A Novel Approach to the Authentication of Apricot Seed Cultivars Using Innovative Models Based on Image Texture Parameters
Abstract
:1. Introduction
- (1)
- Among the features of the external structure of apricot seeds, there are parameters that depend on the cultivar.
- (2)
- The application of selected image features combined with machine learning algorithms enables us to build discriminative models that can distinguish between seed samples belonging to different apricot cultivars.
2. Materials and Methods
2.1. Materials
2.2. Image Analysis
2.3. Classification
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galanakis, C.M. Valorization of Fruit Processing By-Products; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Hassan-Beygi, S.R. Some physico-mechanical properties of apricot fruit, pit and kernel of ordubad variety. Agric. Eng. Int. CIGR J. 2009, 11, 1459. [Google Scholar]
- Rampáčková, E.; Göttingerová, M.; Gála, P.; Kiss, T.; Ercişli, S.; Nečas, T. Evaluation of Protein and Antioxidant Content in Apricot Kernels as a Sustainable Additional Source of Nutrition. Sustainability 2021, 13, 4742. [Google Scholar] [CrossRef]
- Uzundumlu, A.S.; Karabacak, T.; Ali, A. Apricot production forecast of the leading countries in the period of 2018–2025. Emir. J. Food Agric. 2021, 33, 682–690. [Google Scholar]
- Hayta, M.; Alpaslan, M. Apricot kernel flour and its use in maintaining health. In Flour and Breads and Their Fortification in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2011; pp. 213–221. [Google Scholar]
- Boumali, N.E.I.; Mamine, F.; Montaigne, E.; Arbouche, F. Drivers and Barriers for the Valorization of the Apricot Pit. Int. J. Fruit Sci. 2021, 21, 158–179. [Google Scholar] [CrossRef]
- Gezer, I.; Haciseferoğulları, H.; Demir, F. Some physical properties of Hacıhaliloğlu apricot pit and its kernel. J. Food Eng. 2003, 56, 49–57. [Google Scholar] [CrossRef]
- Gezer, I.; Hacıseferoğulları, H.; Özcan, M.M.; Arslan, D.; Asma, B.M.; Ünver, A. Physico-chemical properties of apricot (Prunus armeniaca L.) kernels. South West. J. Hortic. Biol. Environ. 2011, 2, 1–13. [Google Scholar]
- Yigit, D.; Yigit, N.; Mavi, A. Antioxidant and antimicrobial activities of bitter and sweet apricot (Prunus armeniaca L.) kernels. Braz. J. Med. Biol. Res. 2009, 42, 346–352. [Google Scholar] [CrossRef] [Green Version]
- Parpinello, G.P.; Fabbri, A.; Domenichelli, S.; Mesisca, V.; Cavicchi, L.; Versari, A. Discrimination of apricot cultivars by gas multisensor array using an artificial neural network. Biosyst. Eng. 2007, 97, 371–378. [Google Scholar] [CrossRef]
- Takeda, T.; Shimada, T.; Nomura, K.; Ozaki, T.; Haji, T.; Yamaguchi, M.; Yoshida, M. Classification of apricot varieties by RAPD analysis. J. Jpn. Soc. Hortic. Sci. 1998, 67, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Fathizadeh, Z.; Aboonajmi, M.; Hassan-Beygi, S.R. Nondestructive methods for determining the firmness of apple fruit flesh. Inf. Processing Agric. 2021, 8, 515–527. [Google Scholar] [CrossRef]
- Abbaspour-Gilandeh, Y.; Azizi, A. Identification of Cracks in Eggs Shell Using Computer Vision and Hough Transform. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 2018, 28, 375–383. [Google Scholar] [CrossRef] [Green Version]
- Ropelewska, E.; Jankowski, K.J. Classification of the seeds of traditional and double-low cultivars of white mustard based on texture features. J. Food Process Eng. 2019, 42, 13077. [Google Scholar] [CrossRef]
- Sabanci, K.; Aslan, M.F.; Ropelewska, E.; Unlersen, M.F. A convolutional neural network-based comparative study for pepper seed classification: Analysis of selected deep features with support vector machine. J. Food Process Eng. 2021, e13955. [Google Scholar] [CrossRef]
- Ropelewska, E. The use of seed texture features for discriminating different cultivars of stored apples. J. Stored Prod. Res. 2020, 88, 101668. [Google Scholar] [CrossRef]
- Naik, S.; Patel, B. Machine vision based fruit classification and grading-a review. Int. J. Comput. Appl. 2017, 170, 22–34. [Google Scholar] [CrossRef]
- Pérez, D.S.; Bromberg, F.; Diaz, C.A. Image classification for detection of winter grapevine buds in natural conditions using scale-invariant features transform, bag of features and support vector machines. Comput. Electron. Agric. 2017, 135, 81–95. [Google Scholar] [CrossRef]
- Capizzi, G.; Lo Sciuto, G.; Napoli, C.; Tramontana, E.; Woźniak, M. A Novel Neural Networks-Based Texture Image Processing Algorithm for Orange Defects Classification. Int. J. Comput. Sci. Appl. 2016, 13, 45–60. [Google Scholar]
- Jana, S.; Parekh, R. Intra-class recognition of fruits using color and texture features with neural classifiers. Int. J. Comput. Appl. 2016, 148, 1–6. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, R.; Zhai, Z.; Pang, Y.; Jin, Z. Machine learning for cultivar classification of apricots (Prunus armeniaca L.) based on shape features. Sci. Hortic. 2019, 256, 108524. [Google Scholar] [CrossRef]
- Ropelewska, E.; Rutkowski, K.P. Differentiation of peach cultivars by image analysis based on the skin, flesh, stone and seed textures. Eur. Food Res. Technol. 2021, 247, 2371–2377. [Google Scholar] [CrossRef]
- Ropelewska, E.; Szwejda-Grzybowska, J. A comparative analysis of the discrimination of pepper (Capsicum annuum L.) based on the cross-section and seed textures determined using image processing. J. Food Process Eng. 2021, 44, 13694. [Google Scholar] [CrossRef]
- Ropelewska, E. The application of machine learning for cultivar discrimination of sweet cherry endocarp. Agriculture 2021, 11, 6. [Google Scholar] [CrossRef]
- Ropelewska, E. Classification of the pits of different sour cherry cultivars based on the surface textural features. J. Saudi Soc. Agric. Sci. 2021, 20, 52–57. [Google Scholar] [CrossRef]
- Pourreza, A.; Pourreza, H.; Abbaspour-Fard, M.H.; Sadrnia, H. Identification of nine Iranian wheat seed varieties by textural analysis with image processing. Comput. Electron. Agric. 2012, 83, 102–108. [Google Scholar] [CrossRef]
- Szczypiński, P.M.; Strzelecki, M.; Materka, A.; Klepaczko, A. MaZda—A software package for image texture analysis. Comput. Methods Programs Biomed. 2009, 94, 66–76. [Google Scholar] [CrossRef]
- Bouckaert, R.R.; Frank, E.; Hall, M.; Kirkby, R.; Reutemann, P.; Seewald, A.; Scuse, D. WEKA Manual for Version 3-9-1; University of Waikato: Hamilton, New Zealand, 2016. [Google Scholar]
- Ropelewska, E. Classification of wheat kernels infected with fungi of the genus Fusarium using discriminative classifiers and neural networks. Chil. J. Agric. Res. 2019, 79, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Ropelewska, E.; Zapotocznym, P. Classification of Fusarium-infected and healthy wheat kernels based on features from hyperspectral images and flatbed scanner images: A comparative analysis. Eur. Food Res. Technol. 2018, 244, 1453–1462. [Google Scholar] [CrossRef] [Green Version]
- Ropelewska, E. The application of computer image analysis based on textural features for the identification of barley kernels infected with fungi of the genus Fusarium. Agric. Eng. 2018, 22, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Witten, I.H.; Frank, E. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations; Morgan Kaufmann: Burlington, MA, USA, 2000. [Google Scholar]
- Mirnezami, S.V.; HamidiSepehr, A.; Ghaebi, M.; Hassan-Beygi, S.R. Apricot variety classification using image processing and machine learning approaches. In Proceedings of the 2020 4th International Conference on Vision, Image and Signal Processing, Bangkok, Thailand, 9–11 December 2020; pp. 1–6. [Google Scholar]
- Khojastehnazhand, M.; Mohammadi, V.; Minaei, S. Maturity detection and volume estimation of apricot using image processing technique. Sci. Hortic. 2019, 251, 247–251. [Google Scholar] [CrossRef]
- Faqeerzada, M.A.; Perez, M.; Lohumi, S.; Lee, H.; Kim, G.; Wakholi, C.; Joshi, R.; Cho, B.K. Online application of a hyperspectral imaging system for the sorting of adulterated almonds. Appl. Sci. 2020, 10, 6569. [Google Scholar] [CrossRef]
- Shahinfar, S.; Meek, P.D.; Falzon, G. “How many images do I need?” Understanding how sample size per class affects deep learning model performance metrics for balanced designs in autonomous wildlife monitoring. Ecol. Inform. 2020, 57, 101085. [Google Scholar] [CrossRef]
Classifier | Color Channel | Accuracy for Cultivar (%) | Average Accuracy (%) | |||
---|---|---|---|---|---|---|
Taja | Early Orange | Bella | Harcot | |||
Lazy.IBk | R | 82 | 59 | 52 | 80 | 68 |
G | 76 | 96 | 89 | 83 | 86 | |
B | 71 | 93 | 93 | 83 | 85 | |
L | 71 | 83 | 85 | 77 | 79 | |
a | 86 | 79 | 70 | 80 | 79 | |
b | 93 | 86 | 81 | 90 | 88 | |
X | 82 | 96 | 89 | 87 | 89 | |
Y | 76 | 96 | 85 | 87 | 86 | |
Z | 71 | 93 | 81 | 87 | 83 | |
Functions. Multilayer Perceptron | R | 82 | 59 | 56 | 70 | 67 |
G | 75 | 90 | 74 | 83 | 81 | |
B | 75 | 90 | 89 | 87 | 85 | |
L | 71 | 79 | 81 | 80 | 78 | |
a | 93 | 86 | 74 | 70 | 81 | |
b | 89 | 86 | 96 | 93 | 91 | |
X | 82 | 93 | 74 | 80 | 82 | |
Y | 79 | 93 | 81 | 83 | 84 | |
Z | 79 | 90 | 85 | 87 | 85 | |
Trees. Random Forest | R | 86 | 62 | 56 | 63 | 67 |
G | 82 | 90 | 74 | 87 | 83 | |
B | 79 | 90 | 78 | 83 | 83 | |
L | 86 | 90 | 85 | 67 | 82 | |
a | 89 | 79 | 59 | 80 | 77 | |
b | 89 | 90 | 85 | 87 | 88 | |
X | 86 | 86 | 81 | 80 | 83 | |
Y | 86 | 90 | 70 | 80 | 82 | |
Z | 71 | 86 | 78 | 83 | 80 |
Classifier | Color Space | Accuracy for Cultivar (%) | Average Accuracy (%) | |||
---|---|---|---|---|---|---|
Taja | Early Orange | Bella | Harcot | |||
Lazy.IBk | RGB | 68 | 100 | 85 | 90 | 86 |
Lab | 96 | 93 | 93 | 97 | 95 | |
XYZ | 71 | 93 | 81 | 77 | 81 | |
Functions. Multilayer Perceptron | RGB | 76 | 96 | 96 | 90 | 90 |
Lab | 96 | 100 | 100 | 100 | 99 | |
XYZ | 82 | 86 | 89 | 87 | 86 | |
Trees. Random Forest | RGB | 79 | 93 | 89 | 90 | 88 |
Lab | 93 | 96 | 89 | 87 | 91 | |
XYZ | 89 | 79 | 85 | 87 | 85 |
Classifier | Accuracy for Cultivar (%) | Average Accuracy (%) | |||
---|---|---|---|---|---|
Taja | Early Orange | Bella | Harcot | ||
Lazy.IBk | 89 | 93 | 96 | 90 | 92 |
Functions. Multilayer Perceptron | 93 | 96 | 100 | 93 | 96 |
Trees. Random Forest | 93 | 96 | 96 | 97 | 96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ropelewska, E.; Sabanci, K.; Aslan, M.F.; Azizi, A. A Novel Approach to the Authentication of Apricot Seed Cultivars Using Innovative Models Based on Image Texture Parameters. Horticulturae 2022, 8, 431. https://doi.org/10.3390/horticulturae8050431
Ropelewska E, Sabanci K, Aslan MF, Azizi A. A Novel Approach to the Authentication of Apricot Seed Cultivars Using Innovative Models Based on Image Texture Parameters. Horticulturae. 2022; 8(5):431. https://doi.org/10.3390/horticulturae8050431
Chicago/Turabian StyleRopelewska, Ewa, Kadir Sabanci, Muhammet Fatih Aslan, and Afshin Azizi. 2022. "A Novel Approach to the Authentication of Apricot Seed Cultivars Using Innovative Models Based on Image Texture Parameters" Horticulturae 8, no. 5: 431. https://doi.org/10.3390/horticulturae8050431
APA StyleRopelewska, E., Sabanci, K., Aslan, M. F., & Azizi, A. (2022). A Novel Approach to the Authentication of Apricot Seed Cultivars Using Innovative Models Based on Image Texture Parameters. Horticulturae, 8(5), 431. https://doi.org/10.3390/horticulturae8050431