi, M.; Khalighi, A.; Cherati, A. The effects of proline and humic acid on quantitative properties of kiwi fruit. Int. Res. J. Appl. Basic Sci. 2013, 6, 1117–1119. [Google Scholar]
- Da Rocha, L.F.; Cavalcante, L.F.; Nunes, J.C.; de Luna Souto, A.G.; Cavalcante, A.C.P.; Cavalcante, Í.H.L.; Pereira, W.E. Fruit production and quality of guava ‘Paluma’as a function of humic substances and soil mulching. Afr. J. Biotechnol. 2016, 15, 1962–1969. [Google Scholar]
- Harhash, M.M.; Saad, R.M.; Mosa, W.F.A. Response of “Wonderful” pomegranate cultivar to the foliar application of some biostimulants. Plant Arch. 2021, 21, 474–487. [Google Scholar] [CrossRef]
- Sanjari, M.; Siroosmehr, A.; Fakheri, B. The effects of drought stress and humic acid on some physiological characteristics of roselle. J. Crop Improv. 2015, 17, 403–414. [Google Scholar] [CrossRef]
- Mohamadineia, G.; Farahi, M.H.; Dastyaran, M. Foliar and soil drench application of humic acid on yield and berry properties of ‘Askari’ grapevine. Agric. Commun. 2015, 3, 21–27. [Google Scholar]
- Shaaban, F.K.; Morsey, M.M.; Mahmoud Thanaa, S.M. Influence of spraying yeast extract and humic acid on fruit maturity stage of canino apricot fruits. Int. J. Chemtech. Res. 2015, 8, 530–543. [Google Scholar]
- El-Hoseiny, H.M.; Helaly, M.N.; Elsheery, N.I.; Alam-Eldein, S.M.J.H. Humic acid and boron to minimize the incidence of alternate bearing and improve the productivity and fruit quality of mango trees. HortScience 2020, 55, 1026–1037. [Google Scholar] [CrossRef]
- Demirsoy, H.J.F. Leaf area estimation in some species of fruit tree by using models as a non-destructive method. Fruits 2009, 64, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.M.; Anwar, R.; Malik, A.U.; Khan, A.S.; Ahmad, S.; Hussain, Z.; Hasan, M.U.; Nasir, M.; Chen, F. Plant growth and fruit quality response of strawberry is improved after exogenous application of 24-epibrassinolide. J. Plant Growth Regul. 2021, 41, 1786–1799. [Google Scholar] [CrossRef]
- Wang, H.; Pampati, N.; McCormick, W.M.; Bhattacharyya, L. Protein nitrogen determination by kjeldahl digestion and ion chromatography. J. Pharm. Sci. 2016, 105, 1851–1857. [Google Scholar] [CrossRef]
- Bowden, M.; Diamond, D.J.S.; Chemical, A.B. The determination of phosphorus in a microfluidic manifold demonstrating long-term reagent lifetime and chemical stability utilising a colorimetric method. Sens. Actuators B: Chem. 2003, 90, 170–174. [Google Scholar] [CrossRef]
- Estefan, G.; Sommer, R.; Ryan, J. Methods of soil, plant, and water analysis: A manual for the West Asia and North Africa region. Int. Cent. Agric. Res. Dry Areas (ICARDA) 2013, 134299328. [Google Scholar]
- Ali, M.M.; Li, B.; Zhi, C.; Yousef, A.F.; Chen, F. Foliar-Supplied Molybdenum Improves Phyto-Nutritional Composition of Leaves and Fruits of Loquat (Eriobotrya japonica Lindl.). Agronomy 2021, 11, 892. [Google Scholar] [CrossRef]
- Ali, M.M.; Anwar, R.; Shafique, M.W.; Yousef, A.F.; Chen, F.J.A. Exogenous Application of Mg, Zn and B Influences Phyto-Nutritional Composition of Leaves and Fruits of Loquat (Eriobotrya japonica Lindl.). Agronomy 2021, 11, 224. [Google Scholar] [CrossRef]
- Ali, M.M.; Rizwan, H.M.; Yousef, A.F.; Zhi, C.; Chen, F. Analysis of toxic elements in leaves and fruits of loquat by inductively coupled plasma-mass spectrometry (ICP-MS). Acta Sci. Pol. Hortoru. 2021, 20, 33–42. [Google Scholar] [CrossRef]
- Mansour, A.; Ahmed, F.; Shaaban, E.; Amera, A.F. The beneficial of using citric acid with some nutrients for improving productivity of Le-Conte pear trees. Res. J. Agric. Biol. Sci. 2008, 4, 245–250. [Google Scholar]
- El-Badawy, H. Effect of some antioxidants and micronutrients on growth, leaf mineral content, yield and fruit quality of Canino apricot trees. J. Appl. Sci. Res. 2013, 9, 1228–1237. [Google Scholar]
- Shakoor, M.B.; Ali, S.; Hameed, A.; Farid, M.; Hussain, S.; Yasmeen, T.; Najeeb, U.; Bharwana, S.A.; Abbasi, G.H. Citric acid improves lead (Pb) phytoextraction in Brassica napus L. by mitigating Pb-induced morphological and biochemical damages. Ecotoxicol. Environ. Saf. 2014, 109, 38–47. [Google Scholar] [CrossRef]
- Afshan, S.; Ali, S.; Bharwana, S.A.; Rizwan, M.; Farid, M.; Abbas, F.; Ibrahim, M.; Mehmood, M.A.; Abbasi, G.H. Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environ. Sci. Pollut. Res. 2015, 22, 11679–11689. [Google Scholar] [CrossRef]
- Farid, M.; Ali, S.; Rizwan, M.; Ali, Q.; Abbas, F.; Bukhari, S.A.H.; Saeed, R.; Wu, L. Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. Ecotoxicol. Environ. Saf. 2017, 145, 90–102. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, L.; Gu, J.; Zhao, J.; Fu, J. Citric acid and EDTA on the growth, photosynthetic properties and heavy metal accumulation of Iris halophila Pall. cultivated in Pb mine tailings. Int. Biodeterior. Biodegrad. 2018, 128, 15–21. [Google Scholar] [CrossRef]
- Osama, H.; Amro, E.; Salama Saber, M.M.B. Effect of growth regulator, antioxidant and application date on fruiting and fruit quality of mango trees cv. Keitt. J. Agric. Vet. Sci. 2015, 8, 87–95. [Google Scholar] [CrossRef]
- Mohamed, H.M. Effect of spraying citric acid macro and micro nutrients on yield and berries quality of Red Globe Grapevines. J. Hortic. Sci. Ornam. Plants 2018, 10, 53–59. [Google Scholar] [CrossRef]
- Iqbal, M.; Khan, M.Q.; Rehman, K.; Munir, M. Effect of foliar application of NAA on fruit drop, yield and physico-chemical characteristics of guava (Psidium guajava L.) red flesh cultivar. J. Agric. Res. 2009, 47, 03681157. [Google Scholar]
- Moneruzzaman, K.M.; Hossain, A.; Normaniza, O.; Boyce, A.N. Growth, yield and quality responses to gibberellic acid (GA3) of Wax apple Syzygium samarangense var. Jambu air madu fruits grown under field conditions. Afr. J. Biotechnol. 2011, 10, 11911–11918. [Google Scholar] [CrossRef]
- Nkansah, G.; Ofosu-Anim, J.; Mawuli, A. Gibberellic acid and naphthalene acetic acid affect fruit retention, yield and quality of Keitt mangoes in the coastal savanna ecological zone of Ghana. Am. J. Plant Physiol. 2012, 7, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Khajehyar, R.; Rahemi, M.; Fallahi, E. The impact of various rates and dates of gibberellic acid applications on fruit set in apricot. Inter. J. Fruit Sci. 2015, 15, 324–338. [Google Scholar] [CrossRef]
- Mosa, W.; Abd EL-Megeed, N.; SasPaszt, L. The effect of the foliar application of potassium, calcium, boron and humic acid on vegetative growth, fruit set, leaf mineral, yield and fruit quality of ’Anna’ apple trees. J. Exp. Agric. Int. 2015, 8, 224–234. [Google Scholar] [CrossRef]
- Beerappa, S.; Hipparagi, K.; Patil, D.; Suma, R.; Biradar, I. Effect of foliar application of gibberellic acid (GA3) and nutrients on yield and quality of pomegranate (Punica granatum L.) cv. Bhagwa. Int. J. Chem. Stud. 2019, 7, 2579–2584. [Google Scholar]
- Al-Doori, M.F.; Medan, R.A.; Hussein, S.A. Effect of Spray with some growth regulators and Zinc on growth and Yield of Pear Trees (Pyrus communis L.) CV. LE-CONTE. Int. J. Agricult. Stat. Sci. 2020, 16, 1181–1186. [Google Scholar]
- Ferrara, G.; Brunetti, G. Effects of the times of application of a soil humic acid on berry quality of table grape (Vitis vinifera L.) cv Italia. Span. J. Agric. Res. 2010, 8, 817–822. [Google Scholar] [CrossRef] [Green Version]
- De Castro, T.A.v.T.; Berbara, R.L.L.; Tavares, O.C.H.; da Graça Mello, D.F.; Pereira, E.G.; de Souza, C.d.C.B.; Espinosa, L.M.; García, A.C. Humic acids induce a eustress state via photosynthesis and nitrogen metabolism leading to a root growth improvement in rice plants. Plant Physiol. Biochem. 2021, 162, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Olaetxea, M.; Mora, V.; Baigorri, R.; Zamarreño, A.M.; García-Mina, J.M. The Singular molecular conformation of humic acids in solution influences their ability to enhance root hydraulic conductivity and plant growth. Molecules 2020, 26, 3. [Google Scholar] [CrossRef] [PubMed]
- Bulut, F.; Akinci, S. The effect of salinity on growth and nutrient composition in broad bean (Vicia faba L.) seedlings. Fresen. Environ. Bull. 2010, 19, 2901–2910. [Google Scholar]
- Rose, M.T.; Patti, A.F.; Little, K.R.; Brown, A.L.; Jackson, W.R.; Cavagnaro, T.R. A meta-analysis and review of plant-growth response to humic substances: Practical implications for agriculture. Adv. Agron. 2014, 124, 37–89. [Google Scholar] [CrossRef]
- Nargesi, M.M.; Sedaghathoor, S.; Hashemabadi, D. Effect of foliar application of amino acid, humic acid and fulvic acid on the oil content and quality of olive. Saudi J. Biol. Sci. 2022, 29, 3473–3481. [Google Scholar] [CrossRef]
- Fahramand, M.; Moradi, H.; Noori, M.; Sobhkhizi, A.; Adibian, M.; Abdollahi, S.; Rigi, K. Influence of humic acid on increase yield of plants and soil properties. Int. J. Farming Allied Sci. 2014, 3, 339–341. [Google Scholar]
- Canellas, L.P.; Olivares, F.L. Physiological responses to humic substances as plant growth promoter. Chem. Biol. Technol. Agric. 2014, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Zhang, L.; Zhou, L.; Mi, J.; McLaughlin, N.B.; Liu, J. Effect of synthetic and natural water absorbing soil amendments on soil microbiological parameters under potato production in a semi-arid region. J. Sci. Food Agric. 2016, 96, 1010–1017. [Google Scholar] [CrossRef]
- Nardi, S.; Schiavon, M.; Francioso, O. Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules 2021, 26, 2256. [Google Scholar] [CrossRef]
- Shah, Z.H.; Rehman, H.M.; Akhtar, T.; Alsamadany, H.; Hamooh, B.T.; Mujtaba, T.; Daur, I.; Al Zahrani, Y.; Alzahrani, H.A.; Ali, S. Humic substances: Determining potential molecular regulatory processes in plants. Front. Plant Sci. 2018, 9, 263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canellas, L.P.; Canellas, N.O.; Irineu, L.E.S.d.S.; Olivares, F.L.; Piccolo, A. Plant chemical priming by humic acids. Chem. Biol. Technol. Agric. 2020, 7, 12. [Google Scholar] [CrossRef]
- Laskosky, J.D.; Mante, A.A.; Zvomuya, F.; Amarakoon, I.; Leskiw, L. Geosciences; Environment. A bioassay of long-term stockpiled salvaged soil amended with biochar, peat, and humalite. Agrosyst. Geosci. Environ. 2020, 3, e20068. [Google Scholar] [CrossRef]
- Sible, C.N.; Seebauer, J.R.; Below, F.E.J.A. Plant biostimulants: A categorical review, their implications for row crop production, and relation to soil health indicators. Agronomy 2021, 11, 1297. [Google Scholar] [CrossRef]
- Taha, N.M.; El-Shahat, R. Influence of Azolla, Some Blue Green Algae Strains and Humic Acid on Soil, Growth, Productivity, Fruit Quality and Storability of “Canino” Apricot Cultivar Grown Under Clay Loamy Soil. J. Plant Prod. Sci. 2017, 8, 1–11. [Google Scholar] [CrossRef]
- Trevisan, S.; Botton, A.; Vaccaro, S.; Vezzaro, A.; Quaggiotti, S.; Nardi, S. Humic substances affect Arabidopsis physiology by altering the expression of genes involved in primary metabolism, growth and development. Environ. Exp. Bot. 2011, 74, 45–55. [Google Scholar] [CrossRef]
Depth (cm) | Texture | pH | Total CaCO3 (mg/L) | Electrical Conductivity (EC) (ds/m) | Organic Matter (O.M.) (%) | |
---|---|---|---|---|---|---|
0–60 | Sandy Loam | 8.0 | 38.35 | 2 | 1.36 | |
Cations (meq/100 g soil) | Anions (meq/100 g soil) | |||||
Na+ | K+ | Ca2+ | Mg2+ | HCO3− | Cl− | SO42− |
8.20 | 1.5 | 6.20 | 1.65 | 8.65 | 12.43 | 3.20 |
Treatments | Shoot Length (cm) | Shoot Thickness (mm) | Leaf Area (cm2) | Total Chlorophyll (SPAD) | |||||
---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | ||
Control | 37.13 f ± 1.58 | 40.33 f ± 1.99 | 0.95 f ± 0.02 | 1.02 f ± 0.02 | 20.42 g ± 1.46 | 21.32 e ± 0.92 | 36.27 e ± 1.89 | 37.50 g ± 0.99 | |
CA | 500 ppm | 39.21 ef ± 2.21 | 43.48 e ± 1.19 | 1.02 e ± 0.02 | 1.08 e ± 0.02 | 21.23 g ± 1.09 | 23.11 d ± 1.09 | 40.33 d ± 0.89 | 41.62 f ± 1.11 |
1000 ppm | 42.94 d ± 1.04 | 46.98 d ± 2.05 | 1.09 cd ± 0.03 | 1.16 cd ± 0.03 | 24.3 def ± 1.08 | 25.95 c ± 0.77 | 44.07 c ± 1.05 | 46.51 cd ± 1.10 | |
1500 ppm | 50.01 c ± 3.03 | 53.27 c ± 3.18 | 1.10 c ± 0.02 | 1.21 c ± 0.03 | 25.39 cde ± 0.80 | 26.75 c ± 1.15 | 46.89 b ± 1.34 | 47.60 c ± 1.22 | |
GA3 | 50 ppm | 42.39 de ± 1.25 | 44.12 de ± 0.28 | 1.04 e ± 0.01 | 1.11 e ± 0.02 | 22.24 fg ± 1.24 | 24.09 d ± 0.93 | 41.35 d ± 0.89 | 42.74 ef ± 1.83 |
100 ppm | 51.62 bc ± 1.91 | 56.11 b ± 1.88 | 1.19 b ± 0.04 | 1.29 b ± 0.04 | 26.14 bcd ± 1.42 | 27.5 c ± 0.65 | 47.49 b ± 0.81 | 50.24 b ± 1.28 | |
150 ppm | 54.52 ab ± 2.20 | 60.21 a ± 0.79 | 1.33 a ± 0.03 | 1.44 a ± 0.05 | 27.74 ab ± 0.96 | 29.88 b ± 0.54 | 48.17 ab ± 0.46 | 50.45 b ± 1.09 | |
HA | 3% | 42.93 d ± 1.7 | 45.46 de ± 0.95 | 1.04 de ± 0.01 | 1.13 de ± 0.03 | 23.51 ef ±1.27 | 24.17 d ± 0.55 | 42.12 cd ± 1.72 | 44.36 de ± 0.92 |
4% | 53.75 ab ± 1.55 | 57.37 b ± 1.06 | 1.24 b ± 0.01 | 1.32 b ± 0.02 | 26.68 bc ± 0.67 | 27.51 c ± 1.14 | 47.99 ab ± 1.07 | 50.40 b ± 2.07 | |
5% | 56.07 a ± 1.80 | 61.71 a ± 1.28 | 1.35 a ± 0.05 | 1.47 a ± 0.03 | 29.16 a ±1.57 | 32.50 a ± 0.70 | 49.97 a ± 1.16 | 53.38 a ± 0.94 | |
LSD (p ≤ 0.05) | 3.24 | 2.83 | 0.05 | 0.05 | 2.03 | 1.49 | 2.04 | 2.23 |
Treatments | Fruit Weight (g) | Fruit Size (cm3) | Fruit Length (cm) | Fruit Diameter (cm) | Fruit Firmness (Ib/inch2) | Fruit Shape Index (L/D) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | ||
Control | 132.69 f ± 2.58 | 137.17 f ± 2.76 | 112.25 f ± 1.45 | 115.57 g ± 2.16 | 7.41 g ± 0.09 | 7.54 g ± 0.05 | 5.09 e ± 0.03 | 5.13 d ± 0.02 | 14.17 c ± 0.66 | 15.17 d ± 0.7 | 1.45 d ± 0.01 | 1.47 b ± 0.01 | |
CA | 500 ppm | 140.75 e 1.26 | 144.21 e ± 1.87 | 120.61 e ± 3.13 | 122.38 f ± 1.88 | 7.73 f 0.03 | 7.75 f ± 0.09 | 5.20 de ± 0.05 | 5.28 cd ± 0.03 | 15.80 b ± 0.26 | 16.00 c ± 0.2 | 1.48 d ± 0.01 | 1.47 b ± 0.01 |
1000 ppm | 148.38 d ± 2.38 | 161.37 d ± 1.03 | 128.86 d ± 2.97 | 138.53 d ± 2.26 | 8.30 e 0.04 | 8.52 d ± 0.09 | 5.33 cd ± 0.04 | 5.36 cd ± 0.01 | 16.00 b ± 0.53 | 16.40 c ± 0.5 | 1.56 c ± 0.02 | 1.59 ab ± 0.01 | |
1500 ppm | 150.70 d ± 4.08 | 164.51 d ± 3.24 | 132.07 d ± 3.07 | 145.49 c ± 2.10 | 8.68 d ± 0.15 | 8.87 c ± 0.12 | 5.37 c 0.05 | 5.42 b–d ± 0.02 | 16.17 b ± 0.55 | 16.40 c ± 0.5 | 1.61 ab ± 0.02 | 1.63 a ± 0.02 | |
GA3 | 50 ppm | 141.71 e ± 1.56 | 146.03 e ± 2.02 | 121.82 e ± 3.58 | 127.18 e ± 2.37 | 7.73 f ± 0.09 | 7.82 ef ± 0.01 | 5.31 cd ± 0.05 | 5.31 cd ± 0.03 | 15.87 b ± 0.85 | 17.40 b ± 0.1 | 1.47 d ± 0.02 | 1.49 ab ± 0.01 |
100 ppm | 159.38 c ± 3.69 | 173.01 c ± 4.04 | 140.23 c ± 4.31 | 154.13 b ± 4.06 | 8.97 c ± 0.10 | 9.10 b ± 0.02 | 5.50 b ± 0.05 | 5.53 b–d ± 0.03 | 17.30 a ± 0.1 | 17.40 b ± 0.9 | 1.63 a 0.02 | 1.65 a 0.01 | |
150 ppm | 174.17 b ± 3.03 | 177.64 b ± 2.59 | 154.76 b ± 1.64 | 157.39 b ± 1.26 | 9.17 b ± 0.09 | 9.23 b ± 0.11 | 5.78 a ± 0.10 | 6.04 ab ± 0.04 | 17.50 a ± 0.17 | 17.40 b ± 0.2 | 1.59 bc ± 0.02 | 1.53 ab ± 0.2 | |
HA | 3% | 141.72 e ± 2.90 | 147.48 e ± 2.49 | 122.34 e ± 1.94 | 127.48 e ± 2.49 | 7.81 f ± 0.06 | 7.94 e ± 0.10 | 5.27 cd ± 0.03 | 5.33 cd ± 0.02 | 15.87 b ± 0.58 | 16.40 c ± 0.7 | 1.46 d ± 0.01 | 1.48 b ± 0.02 |
4% | 172.95 b ±2.26 | 176.23 bc ± 0.97 | 153.43 b ± 4.04 | 156.54 b ± 1.04 | 9.03 bc ± 0.04 | 9.13 b ± 0.02 | 5.62 b ± 0.03 | 5.83 a-c ± 0.09 | 17.33 a ± 0.15 | 17.93 ab ± 0.4 | 1.61 ab ± 0.03 | 1.57 ab ± 0.02 | |
5% | 182.14 a ± 3.58 | 186.07 a ± 2.46 | 163.48 a ± 2.64 | 165.94 a ± 3.00 | 9.32 a ± 0.02 | 9.49 a ± 0.15 | 5.90 a ± 0.15 | 6.32 a ± 1.11 | 17.87 a ± 0.94 | 18.73 a ± 0.2 | 1.58 bc ± 0.04 | 1.53 ab ± 0.02 | |
LSD (p ≤ 0.05) | 4.88 | 4.28 | 5.15 | 4.09 | 0.14 | 0.15 | 0.12 | 0.6 | 0.95 | 0.86 | 0.04 | 0.14 |
Treatments | TSS % | Total Sugars % | Acidity % | TSS/Acid Ratio | Reduced Sugars % | Non-Reduced Sugars % | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | ||
Control | 10.70 f ± 0.62 | 10.93 f ± 0.11 | 7.68 f ± 0.03 | 7.73 d ± 0.04 | 0.64 a ± 0.06 | 0.62 a ± 0.02 | 16.84 f ± 2.11 | 17.56 f ± 0.73 | 4.66 c ± 0.08 | 4.71 b ± 0.10 | 3.02 d ± 0.09 | 3.02 e ± 0.06 | |
CA | 500 ppm | 11.33 e ± 0.35 | 11.70 e ± 0.26 | 7.80 e ± 0.03 | 8.00 c ± 0.2 | 0.63 a ± 0.03 | 0.61 a ± 0.04 | 18.00 ef ± 0.34 | 19.22 ef ± 0.94 | 4.75 bc ± 0.12 | 4.83 b ± 0.17 | 3.05 cd ± 0.1 | 3.17 c–e ± 0.03 |
1000 ppm | 11.90 cd ± 0.46 | 12.17 de 0.35 | 7.94 cd ± 0.08 | 8.08 c ± 0.02 | 0.53 c ± 0.03 | 0.50 bc ± 0.02 | 22.49 cd ± 1.41 | 24.19 cd ± 0.53 | 4.84 bc ± 0.11 | 4.92 b ± 0.07 | 3.10 b–d ± 0.07 | 3.12 de ± 0.05 | |
1500 ppm | 11.93 cd ± 0.23 | 12.23 de ± 0.25 | 7.95 cd ± 0.01 | 8.10 bc ± 0.1 | 0.52 c ± 0.04 | 0.49 bc ± 0.04 | 23.03 cd ±1.43 | 24.89 c ±1.69 | 4.8 bc ± 0.13 | 4.87 b ± 0.10 | 3.15 a–d ± 0.13 | 3.21 b–d ± 0.13 | |
GA3 | 50 ppm | 11.40 de ± 0.1 | 11.83 de ± 0.49 | 7.87 de ± 0.11 | 8.02 c ± 0.09 | 0.6 ab ± 0.03 | 0.58 a ± 0.02 | 19.02 ef ± 0.71 | 20.40 e ± 0.50 | 4.73 bc ± 0.17 | 4.92 b ± 0.09 | 3.14 a–d ± 0.16 | 3.18 cd ± 0.06 |
100 ppm | 12.03 c ± 0.06 | 12.40 cd 0.2 | 7.97 cd 0.04 | 8.11 bc 0.03 | 0.51 c ± 0.02 | 0.48 b–d ± 0.04 | 23.62 bc ± 0.83 | 25.97 bc ± 2.23 | 4.77 bc ± 0.07 | 4.83 b ± 0.17 | 3.20 a–c ± 0.09 | 3.29 a–d ± 0.14 | |
150 ppm | 13.10 b ± 0.1 | 13.23 ab 0.06 | 8.11 b 0.05 | 8.26 b 0.09 | 0.51 c ± 0.04 | 0.44 de ± 0.01 | 25.80 ab ± 1.93 | 30.33 a ± 0.98 | 4.88 b ± 0.07 | 4.89 b ± 0.15 | 3.23 ab ± 0.02 | 3.36 ab ± 0.07 | |
HA | 3% | 11.43 de ± 0.06 | 11.93 de ± 0.42 | 7.87 de ± 0.03 | 8.04 c ± 0.04 | 0.56 bc ± 0.05 | 0.53 b ± 0.03 | 20.64 de ± 1.75 | 22.54 d 1.06 | 4.85 bc ± 0.05 | 4.86 b ±0.09 | 3.02 d ± 0.06 | 3.16 de ± 0.05 |
4% | 12.43 c ± 0.21 | 12.83 bc ± 0.58 | 8.01 c ± 0.04 | 8.15 bc ± 0.01 | 0.51 c ± 0.04 | 0.46 c–e 0.006 | 24.49 a–c ± 1.99 | 27.70 b ± 1.42 | 4.78 bc ± 0.02 | 4.83 b ± 0.09 | 3.23 ab ± 0.05 | 3.33 a–c ± 0.09 | |
5% | 13.63 a ± 0.15 | 13.80 a ± 0.2 | 8.48 a ± 0.05 | 8.66 a ± 0.04 | 0.5 c ± 0.02 | 0.43 e ± 0.01 | 27.12 a ± 1.19 | 32.35 a ± 0.52 | 5.17 a ± 0.10 | 5.23 a ± 0.06 | 3.31 a ± 0.05 | 3.42 a ± 0.10 | |
LSD (p ≤ 0.05) | 0.5 | 0.57 | 0.09 | 0.15 | 0.06 | 0.05 | 2.52 | 2.03 | 0.17 | 0.20 | 0.16 | 0.15 |
Treatments | N % | P % | K % | Fe ppm | Zn ppm | Mn ppm | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | 2020 | 2021 | ||
Control | 1.69 g ± 0.06 | 1.80 g ± 0.05 | 0.27 c ± 0.02 | 0.31 f ± 0.02 | 1.24 g ± 0.03 | 1.28 d ± 0.03 | 0.31 g ± 0.01 | 0.34 g 0.01 | 0.24 e ± 0.02 | 0.28 e ± 0.03 | 0.33 f ± 0.02 | 0.35 h ± 0.02 | |
CA | 500 ppm | 1.8 f ± 0.01 | 1.93 f ± 0.03 | 0.34 b ± 0.02 | 0.35 e ± 0.01 | 1.30 f ± 0.02 | 1.36 c ± 0.05 | 0.38 f ± 0.02 | 0.42 f ± 0.01 | 0.28 d ± 0.02 | 0.32 d ± 0.02 | 0.34 f ± 0.01 | 0.38 g ± 0.03 |
1000 ppm | 1.85 f ± 0.03 | 2.03 e ± 0.03 | 0.35 ab ± 0.02 | 0.37 c–e ± 0.01 | 1.38 de ± 0.03 | 1.40 c ± 0.02 | 0.50 d ± 0.02 | 0.54 d ± 0.01 | 0.32 cd ± 0.03 | 0.35 cd ± 0.03 | 0.42 d ± 0.01 | 0.46 e ± 0.02 | |
1500 ppm | 1.98 e ± 0.03 | 2.04 e ± 0.04 | 0.37 ab ± 0.02 | 0.38 b–d ± 0.01 | 1.40 d ± 0.03 | 1.42 c ± 0.02 | 0.62 c ± 0.01 | 0.67 c ± 0.02 | 0.34 c ± 0.03 | 0.44 b 0.02 | 0.45 c ± 0.01 | 0.49 d ± 0.03 | |
GA3 | 50 ppm | 1.81 f ± 0.05 | 1.93 f ± 0.04 | 0.34 b ± 0.02 | 0.36 de ± 0.02 | 1.32 f ± 0.04 | 1.37 c ± 0.02 | 0.41 f ± 0.01 | 0.43 f ± 0.01 | 0.30 cd ± 0.02 | 0.35 cd ± 0.02 | 0.37 e ± 0.02 | 0.42 f ± 0.03 |
100 ppm | 2.11 d ± 0.04 | 2.17 d ± 0.03 | 0.37 ab ± 0.02 | 0.39 bc ± 0.01 | 1.46 c ± 0.04 | 1.51 b ± 0.04 | 0.64 c ± 0.01 | 0.68 c ± 0.01 | 0.40 b ± 0.02 | 0.37 c 0.03 | 0.48 c ± 0.01 | 0.53 c ± 0.02 | |
150 pm | 2.43 b ± 0.03 | 2.50 b ± 0.03 | 0.38 a ± 0.01 | 0.40 ab ± 0.01 | 1.61 b ± 0.04 | 1.54 b ± 0.04 | 0.93 a ± 0.04 | 1.00 a ± 0.04 | 0.45 a ± 0.02 | 0.49 a ± 0.02 | 0.59 b ± 0.02 | 0.64 b ± 0.02 | |
HA | 3% | 1.85 f ± 0.03 | 1.94 f ± 0.02 | 0.35 ab ± 0.01 | 0.37 c–e ± 0.01 | 1.34 ef ± 0.02 | 1.40 c ± 0.04 | 0.46 e ± 0.01 | 0.50 e ± 0.01 | 0.31 cd ± 0.03 | 0.37 c ± 0.03 | 0.40 de ± 0.01 | 0.44 e ± 0.02 |
4% | 2.2 c ± 0.03 | 2.25 c ± 0.02 | 0.37 ab ± 0.03 | 0.39 bc ± 0.01 | 1.50 c ± 0.01 | 1.52 b ± 0.04 | 0.77 b ± 0.02 | 0.82 b ± 0.02 | 0.40 b ± 0.02 | 0.45 b ± 0.02 | 0.49 c ± 0.01 | 0.55 c ± 0.02 | |
5% | 2.53 a ± 0.03 | 2.57 a ± 0.03 | 0.39 a ± 0.02 | 0.42 a ± 0.02 | 1.89 a ± 0.01 | 1.92 a ± 0.04 | 0.96 a ± 0.03 | 1.03 a ± 0.03 | 0.46 a ± 0.01 | 0.51 a ± 0.01 | 0.65 a ± 0.04 | 0.69 a ± 0.01 | |
LSD (p ≤ 0.05) | 0.06 | 0.06 | 0.03 | 0.02 | 0.05 | 0.07 | 0.04 | 0.03 | 0.04 | 0.03 | 0.03 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosa, W.F.A.; Abd EL-Megeed, N.A.; Ali, M.M.; Abada, H.S.; Ali, H.M.; Siddiqui, M.H.; Sas-Paszt, L. Preharvest Foliar Applications of Citric Acid, Gibberellic Acid and Humic Acid Improve Growth and Fruit Quality of ‘Le Conte’ Pear (Pyrus communis L.). Horticulturae 2022, 8, 507. https://doi.org/10.3390/horticulturae8060507
Mosa WFA, Abd EL-Megeed NA, Ali MM, Abada HS, Ali HM, Siddiqui MH, Sas-Paszt L. Preharvest Foliar Applications of Citric Acid, Gibberellic Acid and Humic Acid Improve Growth and Fruit Quality of ‘Le Conte’ Pear (Pyrus communis L.). Horticulturae. 2022; 8(6):507. https://doi.org/10.3390/horticulturae8060507
Chicago/Turabian StyleMosa, Walid F. A., Nagwa A. Abd EL-Megeed, Muhammad Moaaz Ali, Hesham S. Abada, Hayssam M. Ali, Manzer H. Siddiqui, and Lidia Sas-Paszt. 2022. "Preharvest Foliar Applications of Citric Acid, Gibberellic Acid and Humic Acid Improve Growth and Fruit Quality of ‘Le Conte’ Pear (Pyrus communis L.)" Horticulturae 8, no. 6: 507. https://doi.org/10.3390/horticulturae8060507
APA StyleMosa, W. F. A., Abd EL-Megeed, N. A., Ali, M. M., Abada, H. S., Ali, H. M., Siddiqui, M. H., & Sas-Paszt, L. (2022). Preharvest Foliar Applications of Citric Acid, Gibberellic Acid and Humic Acid Improve Growth and Fruit Quality of ‘Le Conte’ Pear (Pyrus communis L.). Horticulturae, 8(6), 507. https://doi.org/10.3390/horticulturae8060507