Biochemical Characterization of Six Traditional Olive Cultivars: A Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Evaluation of the Fruit’s Skin Color
2.3. Extraction and Quantification of Chlorophyll
2.4. Oil Extraction
2.5. Determination of Total Phenolic Compounds (TPC)
2.6. Determination of DPPH Scavenging Activity
- Acontrol: the absorbance of control
- Asample: the absorbance of the sample
2.7. Characterization of Fatty Acids and Volatile Compounds
2.7.1. Characterization of Fatty Acids by GC-FID
2.7.2. Characterization of Volatile Compounds by HS-SPME-GC-MS
2.8. Statistical Analysis
3. Results and Discussion
3.1. Measurement of Olive’s Skin Color
3.2. Chlorophyll Content of Olives
3.3. TPC and DPPH Scavenging Activity
3.4. Characterization of Fatty Acids
3.5. Characterization of Volatile Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Breton, C.; Medail, F.; Pinatel, C.; Berville, A. From olive tree to oleaster: Origin and domestication of Olea europaea L. in the Mediterranean basin. Cah. Agric. 2006, 15, 329–336. [Google Scholar]
- Ben Ayed, R.; Ben Hassen, H.; Ennouri, K.; Ben Marzoug, R.; Rebai, A. OGDD (Olive Genetic Diversity Database): A microsatellite markers’ genotypes database of worldwide olive trees for cultivar identification and virgin olive oil traceability. Database 2016, 2016, bav090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Agriculture Organization of the United Nations. FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC/ (accessed on 15 January 2022).
- Ozturk, M.; Altay, V.; Gönenç, T.M.; Unal, B.T.; Ef, R.; Akçiçek, E.; Bukhari, A. An Overview of Olive Cultivation in Turkey: Botanical Features, Eco-Physiology and Phytochemical Aspects. Agronomy 2021, 11, 295. [Google Scholar] [CrossRef]
- Lastra, C.; Barranco, M.D.; Motilva, V.; Herrerias, J.M. Mediterrranean diet and health biological importance of olive oil. Curr. Pharm. Des. 2001, 7, 933–950. [Google Scholar] [CrossRef] [Green Version]
- IOOC. International Olive Oil Council. Available online: https://www.internationaloliveoil.org/ (accessed on 15 June 2020).
- Clodoveo, M.L.; Crupi, P.; Corbo, F. OLIVE SOUND: A sustainable radical innovation. Processes 2021, 9, 1579. [Google Scholar] [CrossRef]
- Ayton, J.; Mailer, R.J.; Robards, K. Changes in oil content and composition of developing olives in a selection of Australian cultivars. Aust. J. Exp. Agric. 2001, 41, 815–821. [Google Scholar] [CrossRef]
- Cândido, F.G.; Valente, F.X.; da Silva, L.E.; Coelho, O.G.L.; Peluzio, M.D.C.G.; Alfenas, R.D.C.G. Consumption of extra virgin olive oil improves body composition and blood pressure in women with excess body fat: A randomized double-blinded placebo-controlled clinical trial. Eur. J. Nutr. 2018, 57, 2445–2455. [Google Scholar] [CrossRef]
- Altuntaş, S.C.; Temiz Dinç, D.; Gökmen, A. The Relationship between Turkey’s Olive Oil Export Income and Economic Growth Figures: Olive Oil Sector Problems and Solutions Proposals in Turkey. Master’s Thesis, Çankaya University, Ankara, Turkey, 2018. [Google Scholar]
- Hettihewa, S.K.; Hemar, Y.; Rupasinghe, H.P.V. Flavonoid-rich extract of Actinidia macrosperma (A wild kiwifruit) inhibits angiotensin-converting enzyme in vitro. Foods 2018, 7, 146. [Google Scholar] [CrossRef] [Green Version]
- Vinha, A.F.; Ferreres, F.; Silva, B.M.; Valentão, P.; Gonçalves, A.; Pereira, J.A.; Oliveira, M.B.; Seabra, R.M.; Andrade, P.B. Phenolic profiles of Portuguese olive fruits (Olea europaea L.): Influences of cultivar and geographical origin. Food Chem. 2005, 89, 561–568. [Google Scholar] [CrossRef]
- Hashmi, M.A.; Khan, A.; Hanif, M.; Farooq, U.; Perveen, S. Traditional uses, phytochemistry, and pharmacology of Olea europaea (olive). Evid.-Based Complementary Altern. Med. 2015, 2015, 541591. [Google Scholar] [CrossRef] [Green Version]
- Gouvinhas, I.; Machado, N.; Sobreira, C.; Domínguez-Perles, R.; Gomes, S.; Rosa, E.; Barros, A.I.R.N.A. Critical review on the significance of olive phytochemicals in plant physiology and human health. Molecules 2017, 22, 1986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, S.; Carvalho, J.; Trujillo, I.; Prado, M. Microsatellite markers in olives (Olea europaea L.): Utility in the cataloging of germplasm food authenticity and traceability studies. Foods 2021, 10, 1907. [Google Scholar] [CrossRef] [PubMed]
- Ben Ayed, R.; Moreau, F.; Ben Hlima, H.; Rebai, A.; Ercisli, S.; Kadoo, N.; Hanana, M.; Assouguem, A.; Ullah, R.; Ali, E.A. SNP discovery and structural insights into OeFAD2 unravelling high oleic/linoleic ratio in olive oil. Comput. Struct. Biotechnol. J. 2022, 20, 1229–1243. [Google Scholar] [CrossRef] [PubMed]
- Ganino, T.; Bartolini, G.; Fabbri, A. The classification of olive germplasm. J. Hortic. Sci. Biotechnol. 2006, 81, 319–334. [Google Scholar] [CrossRef]
- Muzzalupo, I.; Vendramin, G.G.; Chiappetta, A. Genetic biodiversity of Italian olives (Olea europaea) germplasm analyzed by SSR markers. Sci. World J. 2014, 2014, 296590. [Google Scholar] [CrossRef] [Green Version]
- Olmo-García, L.; Kessler, N.; Neuweger, H.; Wendt, K.; Olmo-Peinado, J.M.; Fernández-Gutiérrez, A.; Baessmann, C.; Carrasco Pancorbo, A. Unravelling the distribution of secondary metabolites in Olea europaea L.: Exhaustive characterization of eight olive tree derived matrices by complementary platforms (LC-ESI/APCI-MS and GC-APCI-MS). Molecules 2018, 23, 2419. [Google Scholar] [CrossRef] [Green Version]
- Esposito, A.; De Luca, P.F.; Graziani, V.; D’Abrosca, B.; Fiorentino, A.; Scognamiglio, M. Phytochemical characterization of Olea europaea L. cultivars of Cilento National Park (South Italy) through NMR-Based metabolomics. Molecules 2021, 26, 3845. [Google Scholar] [CrossRef]
- Servili, M.; Selvaggini, R.; Esposto, S.; Taticchi, A.; Montedoro, G.; Morozzi, G. Health and sensory properties of virgin olive oil hydrophilic phenols: Agronomic and technological aspects of production that affect their occurrence in the oil. J. Chromatogr. A 2004, 1054, 113–127. [Google Scholar] [CrossRef]
- Clodoveo, M.L.; Crupi, P.; Annunziato, A.; Corbo, F. Innovative extraction technologies for development of functional ingredients based on polyphenols from olive leaves. Foods 2021, 11, 103. [Google Scholar] [CrossRef]
- Suzuki, D.; Sato, Y.; Mori, A.; Tamura, H. A method for gaining a deeper insight into the aroma profile of olive oil. Sci. Food 2021, 5, 16. [Google Scholar] [CrossRef]
- Pham, M.A.; Byun, H.G.; Kim, K.D.; Lee, S.M. Effects of dietary carotenoid source and level on growth skin pigmentation, antioxidant activity and chemical composition of juvenile olive flounder Paralichthys olivaceus. Aquaculture 2014, 431, 65–72. [Google Scholar] [CrossRef]
- Criado, M.N.; Motilva, M.J.; Goni, M.; Romero, M.P. Comparative study of the effect of the maturation process of the olive fruit on the chlorophyll and carotenoid fractions of drupes and virgin oils from Arbequina and Farga cultivars. Food Chem. 2007, 100, 748–755. [Google Scholar] [CrossRef]
- Ghosh, P.; Das, P.; Mukherjee, R.; Banik, S.; Karmakar, S.; Chatterjee, S. Extraction and quantification of pigments from Indian traditional medicinal plants: A comparative study between tree shrub and herb. Int. J. Pharm. Sci. Res. 2018, 9, 3052–3059. [Google Scholar]
- Gutiérrez, F.; Jímenez, B.; Ruíz, A.; Albi, M.A. Effect of olive ripeness on the oxidative stability of virgin olive oil extracted from the varieties Picual and Hojiblanca and on the different components involved. J. Agric. Food Chem. 1999, 47, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Corrado, G.; La Mura, M.; Ambrosino, O.; Pugliano, G.; Varricchio, P.; Rao, R. Relationships of Campanian olive cultivars: Comparative analysis of molecular and phenotypic data. Genome 2009, 52, 692–700. [Google Scholar] [CrossRef] [Green Version]
- Sakar, E.; Unver, H.; Ulas, M.; Lazovic, B.; Ercisli, S. Genetic Diversity and Relationships among Local Olive (Olea europeaea L.) Genotypes from Gaziantep Province and Notable Cultivars in Turkey, Based on SSR Markers. Not. Bot. Horti Agrobot. Cluj-Napoca 2016, 44, 557–562. [Google Scholar] [CrossRef] [Green Version]
- Cherubini, C.; Migliorini, M.; Mugelli, M.; Viti, P.; Berti, A.; Cini, E.; Zanoni, B. Towards a technological ripening index for olive oil fruits. J. Sci. Food Agric. 2009, 89, 671–682. [Google Scholar] [CrossRef]
- Agar, I.T.; Kafkas, S.; Kaska, N. Variation in kernel chlorophyll content of different pistachio varieties grown in six countries. Acta Hortic. 1997, 470, 372–377. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis of the AOAC, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Spanos, G.A.; Wrolstad, R.E. Influence of processing and storage on the phenolic composition of Thompson seedless grape juice. J. Agric. Food Chem. 1990, 38, 1565–1571. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Kumcuoğlu, S.; Tavman, Ş.; Yıldırım, C.; Çetin, D. Yeşil Zeytinlerin Kurumasında Sıcaklığın Etkisinin İncelenmesi. Gıda 2008, 33, 269–273, (In Turkish with an Abstract in English). [Google Scholar]
- Kesen, S.; Kelebek, H.; Selli, S. Characterization of potent odorant compounds in Turkish olive oils by GC-MS-olfactometric techniques. Int. J. Food Stud. 2014, 3, 248–257. [Google Scholar] [CrossRef]
- Kaftan, A.; Elmaci, Y. Aroma characterization of virgin olive oil from two Turkish olive varieties by SPME/GC/MS. Int. J. Food Prop. 2011, 14, 1160–1169. [Google Scholar] [CrossRef]
- Schneegurt, M.A.; Beale, S.I. Origin of the chlorophyll b formyl oxygen in Chlorella vulgaris. Biochemistry 1992, 31, 11677–11683. [Google Scholar] [CrossRef] [PubMed]
- Porra, R.J.; Schafer, W.; Cmiel, E.; Katheder, I.; Scheer, H. Derivation of the formyl-group oxygen of Chlorophyll b from molecular oxygen in greening leaves of a higher plant (Zea mays). FEBS Lett. 1993, 323, 31–34. [Google Scholar] [CrossRef] [Green Version]
- Roca, M.; Minguez-Mosquera, M.I. Involvement of chlorophyllase in chlorophyll metabolism in olive varieties with high and low chlorophyll content. Physiol. Plant. 2003, 117, 459–466. [Google Scholar] [CrossRef]
- Villano, D.; Fernandez-Pachon, M.S.; Moya, M.L.; Troncoso, A.M.; Garcia-Parrilla, M.C. Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta 2007, 71, 230–235. [Google Scholar] [CrossRef]
- Duan, S.-C.; Kwon, S.-J.; Eom, S.-H. Effect of thermal processing on color, phenolic compounds, and antioxidant activity of faba bean (Vicia faba L.) leaves and seeds. Antioxidants 2021, 10, 1207. [Google Scholar] [CrossRef]
- Tian, Y.; Puganen, A.; Alakomi, H.L.; Uusitupa, A.; Saarela, M.; Yang, B. Antioxidative and antibacterial activities of aqueous ethanol extracts of berries, leaves, and branches of berry plants. Food Res. Int. 2018, 106, 291–303. [Google Scholar] [CrossRef]
- Cicerale, S.; Conlan, X.A.; Sinclair, A.J.; Keast, R.S. Chemistry and health of olive oil phenolics. Crit. Rev. Food Sci. Nutr. 2008, 49, 218–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waterman, E.; Lockwood, B. Active components and clinical applications of olive oil. Altern. Med. Rev. 2007, 12, 331–342. [Google Scholar] [PubMed]
- Omar, S.H. Cardioprotective and neuroprotective roles of oleuropein in olive. Saudi Pharm. J. 2010, 18, 111–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brahmi, F.; Mechri, B.; Dhibi, M.; Hammami, M. Variations in phenolic compounds and antiradical scavenging activity of Olea europaea leaves and fruits extracts collected in two different seasons. Ind. Crop. Prod. 2013, 49, 256–264. [Google Scholar] [CrossRef]
- Petridis, A.; Therios, I.; Samouris, G. Genotypic variation of total phenol and oleuropein concentration and antioxidant activity of 11 Greek olive cultivars (Olea europaea L.). HortScience 2012, 47, 339–342. [Google Scholar] [CrossRef] [Green Version]
- Ozcan, M.M.; Fındık, S.; AlJuhaimi, F.; Ghafoor, K.; Babiker, E.E.; Adiamo, O.Q. The effect of harvest time and varieties on total phenolics, antioxidant activity and phenolic compounds of olive fruit and leaves. J. Food Sci. Technol. 2019, 56, 2373–2385. [Google Scholar] [CrossRef]
- Rallo, L.; Díez, C.M.; Morales-Sillero, A.; Miho, H.; Priego-Capote, F.; Rallo, P. Quality of olives: A focus on agricultural preharvest factors. Sci. Hortic. 2018, 233, 491–509. [Google Scholar] [CrossRef]
- Gómez-Rico, A.; Salvador, M.D.; Fregapane, G. Virgin olive oil and olive fruit minor constituents as affected by irrigation management based on SWP and TDF as compared to ETc in medium-density young olive orchards (Olea europaea L. cv. Cornicabra and Morisca). Food Res. Int. 2009, 42, 1067–1076. [Google Scholar] [CrossRef]
- Inglese, P.; Famiani, F.; Galvano, F.; Servili, M.; Esposto, S.; Urbani, S. 3 factors affecting extra-virgin olive oil composition. Hortic. Rev. 2011, 38, 83. [Google Scholar]
- Xiang, C.; Xu, Z.; Liu, J.; Li, T.; Yang, Z.; Ding, C. Quality, composition, and antioxidant activity of virgin olive oil from introduced varieties at Liangshan. LWT 2017, 78, 226–234. [Google Scholar] [CrossRef]
- Pacheco, Y.M.; Bermúdez, B.; López, S.; Abia, R.; Villar, J.; Muriana, F.J. Ratio of oleic to palmitic acid is a dietary determinant of thrombogenic and fibrinolytic factors during the postprandial state in men. Am. J. Clin. Nutr. 2006, 84, 342–349. [Google Scholar] [CrossRef] [PubMed]
- López-López, A.; Cortés-Delgado, A.; Garrido-Fernández, A. Effect of green Spanish-style processing (Manzanilla and Hojiblanca) on the quality parameters and fatty acid and triacylglycerol compositions of olive fat. Food Chem. 2015, 188, 37–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moradzadeh, S.; Siavash Moghaddam, S.; Rahimi, A.; Pourakbar, L.; El Enshasy, H.A.; Sayyed, R.Z. Bio-Chemical Fertilizer Improves the Oil Yield, Fatty Acid Compositions, and Macro-Nutrient Contents in Nigella sativa L. Horticulturae 2021, 7, 345. [Google Scholar] [CrossRef]
- Berwal, M.K.; Ram, C.; Gurjar, P.S.; Gora, J.S.; Kumar, R.; Verma, A.K.; Singh, D.; Basile, B.; Rouphael, Y.; Kumar, P. The Bioactive Compounds and Fatty Acid Profile of Bitter Apple Seed Oil Obtained in Hot, Arid Environments. Horticulturae 2022, 8, 259. [Google Scholar] [CrossRef]
- Filoda, P.F.; Chaves, F.C.; Hoffmann, J.F.; Rombaldi, C.V. Olive oil: A review on the identity and quality of olive oils produced in Brazil. Rev. Bras. Frutic. 2021, 43, e-487. [Google Scholar] [CrossRef]
- Diraman, H.; Dibeklioğlu, H. Characterization of Turkish virgin olive oils produced from early harvest olives. J. Am. Oil Chem. Soc. 2009, 86, 663–674. [Google Scholar] [CrossRef]
- Beltran, G.; Rio, C.; Sanchez, S.; Martinez, L. Influence of harvest date and crop yield on the fatty acid composition of virgin olive oils from cv. Picual. J. Agric. Food Chem. 2004, 52, 3434–3440. [Google Scholar] [CrossRef]
- Karagoz, S.G.; Yilmazer, M.; Ozkan, G.; Carbonell-Barrachina, Á.A.; Kiralan, M.; Ramadan, M.F. Effect of cultivar and harvest time on C6 and C5 volatile compounds of Turkish olive oils. Eur. Food Res. Technol. 2017, 243, 1193–1200. [Google Scholar] [CrossRef]
- Toker, C.; Aksoy, U.; Ertaş, H. The effect of fruit ripening, altitude and harvest year on volatile compounds of virgin olive oil obtained from the Ayvalık variety. Flavour Fragr. J. 2016, 31, 195–205. [Google Scholar] [CrossRef]
- Angerosa, F. Influence of volatile compounds on virgin olive oil quality evaluated by analytical approaches and sensor panels. Eur. J. Lipid Sci. Technol. 2002, 104, 639–660. [Google Scholar] [CrossRef]
- Nergiz, C.; Engez, Y. Compositional variation of olive fruit during ripening. Food Chem. 2000, 69, 55–59. [Google Scholar] [CrossRef]
- Luna, G.; Morales, M.T.; Aparicio, R. Characterisation of 39 varietal virgin olive oils by their volatile compositions. Food Chem. 2006, 98, 243–252. [Google Scholar] [CrossRef]
- Sánchez, J.; Harwood, J.L. Biosynthesis of triacylglycerols and volatiles in olives. Eur. J. Lipid Sci. Technol. 2002, 104, 564–573. [Google Scholar] [CrossRef]
- Cecchi, L.; Migliorini, M.; Mulinacci, N. Virgin olive oil volatile compounds: Composition, sensory characteristics, analytical approaches, quality control, and authentication. J. Agric. Food Chem. 2021, 69, 2013–2040. [Google Scholar] [CrossRef]
- Žanetić, M.; Jukić Špika, M.; Ožić, M.M.; Brkić Bubola, K. Comparative study of volatile compounds and sensory char-502 acteristics of dalmatian monovarietal virgin olive oils. Plants 2021, 10, 1995. [Google Scholar] [CrossRef]
- Morales, M.T.; Luna, G.; Aparicio, R. Comparative study of virgin olive oil sensory defects. Food Chem. 2005, 91, 293–301. [Google Scholar] [CrossRef]
- García-Vico, L.; Belaj, A.; Sánchez-Ortiz, A.; Martínez-Rivas, J.M.; Pérez, A.G.; Sanz, C. Volatile compound profiling by HS-SPME/GC-MS-FID of a core olive cultivar collection as a tool for aroma improvement of virgin olive oil. Molecules 2017, 22, 141. [Google Scholar] [CrossRef] [Green Version]
- Angerosa, F.; Servili, M.; Selvaggini, R.; Taticchi, A.; Esposto, S.; Montedoro, G.F. Review. Volatile compounds in virgin olive oil: Occurrence and their relationship with quality. J. Chromatogr. A 2004, 1054, 17–31. [Google Scholar] [CrossRef]
- da Silva, A.C.; Lopes, P.M.; de Azevedo, M.M.; Costa, D.C.; Alviano, C.S.; Alviano, D.S. Biological activities of alpha-pinene and beta-pinene enantiomers. Molecules 2012, 17, 6305–6316. [Google Scholar] [CrossRef] [Green Version]
- Colak, A.M.; Kupe, M.; Bozhuyuk, R.M.; Ercisli, S.; Gundogdu, M. Identification of some fruit characteristics in wild bilberry (Vaccinium myrtillus L.) accessions from Eastern Anatolia. Gesunde Pflanz. 2019, 70, 31–38. [Google Scholar] [CrossRef]
- Ozkan, G. Phenolic compounds, organic acids, vitamin C and antioxidant capacity in Prunus spinose. Comptes Rendus Acad. Bulg. Sci. 2019, 72, 267–273. [Google Scholar]
- Ozkan, G.; Ercisli, S.; Sagbas, H.I.; Ilhan, G. Diversity on fruits of wild grown European cranberrybush from Coruh valley in Turkey. Erwerbs-Obstbau 2020, 62, 275–279. [Google Scholar] [CrossRef]
- Kiran, S.; Kusvuran, S.; Ozkay, F.; Ellialtioglu, S. Change in physiological and biochemical parameters under drought stress in salt-tolerant and salt-susceptible eggplant genotypes. Turk. J. Agric. For. 2020, 43, 593–602. [Google Scholar] [CrossRef]
- Kupe, M. Some ampelographic and biochemical characteristics of local grape accessions from Turkey. Genetika 2020, 52, 513–525. [Google Scholar] [CrossRef]
- Grygorieva, O.; Klymenko, S.; Kuklina, A.; Vinogradova, Y.; Vergun, O.; Sedlackova, V.H.; Brindza, J. Evaluation of Lonicera caerulea L. genotypes based on morphological characteristics of fruits germplasm collection. Turk. J. Agric. For. 2021, 45, 850–860. [Google Scholar] [CrossRef]
- Lan, T.; Gao, C.; Yuan, Q.; Wang, J.; Zhang, H.; Sun, X.; Lei, Y.; Ma, T. Analysis of the aroma chemical composition of commonly planted kiwifruit cultivars in China. Foods 2021, 10, 1645. [Google Scholar] [CrossRef]
- Li, X.; Wu, J.; Wang, H.; Zhang, K.; Song, F. Evaluation and comparison of pear flower aroma characteristics of seven cultivars. Horticulturae 2022, 8, 352. [Google Scholar] [CrossRef]
Cultivars | Parameters | ||||
---|---|---|---|---|---|
L* | a* | b* | C | h° | |
Manzanilla | 50.59 ± 0.94 d | −8.53 ± 0.66 bc | 33.68 ± 2.84 ab | 34.75 ± 2.75 ab | 104.29 ± 1.62 ab |
Gemlik | 53.54 ± 3.12 b | −7.29 ± 0.62 b | 36.27 ± 3.28 a | 37.01 ± 3.15 a | 101.45 ± 1.73 cd |
Domat | 52.15 ± 2.59 bc | −8.94 ± 0.84 c | 30.34 ± 1.58 bc | 31.60 ± 1.59 bc | 106.45 ± 1.47 a |
Memecik | 58.60 ± 2.33 a | −7.34 ± 1.03 b | 37.26 ± 4.16 a | 37.99 ± 4.04 a | 101.27 ± 2.24 cd |
Ayvalik | 57.30 ± 0.55 a | −6.03 ± 0.78 a | 33.49 ± 0.65 ab | 34.03 ± 0.76 abc | 100.20 ± 1.14 d |
Cilli | 50.17 ± 1.25 d | −8.78 ± 0.83 c | 29.14 ± 2.19 c | 30.43 ± 2.25 c | 106.77 ± 1.20 a |
Adana Topagi | 52.5 ± 0.56 bc | −8.15 ± 0.77 bc | 34.44 ± 2.53 ab | 35.41 ± 2.26 ab | 103.43 ± 2.30 bc |
Cultivars | Concentration of Chlorophyll (mgL−1) | ||
---|---|---|---|
Chlorophyll a | Chlorophyll b | Total | |
Manzanilla | 1.92 ± 0.10 b | 2.18 ± 0.12 cd | 4.10 ± 0.12 b |
Gemlik | 1.10 ± 0.08 d | 1.29 ± 0.08 e | 2.39 ± 0.06 d |
Domat | 1.19 ± 0.13 d | 1.80 ± 0.11 d | 2.99 ± 0.09 cd |
Memecik | 1.39 ± 0.14 cd | 1.73 ± 0.09 d | 3.12 ± 0.10 c |
Ayvalik | 1.60 ± 0.13 bc | 2.27 ± 0.13 c | 3.87 ± 0.09 bc |
Cilli | 2.63 ± 0.16 a | 2.74 ± 0.14 b | 5.37 ± 0.26 a |
Adana Topagi | 2.48 ± 0.13 a | 3.34 ± 0.16 a | 5.82 ± 0.29 a |
Cultivars | TPC (mg GAE 100 g−1) DPPH (%) | |
---|---|---|
Manzanilla | 592 ± 28 c | 81.82 ± 3.2 ab |
Gemlik | 569 ± 21 d | 80.21 ± 3.6 b |
Domat | 669 ± 28 b | 74.00 ± 3.3 bc |
Memecik | 762 ± 32 a | 83.58 ± 4.4 a |
Ayvalik | 526 ± 23 e | 75.92 ± 4.2 bc |
Cilli | 497 ± 20 f | 76.85 ± 3.4 bc |
Adana Topagi | 481 ± 19 f | 76.35 ± 3.1 c |
Fatty Acids (%) | Cultivars | ||||||
---|---|---|---|---|---|---|---|
Manzanilla | Gemlik | Domat | Memecik | Ayvalik | Cilli | Adana Topagi | |
Myristic | 0.19 ± 0.01 | 0.48 ± 0.38 | 0.53 ± 0.50 | 0.51 ± 0.02 | 0.46 ± 0.57 | 0.26 ± 0.23 | 0.49 ± 0.09 |
Palmitic | 18.7 ± 1.20 a | 16.74 ± 0.02 bc | 15.05 ± 0.09 c | 13.09 ± 0.13 d | 17.51 ± 0.19 ab | 15.52 ± 0.58 c | 11.99 ± 1.91 d |
Stearic | 0.06 ± 0.08 b | 0.35 ± 0.04 b | 0.48 ± 0.67 a | n.d. | 0.53 ± 0.04 a | n.d. | n.d. |
Total SFA | 18.94 ± 1.29 a | 17.51 ± 0.44 b | 16.05 ± 1.27 c | 13.59 ± 0.16 d | 18.49 ± 0.79 a | 15.78 ± 0.81 c | 12.48 ± 2.00 e |
Palmitoleic | 0.44 ± 0.46 cd | 0.23 ± 0.28 d | 0.94 ± 0.41 b | 0.73 ± 0.18 bc | 0.47 ± 0.03 cd | 1.46 ± 0.37 a | 1.83 ± 0.13 a |
Oleic | 54.71 ± 3.95 d | 66.81 ± 0.42 a | 58.36 ± 0.38 bc | 57.38 ± 0.51 c | 53.41 ± 0.5 d | 54.72 ± 1.87 d | 60.38 ± 1.22 b |
Total MUFAs | 55.15 ± 4.41 e | 67.04 ± 0.70 a | 59.3 ± 0.79 c | 58.11 ± 0.69 cd | 53.88 ± 0.53 e | 56.18 ± 2.23 de | 62.21 ± 1.34 b |
Linoleic | 11.91 ± 0.74 d | 8.18 ± 0.2 e | 10.32 ± 0.18 e | 23.12 ± 0.31 a | 21.76 ± 0.27 b | 16.65 ± 0.73 c | 8.7 ± 0.33 e |
Linolenic | 0.59 ± 0.10 bc | 0.66 ± 0.05 b | 0.39 ± 0.02 e | 0.49 ± 0.05 d | 0.93 ± 0.04 a | 0.67 ± 0.01 b | 0.54 ± 0.15 cd |
Total PUFA | 12.5 ± 0.84 d | 8.84 ± 0.26 f | 10.71 ± 0.20 e | 23.61 ± 0.36 a | 22.69 ± 0.31 b | 17.32 ± 0.74 c | 9.24 ± 0.48 f |
RT (Min) | Compounds | Manzanilla | Gemlik | Domat | Memecik | Ayvalik | Cilli | Adana Topagi |
---|---|---|---|---|---|---|---|---|
Aldehydes | ||||||||
7.053 | (E)-2-Pentenal | 1.60 ± 0.08 | 0.73 ± 0.04 | 0.35 ± 0.03 | 0.31 ± 0.03 | n.d. | 0.45 ± 0.05 | n.d. |
8.064 | Cis-3-Hexenal | 0.92 ± 0.05 | 0.61 ± 0.01 | 0.27 ± 0.01 | n.d. | 2.88 ± 0.13 | 3.47 ± 0.19 | 3.23 ± 0.17 |
8.173 | Hexanal | 28.94 ± 1.12 b | 27.59 ± 1.04 b | 44.42 ± 2.20 a | 16.90 ± 0.81 c | 26.87 ± 1.21 b | 15.82 ± 1.02 c | 15.48 ± 1.07 c |
8.958 | 2-Furancarboxaldehyde | n.d. NS | 4.67 ± 0.30 | n.d. | n.d. | n.d. | n.d. | 2.01 ± 0.18 |
10.481 | 2-Hexenal | 1.20 ± 0.01 c | 3.82 ± 0.10 b | 4.83 ± 0.18 b | 5.17 ± 0.21 b | 4.91 ± 0.19 b | 15.36 ± 1.08 a | 3.92 ± 0.20 b |
12.471 | 2,4-Hexadienal | 0.92 ± 0.07 | n.d. | 0.58 ± 0.06 | 2.07 ± 0.10 | n.d. | n.d. | n.d. |
16.15 | Octanal | 0.62 ± 0.04 | 1.19 ± 0.03 | 0.15 ± 0.00 | 1.97 ± 0.09 | 0.40 ± 0.01 | n.d. | 0.48 ± 0.01 |
19.727 | Nonanal | 1.10 ± 0.08 | 0.17 ± 0.00 | n.d. | 2.52 ± 0.11 | 2.07 ± 0.10 | 0.76 ± 0.08 | 0.72 ± 0.06 |
23.112 | Decanal | 1.17 ± 0.10 | n.d. | n.d. | 0.96 ± 0.07 | 1.32 ± 0.07 | 2.41 ± 0.11 | 2.78 ± 0.09 |
Total aldehydes | 36.47 ± 2.10 b | 38.78 ± 2.43 b | 50.60 ± 3.40 a | 29.90 ± 2.80 c | 38.45 ± 1.98 b | 38.27 ± 2.24 b | 28.62 ± 1.15 c | |
Alcohols | ||||||||
5.258 | 1-Penten-3-ol | 1.05 ± 0.02 | 0.89 ± 0.01 | n.d. | 0.18 ± 0.01 | n.d. | n.d. | n.d. |
7.896 | (Z)-2-Penten-1-ol | 0.43 ± 0.02 | 1.23 ± 0.05 | 0.34 ± 0.01 | 2.21 ± 0.06 | 0.62 ± 0.00 | 1.59 ± 0.05 | 2.17 ± 0.09 |
10.578 | (Z)-3-Hexen-1-ol | 34.22 ± 1.80 e | 34.37 ± 1.72 e | 36.48 ± 1.87 d | 15.40 ± 0.80 f | 42.89 ± 2.14 c | 45.16 ± 2.80 b | 54.35 ± 2.96 a |
11.157 | 1-Hexanol | 6.98 ± 0.80 a | 0.89 ± 0.03 c | 2.88 ± 0.12 b | 0.23 ± 0.03 c | 6.76 ± 0.93 a | 2.06 ± 0.18 b | n.d. c |
18.69 | 1-Octanol | 0.24 ± 0.02 | n.d. | n.d. | 0.39 ± 0.02 | n.d. | n.d. | n.d. |
29.049 | 4-Hydroxy-benzeneethanol | n.d. NS | n.d. | n.d. | 7.34 ± 0.28 | 0.92 ± 0.02 | n.d. | 2.75 ± 0.06 |
48.996 | Phytol | 4.42 ± 0.15 a | n.d. c | n.d. c | 5.82 ± 0.17 a | n.d. c | 2.66 ± 0.09 b | 2.07 ± 0.07 b |
Total alcohols | 47.34 ± 2.21 c | 37.38 ± 2.03 e | 39.70 ± 1.96 d | 31.57 ± 1.43 f | 51.19 ± 2.43 b | 51.47 ± 2.20 b | 61.34 ± 3.01 a | |
Ketones | ||||||||
2.053 | 2-Propanone | n.d. NS | n.d. | 0.87± 0.01 | 0.16± 0.01 | n.d. | n.d. | n.d. |
5.005 | 1-Penten-3-one | 2.65 ± 0.10 c | 7.76 ± 0.31 a | 0.46 ± 0.02 d | 5.38 ± 0.22 b | 0.79 ± 0.02 d | 0.75 ± 0.02 d | n.d. |
13.595 | Ethyl butyl ketone | 8.17 ± 0.22 a | 4.93 ± 0.12 b | 2.31 ± 0.09 c | 4.77 ± 0.14 b | n.d. | 0.43 ± 0.02 d | n.d. |
24.284 | 2-Methyl-5-(1-methylethenyl)-2-Cyclohexen-1-one | 1.49 ± 0.04 b | n.d. | 1.38 ± 0.03 b | 7.55 ± 0.35 a | n.d. | 1.85 ± 0.05 b | n.d. |
Total ketones | 12.31 ± 0.48 b | 12.69 ± 0.52 b | 5.02 ± 0.12 c | 17.86 ± 0.42 a | 0.79 ± 0.02 e | 2.99 ± 0.06 d | n.d. | |
Acids | ||||||||
2.845 | Acetic acid | 1.31± 0.02 | n.d. | n.d. | n.d. | 1.39± 0.02 | n.d. | 1.55± 0.01 |
21.785 | Octanoic acid | n.d. NS | n.d. | n.d. | n.d. | 0.64± 0.01 | 0.74 | 1.21± 0.01 |
42.410 | Pentadecanoic acid | n.d. NS | n.d. | n.d. | n.d. | n.d. | n.d. | 0.67± 0.01 |
46.221 | Octadec-9-enoic acid | n.d. NS | n.d. | n.d. | n.d. | n.d. | n.d. | 1.63± 0.03 |
Total acids | 1.31± 0.02 bc | n.d. | n.d. | n.d. | 2.03 ± 0.04 b | 0.74 ± 0.01 c | 5.05± 0.05 a | |
Esters | ||||||||
14.706 | Isobutyl isobutyrate | 0.96 ± 0.03 | 0.57 ± 0.03 | 0.92 ± 0.04 | n.d. | n.d. | n.d. | 2.04 ± 0.07 |
15.088 | Amyl acetate | 1.14 ± 0.09 | 1.87 ± 0.11 | n.d. | n.d. | n.d. | n.d. | n.d. |
34.399 | 2,2,4-Trimethyl-pentan-1,3-diol diisobutyrate | 0.21 ± 0.03 | 0.21 ± 0.03 | 0.09 ± 0.00 | n.d. | n.d. | n.d. | n.d. |
Total esters | 2.30 ± 0.08 | 2.65 ± 0.07 | 1.01 ± 0.03 | n.d. | n.d. | n.d. | 2.04 ± 0.03 | |
Terpenes | ||||||||
16.226 | β-Myrcene | n.d. NS | 0.92 ± 0.04 | n.d. | 1.80 ± 0.07 | 1.21 ± 0.08 | n.d. | n.d. |
17.372 | β-Pinene | n.d. b | 1.58 ± 0.08 b | n.d. b | 12.38 ± 0.48 a | 2.01 ± 0.09 b | 1.05 ± 0.05 b | n.d. b |
19.550 | (1-Methylethenyl)-Benzene | 0.27 ± 0.00 | n.d. | 0.51 ± 0.00 | 5.28 ± 0.28 | 2.17 ± 0.11 | 3.67 ± 0.13 | n.d. |
29.169 | α-Copaene | n.d. NS | n.d. | 0.11 ± 0.00 | 0.71 ± 0.02 | 1.96 ± 0.04 | 0.69 ± 0.03 | n.d. |
30.634 | 7-epi-sesquithujene | n.d. NS | n.d. | 3.05 ± 0.14 | 0.18 ± 0.00 | n.d. | n.d. | 2.68 ± 0.12 |
Total terpenes | 0.27 ± 0.00 f | 2.50 ± 0.12 e | 3.67 ± 0.14 d | 20.34 ± 1.08 a | 7.35 ± 0.28 b | 5.40 ± 0.22 c | 2.69 ± 0.12 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comlekcioglu, S.; Elgudayem, F.; Nogay, G.; Kafkas, N.E.; Ayed, R.B.; Ercisli, S.; Assouguem, A.; Almeer, R.; Najda, A. Biochemical Characterization of Six Traditional Olive Cultivars: A Comparative Study. Horticulturae 2022, 8, 416. https://doi.org/10.3390/horticulturae8050416
Comlekcioglu S, Elgudayem F, Nogay G, Kafkas NE, Ayed RB, Ercisli S, Assouguem A, Almeer R, Najda A. Biochemical Characterization of Six Traditional Olive Cultivars: A Comparative Study. Horticulturae. 2022; 8(5):416. https://doi.org/10.3390/horticulturae8050416
Chicago/Turabian StyleComlekcioglu, Songul, Farah Elgudayem, Gozde Nogay, Nesibe Ebru Kafkas, Rayda Ben Ayed, Sezai Ercisli, Amine Assouguem, Rafa Almeer, and Agnieszka Najda. 2022. "Biochemical Characterization of Six Traditional Olive Cultivars: A Comparative Study" Horticulturae 8, no. 5: 416. https://doi.org/10.3390/horticulturae8050416
APA StyleComlekcioglu, S., Elgudayem, F., Nogay, G., Kafkas, N. E., Ayed, R. B., Ercisli, S., Assouguem, A., Almeer, R., & Najda, A. (2022). Biochemical Characterization of Six Traditional Olive Cultivars: A Comparative Study. Horticulturae, 8(5), 416. https://doi.org/10.3390/horticulturae8050416