Evaluation and Comparison of Pear Flower Aroma Characteristics of Seven Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction of Volatile Compounds
2.3. GC-MS Analysis
2.4. Statistical Analysis
3. Results
3.1. Total Ion Chromatograms
3.2. Identification of the Volatile Compounds
3.3. Odor Types, Description, and OAVs
3.4. Aroma Profiles Analysis
3.5. Multivariate Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cui, T.; Nakamura, K.; Ma, L.; Li, J.Z.; Kayahara, H. Analyses of Arbutin and Chlorogenic Acid, the Major Phenolic Constituents in Oriental Pear. J. Agric. Food Chem. 2005, 53, 3882–3887. [Google Scholar] [CrossRef] [PubMed]
- Dimita, R.; Min Allah, S.; Luvisi, A.; Greco, D.; De Bellis, L.; Accogli, R.; Mininni, C.; Negro, C. Volatile Compounds and Total Phenolic Content of Perilla Frutescens at Microgreens and Mature Stages. Horticulturae 2022, 8, 71. [Google Scholar] [CrossRef]
- Rychlińska, I.; Gudej, J. Qualitative and quantitative chromatographic investigation of flavonoids in Pyrus communis L. flowers. Acta Pol. Pharm. 2003, 60, 81–85. [Google Scholar] [PubMed]
- Li, S. Bencao Gangmu; Renmin Weisheng Press: Beijing, China, 1982; p. 1756. [Google Scholar]
- Aires, C.P.; Koo, H.; Sassaki, G.L.; Iacomini, M.; Cury, J.A. A Procedure for Characterizing Glucans Synthesized by Purified Enzymes of Cariogenic Streptococcus mutans. Int. J. Biol. Macromol. 2010, 46, 551–554. [Google Scholar] [CrossRef]
- Pellegrino, G.; Bellusci, F.; Musacchio, A. The Effects of Inflorescence Size and Flower Position on Female Reproductive Success in Three Deceptive Orchids. Bot. Stud. 2010, 51, 351–356. [Google Scholar]
- Wetzstein, H.Y.; Yi, W.; Porter, J.A.; Ravid, N. Flower Position and Size Impact Ovule Number Per Flower, Fruitset, and Fruit Size in Pomegranate. J. Am. Soc. Hortic. Sci. 2013, 138, 159–166. [Google Scholar] [CrossRef]
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, Function and Metabolic Engineering of Plant Volatile Organic Compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef]
- Ceuppens, B.; Ameye, M.; Van Langenhove, H.; Roldan-Ruiz, I.; Smagghe, G. Characterization of Volatiles in Strawberry Varieties ‘Elsanta’and ‘Sonata’and Their Effect on Bumblebee Flower Visiting. Arthropod-Plant Interact. 2015, 9, 281–287. [Google Scholar] [CrossRef]
- Webster, B.; Gezan, S.; Bruce, T.; Hardie, J.; Pickett, J. Between Plant and Diurnal Variation in Quantities and Ratios of Volatile Compounds Emitted by Vicia Faba Plants. Phytochemistry 2010, 71, 81–89. [Google Scholar] [CrossRef]
- Xu, L.; Liu, H.; Ma, Y.; Wu, C.; Li, R.; Chao, Z. Comparative Study of Volatile Components from Male and Female Flower Buds of Populus × Tomentosa by HS-SPME-GC-MS. Nat. Prod. Res. 2019, 33, 2105–2108. [Google Scholar] [CrossRef]
- Junker, R.R.; Gershenzon, J.; Unsicker, S.B. Floral Odor Bouquet Loses Its Ant Repellent Properties after Inhibition of Terpene Biosynthesis. J. Chem. Ecol. 2011, 37, 1323–1331. [Google Scholar] [CrossRef] [PubMed]
- Hammerbacher, A.; Coutinho, T.A.; Gershenzon, J. Roles of Plant Volatiles in Defence against Microbial Pathogens and Microbial Exploitation of Volatiles. Plant Cell Environ. 2019, 42, 2827–2843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Wang, W.; Zhao, L.; Zheng, C.; Ma, F. Changes in Volatile Organic Compounds and Differential Expression of Aroma-Related Genes During Flowering of Rosa Rugosa ‘Shanxian’. Hortic. Environ. Biotechnol. 2019, 60, 741–751. [Google Scholar] [CrossRef]
- Xu, C.; Ma, Y.; Tian, Z.; Luo, Q.; Zheng, T.; Wang, B.; Zuo, Z. Monoterpene Emissions and Their Protection Effects on Adult Cinnamomum Camphora against High Temperature. Trees 2022, 36, 711–721. [Google Scholar] [CrossRef]
- Mochizuki, T.; Watanabe, M.; Koike, T.; Tani, A. Monoterpene Emissions from Needles of Hybrid Larch F1 (Larix Gmelinii Var. Japonica × larix Kaempferi) Grown under Elevated Carbon Dioxide and Ozone. Atmos. Environ. 2017, 148, 197–202. [Google Scholar] [CrossRef]
- Yan, J.W.; Ban, Z.J.; Lu, H.Y.; Li, D.; Poverenov, E.; Luo, Z.S.; Li, L. The Aroma Volatile Repertoire in Strawberry Fruit: A Review. J. Sci. Food Agric. 2018, 98, 4395–4402. [Google Scholar] [CrossRef]
- Mus, A.A.; Gansau, J.A.; Kumar, V.S.; Rusdi, N.A. The Variation of Volatile Compounds Emitted from Aromatic Orchid (Phalaenopsis Bellina) at Different Timing and Flowering Stages. Plant Omics 2020, 13, 78–85. [Google Scholar] [CrossRef]
- Du, F.; Wang, T.; Fan, J.M.; Liu, Z.Z.; Zong, J.X.; Fan, W.X.; Han, Y.H.; Grierson, D. Volatile Composition and Classification of Lilium Flower Aroma Types and Identification, Polymorphisms, and Alternative Splicing of Their Monoterpene Synthase Genes. Hortic. Res. 2019, 6, 110. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Xu, Y.; Niu, Q.; He, L.; Teng, Y.; Bai, S. Abscisic Acid (ABA) Promotes the Induction and Maintenance of Pear (Pyrus Pyrifolia White Pear Group) Flower Bud Endodormancy. Int. J. Mol. Sci. 2018, 19, 310. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Liu, J.; Fan, Y.; Zexin, M.A.; Jiang, L.I. Analysis of Aroma Components of Pyrus Sinkiangensis Yü. Cv. ‘Korla Xiangli’ Inflorescence by Headspace Solid Phase Micro-Extraction Coupled to Gas Chromatography-Mass Spectrometry. Food Sci. 2016, 37, 115–120. [Google Scholar] [CrossRef]
- Lin, X. Perfumery, 2nd ed.; Chemical Industry Press: Beijing, China, 2011. [Google Scholar]
- Pino, J.A.; Mesa, J. Contribution of Volatile Compounds to Mango (Mangifera Indica, L.) Aroma. Flavour. Frag. J. 2006, 21, 207–213. [Google Scholar] [CrossRef]
- Averbeck, M.; Schieberle, P. Influence of Different Storage Conditions on Changes in the Key Aroma Compounds of Orange Juice Reconstituted from Concentrate. Eur. Food Res. Technol. 2011, 232, 129–142. [Google Scholar] [CrossRef]
- Muhlemann, J.K.; Hiroshi, M.; Chang, C.Y.; Phillip, S.M.; Ivan, B.; Bruce, C.; Ann, P.M.; Nikolau, B.J.; Olga, V.; Morgan, J.A. Developmental Changes in the Metabolic Network of Snapdragon Flowers. PLoS ONE 2012, 7, e40381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boonbumrung, S.; Tamura, H.; Mookdasanit, J.; Nakamoto, H.; Ishihara, S.; Yoshizawa, T.; Varanyanond, W. Characteristic Aroma Components of the Volatile Oil of Yellow Keaw Mango Fruits Determined by Limited Odor Unit Method. Food Sci. Technol. Res. 2001, 7, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Limpawatanna, M. An Integrated Approach to Sensory Analysis of Rice Flavor; University of Georgia: Athens, GA, USA, 2007. [Google Scholar]
- Jin, Q.L.; Jiang, Z.D.; Ni, H.; Chen, F.; Huang, G.L.; Yang, Y.F. Volatile Components of Instant Oolong Tea Powder. Mod. Food Sci. Technol. 2015, 31, 372–379. [Google Scholar] [CrossRef]
- Takeoka, G.R.; Buttery, R.G.; Turnbaugh, J.G.; Benson, M. Odor Thresholds of Various Branched Esters. LWT-Food Sci. Technol. 1995, 28, 153–156. [Google Scholar] [CrossRef]
- Pyysalo, T.; Honkanen, E.; Hirvi, T. Volatiles of Wild Strawberries, Fragaria Vesca, L., Compared to Those of Cultivated Berries, Fragaria × Ananassa Cv. Senga Sengana. J. Agric. Food Chem. 1979, 27, 19–22. [Google Scholar] [CrossRef]
- Aaby, K.; Haffner, K.; Skrede, G. Aroma Quality of Gravenstein Apples Influenced by Regular and Controlled Atmosphere Storage. LWT Food Sci. Technol. 2002, 35, 254–259. [Google Scholar] [CrossRef]
- Du, X.; Finn, C.E.; Qian, M.C. Volatile Composition and Odour-Activity Value of Thornless ‘Black Diamond’ and ‘Marion’ Blackberries. Food Chem. 2010, 119, 1127–1134. [Google Scholar] [CrossRef]
- Sinuco, D.C.; Steinhaus, M.; Schieberle, P.; Osorio, C. Changes in Odour-Active Compounds of Two Varieties of Colombian Guava (Psidium guajava, L.) During Ripening. Eur. Food Res. Technol. 2010, 230, 859–864. [Google Scholar] [CrossRef]
- Feng, Y.; Su, G.; Zhao, H.; Cai, Y.; Cui, C.; Sun-Waterhouse, D.; Zhao, M. Characterisation of Aroma Profiles of Commercial Soy Sauce by Odour Activity Value and Omission Test. Food Chem. 2015, 167, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Dietz, F.; Traud, J. Smell and Taste Threshold Concentrations of Phenolic Substances. Its Relation among Each Other and in Comparison with the Instrumental Analysis as Well as with the Acute Fish Toxicity. Gas. Wasser Abwasser 1978, 119, 318–325. [Google Scholar]
- Aznar, M.; López, R.; Cacho, J.; Ferreira, V. Prediction of Aged Red Wine Aroma Properties from Aroma Chemical Composition. Partial Least Squares Regression Models. J. Agric. Food Chem. 2003, 51, 2700–2707. [Google Scholar] [CrossRef] [PubMed]
- Tamura, H.; Padrayuttawat, A.; Tokunaga, T. Seasonal Change of Volatile Compounds of Citrus Sudachi During Maturation. Food Sci. Technol. Res. 2006, 5, 156–160. [Google Scholar] [CrossRef] [Green Version]
- Khalil, M.N.; Fekry, M.I.; Farag, M.A. Metabolome Based Volatiles Profiling in 13 Date Palm Fruit Varieties from Egypt via Spme GC–MS and Chemometrics. Food Chem. 2017, 217, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Azam, M.; Song, M.; Fan, F.; Zhang, B.; Xu, Y.; Xu, C.; Chen, K. Comparative Analysis of Flower Volatiles from Nine Citrus at Three Blooming Stages. Int. J. Mol. Sci. 2013, 14, 22346–22367. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Ramirez, J. Watermelon Rind and Flesh Volatile Profiles and Cultivar Difference. Horticulturae 2022, 8, 99. [Google Scholar] [CrossRef]
- Kutty, N.N.; Mitra, A. Profiling of Volatile and Non-Volatile Metabolites in Polianthes Tuberosa, L. Flowers Reveals Intraspecific Variation among Cultivars. Phytochemistry 2019, 162, 10–20. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.; Ma, R.; Yu, M. Comparison of Aroma Trait of the White-Fleshed Peach ‘Hu Jing Mi Lu’ and the Yellow-Fleshed Peach ‘Jin Yuan’ Based on Odor Activity Value and Odor Characteristics. Horticulturae 2022, 8, 245. [Google Scholar] [CrossRef]
- Wu, Y.; Duan, S.; Zhao, L.; Gao, Z.; Luo, M.; Song, S.; Xu, W.; Zhang, C.; Ma, C.; Wang, S. Aroma Characterization Based on Aromatic Series Analysis in Table Grapes. Sci. Rep. 2016, 6, 31116. [Google Scholar] [CrossRef] [Green Version]
- Xin, H.P.; Wu, B.H.; Zhang, H.H.; Wang, C.Y.; Li, J.T.; Yang, B.; Li, S.H. Characterization of Volatile Compounds in Flowers from Four Groups of Sweet Osmanthus (Osmanthus Fragrans) Cultivars. Can. J. Plant. Sci. 2013, 93, 923–931. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.C.; Yin, Z.H.; Kang, W.Y. Study of Volatiles in Lysimachia Parvifolia Flower Using HS-SPME-GC-MS. Chem. Nat. Compd. 2014, 50, 1130–1131. [Google Scholar] [CrossRef]
- Giri, A.; Osako, K.; Ohshima, T. Identification and Characterisation of Headspace Volatiles of Fish Miso, a Japanese Fish Meat Based Fermented Paste, with Special Emphasis on Effect of Fish Species and Meat Washing. Food Chem. 2010, 120, 621–631. [Google Scholar] [CrossRef]
- Yao, H.; Jin, X.; Feng, M.; Xu, G.; Zhang, P.; Fang, Y.; Xu, T.; Meng, J. Evolution of Volatile Profile and Aroma Potential of Table Grape Hutai-8 During Berry Ripening. Food Res. Int. 2021, 143, 110330. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Tong, G.; Yang, Q.; Huang, M.; Ye, H.; Liu, Y.; Wu, J.; Zhang, J.; Sun, X.; Zhao, D. Characterization of Key Aroma Compounds in Tartary Buckwheat (Fagopyrum Tataricum Gaertn.) by Means of Sensory-Directed Flavor Analysis. J. Agric. Food Chem. 2021, 69, 11361–11371. [Google Scholar] [CrossRef]
- Ni, R.; Michalski, M.H.; Brown, E.; Doan, N.; Zinter, J.; Ouellette, N.T.; Shepherd, G.M. Optimal Directional Volatile Transport in Retronasal Olfaction. Proc. Natl. Acad. Sci. USA 2015, 112, 14700–14704. [Google Scholar] [CrossRef] [Green Version]
- Tieman, D.; Bliss, P.; McIntyre, L.M.; Blandon-Ubeda, A.; Bies, D.; Odabasi, A.Z.; Rodríguez, G.R.; van der Knaap, E.; Taylor, M.G.; Goulet, C.; et al. The Chemical Interactions Underlying Tomato Flavor Preferences. Curr. Biol. 2012, 22, 1035–1039. [Google Scholar] [CrossRef] [Green Version]
- Shen, D.Y.; Li, M.K.; Song, H.L.; Zou, T.T.; Zhang, L.; Xiong, J. Characterization of Aroma in Response Surface Optimized No-Salt Bovine Bone Protein Extract by Switchable GC/GC×GC-Olfactometry-Mass Spectrometry, Electronic Nose, and Sensory Evaluation. LWT 2021, 147, 111559. [Google Scholar] [CrossRef]
- Pérez-Hedo, M.; Rambla, J.L.; Granell, A.; Urbaneja, A. Biological Activity and Specificity of Miridae-Induced Plant Volatiles. BioControl 2018, 63, 203–213. [Google Scholar] [CrossRef]
- Hori, M.; Namatame, M. Host Plant Volatiles Responsible for the Invasion of S Tenotus Rubrovittatus (H Eteroptera: M Iridae) into Paddy Fields. J. Appl. Entomol. 2013, 137, 340–346. [Google Scholar] [CrossRef]
- Hu, Q.; Zhou, M.; Wei, S. Progress on the Antimicrobial Activity Research of Clove Oil and Eugenol in the Food Antisepsis Field. J. Food Sci. 2018, 83, 1476–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šimpraga, M.; Takabayashi, J.; Holopainen, J.K. Language of Plants: Where Is the Word? J. Integr. Plant Biol. 2016, 58, 343–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cultivars | Species | Sampling Time |
---|---|---|
Anli | a | 7 April |
Bayuesu | b | 14 April |
Golden | c | 21 March |
Brown peel | c | 14 April |
KorlaXiangli | d | 21 March |
Lyubaoshi | c | 14 April |
Xizilü | c | 14 April |
Volatile Compounds | RT | RI | LRI | μg kg−1 FW | Identification | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Anli | Bayuesu | Brown Peel | Golden | KorlaXiangli | Lyubaoshi | Xizilü | |||||
Alcohols | |||||||||||
3-Hexenol | 1.35 | 853 | 858 | 3.89 | - | - | - | - | - | - | MS, RI |
1-Hexanol | 1.64 | 861 | 867 | 2.04a | - | - | - | 0.87b | - | - | MS, RI |
5-Methyl-1-hexanol | 3.97 | 924 | 930 | 7.47 | - | - | - | - | - | - | MS, RI |
1-Heptanol | 5.11 | 985 | 975 | - | 0.55c | - | - | 0.12b | - | 1.03a | MS, RI |
2-Ethyl hexanol | 6.86 | 1023 | 1029 | 5.20a | 2.04b | 1.47c | 2.42b | 0.46d | 0.29d | 2.64b | MS, RI |
1-Octanol | 7.83 | 1065 | 1068 | - | 1.79b | 1.58c | 1.35d | 0.29e | 0.27e | 15.63a | MS, RI |
2-Phenylethanol | 9.06 | 1117 | 1114 | 106.92a | 4.19e | 48.53b | 25.65c | 2.65f | 4.28e | 17.07d | MS, RI |
(Z)-3-Nonenol | 9.81 | 1157 | 1153 | - | 0.81 | - | - | - | - | - | MS, RI |
1-Nonanol | 10.05 | 1178 | 1175 | 6.09c | 9.70b | 1.88e | 3.13d | 0.15g | 0.47f | 12.97a | MS, RI |
2-Propyl-1-heptanol | 10.58 | 1195 | 1194 | 6.03 | - | - | - | - | - | - | MS |
2-Butyl-1-octanol | 11.73 | 1264 | 1277 | - | - | - | - | - | 1.76a | 0.87b | MS, RI |
1-Decanol | 11.86 | 1273 | 1272 | - | 2.87a | - | - | - | - | 3.32a | MS, RI |
1-Dodecanol | 14.40 | 1452 | 1460 | - | - | 5.53 | - | - | - | - | MS, RI |
2-Hexyl decanol | 15.31 | 1509 | 1504 | 14.40b | - | - | - | - | 37.00a | - | MS, RI |
1-Tetradecanol | 17.41 | 1672 | 1676 | - | - | 4.55 | - | - | - | - | MS, RI |
SubTOTAL | 148.15a | 21.96f | 63.54b | 32.55e | 4.54g | 44.07d | 53.54c | ||||
Arenes | |||||||||||
p-Benzoquinone | 3.09 | 909 | 905 | 49.43a | - | 0.96c | 3.04bc | - | 3.55b | - | MS, RI |
Benzyl nitrile | 9.46 | 1144 | 1143 | 0.53c | - | 35.65a | - | 0.58c | - | 7.40b | MS, RI |
Naphthalene | 10.46 | 1189 | 1191 | 1.98c | 1.26d | 1.92c | 5.36a | 1.29d | 0.27e | 2.71b | MS, RI |
Hydroquinone | 11.82 | 1271 | 1241 | 55.31a | 2.20de | 31.15b | 19.50c | 2.64de | 0.33e | 4.13d | MS, RI |
2-Methyl naphthalene | 12.33 | 1302 | 1315 | 0.44c | 0.21d | - | 0.66b | 0.21d | 1.91a | - | MS, RI |
2,6-Ditert-butylquinone | 14.91 | 1479 | 1472 | - | - | 8.29a | 4.95b | - | 1.51c | - | MS, RI |
SubTOTAL | 107.7a | 3.66f | 77.97b | 33.51c | 4.72f | 7.57e | 14.23d | ||||
Phenols | |||||||||||
Phenol | 5.50 | 992 | 984 | 1.11a | 0.20c | - | - | 0.07d | 1.03b | 0.23c | MS, RI |
2-Nitrophenol | 9.41 | 1138 | 1136 | - | 0.34c | 1.68b | 1.70b | 0.15c | 25.03a | 0.63c | MS, RI |
5-Methyl-2-nitrophenol | 11.52 | 1253 | 1250 | - | - | 1.15b | - | - | 2.12a | - | MS, RI |
SubTOTAL | 1.11d | 0.54e | 2.83b | 1.7c | 0.22f | 28.18a | 0.23f | ||||
Aldehydes | |||||||||||
2-Hexenal | 1.31 | 847 | 853 | 4.21 | - | - | - | - | - | - | MS, RI |
Benzaldehyde | 5.09 | 967 | 961 | 45.68a | 0.29f | 7.13c | 18.57b | 4.27d | 3.22e | 2.78e | MS, RI |
1-Octanal | 6.11 | 1005 | 1004 | - | 9.78b | - | 2.28c | 2.23c | 1.47c | 22.43a | MS, RI |
Phenyl acetaldehyde | 7.22 | 1048 | 1042 | - | - | 6.83a | 6.36a | 1.23c | 2.74b | - | MS, RI |
(E)-2-Octenal | 7.65 | 1065 | 1056 | - | - | - | - | - | 0.31 | - | MS, RI |
1-Nonanal | 8.72 | 1104 | 1102 | 5.42e | 46.53b | 10.32d | 8.75e | 1.32f | 37.29c | 49.76a | MS, RI |
(E)-2-Nonenal | 9.92 | 1162 | 1162 | - | 21.72a | - | - | - | - | 0.44b | MS, RI |
1-Decanal | 10.72 | 1204 | 1208 | 3.25d | 81.26a | 3.16d | 7.67c | 0.74d | 1.40d | 43.68b | MS, RI |
(E)-2-Decenal | 11.70 | 1265 | 1260 | - | 0.29 | - | - | - | - | - | MS, RI |
2-Phenyl-2-butenal | 11.94 | 1278 | 1276 | - | - | - | - | - | 1.24 | - | MS, RI |
1-Undecanal | 12.43 | 1309 | 1310 | - | 2.05b | - | 0.67c | - | 0.44d | 3.03a | MS, RI |
1-Dodecanal | 13.97 | 1411 | 1412 | 0.72a | 0.59b | - | - | - | - | - | MS, RI |
1-Hexadecanal | 19.59 | 1807 | 1822 | 0.86b | - | - | 0.98a | - | - | - | MS, RI |
SubTOTAL | 60.14c | 162.5a | 28.03e | 45.27d | 9.8f | 48.1d | 122.12b | ||||
Terpenoids | |||||||||||
β-Ocimene | 7.57 | 1052 | 1051 | - | 0.20b | - | - | - | 3.07a | - | MS, RI |
(E)-Citral | 8.26 | 1082 | 1078 | - | 13.09a | 0.59c | - | - | - | 3.04b | MS |
Linalool | 8.63 | 1101 | 1098 | 4.13b | 45.37a | - | - | - | 0.39c | - | MS, RI |
(E,Z)-Alloocimene | 9.33 | 1130 | 1131 | - | 0.25 | - | - | - | - | - | MS, RI |
(E,E)-Alloocimene | 9.58 | 1149 | 1142 | - | 0.18 | - | - | - | - | - | MS, RI |
2-Ethenyl-1,1-dimethyl-3-methylenecyclohexane | 9.74 | 1168 | - | 2.07 | - | - | - | - | - | - | MS |
Methyl geranate | 12.71 | 1327 | 1326 | - | 3.7 | - | - | - | - | - | MS, RI |
Eugenol | 13.27 | 1364 | 1359 | - | 0.40c | 2.16b | 20.15a | - | 0.42c | - | MS, RI |
(E)-β-Damascone | 14.11 | 1421 | 1420 | - | - | - | - | - | 0.81 | - | MS, RI |
(E)-Geranyl acetone | 14.60 | 1456 | 1454 | 12.00a | 2.93b | - | - | 0.63c | 2.21b | 2.29b | MS, RI |
α-Curcumene | 15.09 | 1492 | 1483 | - | - | - | - | 0.63b | 0.50b | 2.02a | MS, RI |
α-Farnesene | 15.35 | 1512 | 1507 | 2.62c | - | - | 18.09a | 2.89c | 1.48d | 4.04b | MS, RI |
Geranyl linalool | 23.85 | 2024 | 2034 | 72.36 | - | - | - | - | - | - | MS, RI |
SubTOTAL | 93.17a | 66.11b | 2.16e | 38.24c | 4.16e | 8.88d | 11.39d | ||||
Ketones | |||||||||||
6-Methyl-5-hepten-2-one | 5.64 | 997 | 991 | 15.51a | 2.28b | 1.52bc | 1.94b | 0.22c | 0.34c | 1.38bc | MS, RI |
Acetophenone | 7.92 | 1072 | 1068 | 0.91a | - | - | - | - | 0.32b | - | MS, RI |
4-Oxoisophorone | 9.56 | 1148 | 1147 | - | - | - | - | - | 0.52 | - | MS, RI |
Benzophenone | 16.88 | 1630 | 1625 | - | - | 2.95 | - | - | - | - | MS, RI |
SubTOTAL | 16.42a | 2.28c | 4.47b | 1.93c | 0.22e | 1.18d | 1.38d | ||||
Alkanes | |||||||||||
Dodecane | 10.65 | 1198 | 1200 | 1.39e | 2.93d | 0.86f | 3.36c | - | 5.67b | 4.99a | MS, RI |
Tridecane | 12.27 | 1298 | 1300 | 7.40a | 0.90d | 4.20c | 5.69b | 0.41e | 0.81d | 7.69a | MS, RI |
Farnesane | 13.46 | 1376 | 1376 | 19.32a | 0.63e | 2.82d | 7.98b | 0.54ef | 0.36f | 7.19c | MS, RI |
Tetradecane | 13.80 | 1400 | 1400 | 28.98b | 4.86e | 11.68c | 43.44a | 7.92d | 1.91f | 28.12b | MS, RI |
n-Octylcyclohexane | 14.24 | 1443 | 1447 | 8.30c | 0.75e | - | 10.36a | 1.49d | 1.11de | 9.65b | MS, RI |
3-Methyltetradecane | 14.76 | 1471 | 1470 | 13.17b | 0.54c | 193.53a | 8.22bc | 1.78c | 8.22bc | 7.01bc | MS, RI |
Pentadecane | 15.20 | 1500 | 1500 | 58.71b | 15.65e | 19.01d | 78.29a | 16.83e | 0.68f | 30.77c | MS, RI |
3-Methylpentadecane | 15.94 | 1572 | 1571 | 21.92a | 0.51d | 18.29b | 5.29c | 0.59d | 0.63d | 1.13d | MS, RI |
n-Nonylcyclohexane | 15.95 | 1558 | 1556 | 4.16b | 0.66g | 2.68c | 7.76a | 1.41e | 1.07f | 2.35d | MS, RI |
Hexadecane | 16.50 | 1600 | 1600 | 21.82bc | 5.46c | 213.03a | 39.79b | 3.53c | 0.41c | 5.76c | MS, RI |
SubTOTAL | 185.16c | 32.88e | 466.10a | 210.17b | 34.49e | 20.87f | 104.67d | ||||
Heterocycle | |||||||||||
2-Pentyl-furan | 5.76 | 1001 | 996 | 4.91a | 0.55e | 1.49d | 3.08c | 0.15f | 4.33b | 0.51e | MS, RI |
Esters | |||||||||||
3-Methyl-2-oxovalerate | 4.61 | 958 | 957 | - | - | 0.61c | 4.11b | 0.32d | 5.10a | - | MS, RI |
Methyl 2-hydroxy-3-methyl pentanoate | 5.80 | 1003 | 994 | 31.21a | 2.04d | 0.84g | 1.44e | 0.97f | 5.06c | 7.98b | MS, RI |
(Z)-3-Hexenyl acetate | 6.27 | 1011 | 1005 | 21.11a | - | 2.60b | 2.30c | 0.08d | 2.22c | 2.69b | MS, RI |
Hexyl acetate | 6.59 | 1021 | 1011 | 3.39 | - | - | - | - | - | - | MS, RI |
Methyl 2-ethyl hexanoate | 7.25 | 1049 | 1043 | 10.31a | 1.82e | 2.90d | 2.79d | 0.32f | 3.87c | 7.68b | MS, RI |
Ethyl 2-hydroxy-4-methyl valerate | 7.98 | 1077 | 1078 | 1.35c | 13.36a | - | - | - | - | 3.38b | MS, RI |
Ethyl 2-ethylhexanoate | 8.94 | 1104 | 1109 | - | 0.77 | - | - | - | - | - | MS, RI |
(Z)-3-Hexenyl iso-butyrate | 9.63 | 1151 | 1145 | - | - | - | - | - | - | 0.58 | MS, RI |
2-Phenylethyl formate | 10.20 | 1173 | 1176 | 4.76a | - | 1.00c | 0.75c | - | 2.88b | - | MS, RI |
(E)-3-Hexenyl iso-butyrate | 10.42 | 1183 | 1186 | - | - | - | - | - | - | 1.3 | MS, RI |
Ethyl octanoate | 10.60 | 1198 | 1196 | - | 0.82 | - | - | - | - | - | MS, RI |
(Z)-3-Hexenyl valerate | 11.17 | 1232 | 1235 | - | 0.60c | 0.98b | - | 0.13e | 0.22d | 11.12a | MS, RI |
Hexyl 2-methylbutyrate | 11.26 | 1237 | 1239 | - | 0.60b | - | - | 0.53b | - | 2.57a | MS, RI |
(E)-2-Hexenyl valerate | 11.31 | 1240 | 1243 | - | - | 1.19 | - | - | - | - | MS, RI |
Phenethyl acetate | 11.64 | 1260 | 1256 | - | - | 1.63c | 4.14a | 0.52d | 0.58d | 0.90b | MS, RI |
Propyl benzoate | 12.09 | 1287 | 1284 | - | - | 1.55 | - | - | - | - | MS, RI |
Ethyl nonanoate | 12.25 | 1297 | 1294 | - | 0.24 | - | - | - | - | - | MS, RI |
2-Methyl-phenylmethyl formate | 12.41 | 1307 | 1271 | - | - | - | - | 0.72 | - | - | MS |
(Z)-3-Hexenyl 2-methylcrotonate | 12.70 | 1327 | 1325 | 0.65b | - | - | - | - | 0.46c | 3.08a | MS, RI |
Hexyl tiglate | 12.81 | 1333 | 1331 | - | - | - | - | - | - | 0.6 | MS, RI |
(E)-2-Hexenyl tiglate | 12.90 | 1340 | 1338 | - | - | - | - | 0.25b | - | 0.52a | MS, RI |
Butyl benzoate | 13.51 | 1380 | 1377 | 2.28a | - | - | 1.78c | 0.22d | 2.05b | - | MS, RI |
(Z)-3-Hexenyl hexanoate | 13.56 | 1383 | 1382 | - | - | - | - | - | - | 0.49 | MS, RI |
Ethyl decanoate | 13.75 | 1396 | 1392 | - | 0.29 | - | - | - | - | - | MS, RI |
Ethyl laurate | 16.43 | 1595 | 1597 | - | 0.38 | - | - | - | - | - | MS, RI |
2-Ethyl hexyl benzoate | 17.98 | 1722 | 1735 | - | - | 5.63 | - | - | - | - | MS, RI |
Methyl palmitate | 21.76 | 1935 | 1928 | - | - | 1.67a | 1.09b | 0.28c | - | - | MS, RI |
Ethyl palmitate | 23.54 | 2010 | 1996 | - | 1.36 | - | - | - | - | - | MS, RI |
SubTOTAL | 75.08a | 22.3c | 20.6c | 18.39c | 4.35d | 22.43c | 43.52b |
Code | Volatile Compounds | Threshold (μg kg−1) 1 | OAVs 2 | Odor Description | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Anli | Bayuesu | Golden | Brown Peel | KorlaXiangli | Lyubaoshi | Xizilü | ||||
A 1 | 1-Octanal | 0.7 [22] | 13.97 | 3.25 | 3.19 | 2.1 | 32.04 | Aldehydic, citrus-like | ||
A 2 | 1-Nonanal | 1 [23] | 5.42 | 46.53 | 8.75 | 10.32 | 1.32 | 37.29 | 49.76 | Aldehydic, citrus, floral |
A 3 | 1-Dodecanal | 2 [22] | 0.36 | 0.29 | Aldehydic, soapy, floral, citrus | |||||
A 4 | 1-Undecanal | 12.5 [23] | 0.16 | 0.05 | 0.03 | 0.24 | Aldehydic, waxy, citrus | |||
A 5 | 1-Decanal | 3 [24] | 1.08 | 27.09 | 2.56 | 1.05 | 0.25 | 0.47 | 14.56 | Aldehydic, waxy, citrus |
C 1 | (E)-Citral | 32 [23] | 0.41 | 0.02 | 0.1 | Citrus, lemon-like | ||||
C 2 | 2-Ethyl hexanol | 270,000 [22] | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | Citrus, fatty, floral | ||
C 3 | 6-Methyl-5-hepten-2-one | 68 [25] | 0.23 | 0.03 | 0.03 | 0.02 | <0.01 | <0.01 | 0.02 | Citrus, green, lemongrass |
E 1 | 2-Ethyl hexyl benzoate | NE | Ethereal | |||||||
Fa 1 | 1-Dodecanol | 16 [26] | 0.35 | Fatty | ||||||
Fa 2 | (E)-2-Octenal | 3 [23] | 0.1 | Fatty, cucumber | ||||||
Fa 3 | Butyl benzoate | NE | Fatty, balsamic | |||||||
Fa 4 | Propyl benzoate | NE | Fatty, fruity, balsamic nutty | |||||||
Fa 5 | Benzophenone | NE | Fatty, balsamic, geranium, rose | |||||||
Fa 6 | (E)-2-Nonenal | 0.9 [27] | 24.13 | 0.49 | Fatty, green, citrus | |||||
Fa 7 | 1-Heptanol | 3 [22] | 0.18 | 0.04 | 0.34 | Fatty, spicy, oily, solvent | ||||
Fa 8 | (E)-2-Decenal | 3 [24] | 0.1 | Fatty, waxy, mushroom | ||||||
Fa 9 | 1-Decanol | 0.1 [22] | 28.7 | 33.18 | Fatty, waxy | |||||
Fl 1 | (E)-Geranyl acetone | 60 [28] | 0.2 | 0.05 | 0.01 | 0.04 | 0.04 | Floral, magnolia | ||
Fl 2 | 2-Phenylethanol | 750 [28] | 0.14 | 0.01 | 0.03 | 0.06 | <0.01 | 0.01 | 0.02 | Floral, floral-rose |
Fl 3 | Geranyl linalool | NE | Floral, floral-rose | |||||||
Fl 4 | Acetophenone | 65 [22] | 0.01 | <0.01 | Floral, bitter almond | |||||
Fl 5 | Linalool | 6 [23] | 0.69 | 7.56 | 0.07 | Floral, citrus, lemon | ||||
Fl 6 | 2-Methyl naphthalene | 3 [23] | 0.15 | 0.07 | 0.22 | 0.07 | 0.64 | Floral, fatty, oily | ||
Fl 7 | β-Ocimene | 34 [29] | 0.01 | 0.09 | Floral, green, lavender, mango | |||||
Fl 8 | 2-Phenylethyl formate | 270 [30] | 0.02 | <0.01 | <0.01 | 0.01 | Floral, green, rose, hyacinth | |||
Fl 9 | Phenethyl acetate | 0.25 [23] | 16.56 | 6.51 | 2.07 | 2.34 | 3.61 | Floral, honey, rose, honey | ||
Fl 10 | 1-Nonanol | 50 [23] | 0.12 | 0.19 | 0.06 | 0.04 | <0.01 | 0.01 | 0.26 | Floral, waxy, rose, orange |
Fr 1 | (E)-β-Damascone | 0.05 [23] | 16.17 | Fruity, floral-rose note | ||||||
Fr 2 | (Z)-3-Hexenyl iso-butyrate | NE | Fruity, apple, pear | |||||||
Fr 3 | Hexyl acetate | 2 [31] | 1.69 | Fruity, pear | ||||||
Fr 4 | Methyl 2-hydroxy-3-methyl pentanoate | 2.4 [32] | 13.01 | 0.85 | 0.6 | 0.35 | 0.41 | 2.11 | 3.32 | Fruity, estery caramellic |
Fr 5 | Ethyl 2-hydroxy-4-methyl valerate | NE | Fruity, blackberry | |||||||
Fr 6 | Benzaldehyde | 350 [23] | 0.13 | <0.01 | 0.05 | 0.02 | 0.01 | 0.01 | 0.01 | Fruity, almond |
Fr 7 | 2-Pentyl-furan | 5.8 [33] | 0.85 | 0.09 | 0.53 | 0.26 | 0.03 | 0.75 | 0.09 | Fruity, green bean |
G 1 | (E)-3-Hexenyl iso-butyrate | 500 [26] | <0.01 | Green, green-fruity | ||||||
G 2 | 3-Hexenol | 70 [23] | 0.06 | Green, green leafy-like | ||||||
G 3 | 2-Hexenal | 17 [23] | 0.25 | Green, green leafy-like | ||||||
G 4 | 1-Hexanol | 500 [23] | <0.01 | <0.01 | Green, green leafy-like | |||||
G 5 | (Z)-3-Hexenyl acetate | 16 [31] | 1.32 | 0.14 | 0.16 | 0.01 | 0.14 | 0.17 | Green, green banana-like | |
G 6 | Hexyl 2-methylbutyrate | 22 [29] | 0.03 | 0.02 | 0.12 | Green, green apple | ||||
G 7 | (Z)-3-Hexenyl valerate | NE | Green | |||||||
G 8 | Phenyl acetaldehyde | 4 [34] | 1.59 | 1.71 | 0.31 | 0.68 | Green, honey, hyacinth type | |||
H 1 | α-Curcumene | NE | Herbal, herbal | |||||||
O 1 | Ethyl 2-ethylhexanoate | 50 [29] | 0.02 | Orris | ||||||
Ph 1 | Phenol | 5900 [22] | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | Phenolic, pungent | ||
Pu 1 | Eugenol | 6 [23] | 0.07 | 3.36 | 0.36 | 0.07 | Pungent, spicy, clove | |||
Pu 2 | Naphthalene | 21 [23] | 0.09 | 0.06 | 0.26 | 0.09 | 0.06 | 0.01 | 0.13 | Pungent, dry resinous |
Pu 3 | Hydroquinone | 5000 [35] | 0.01 | <0.01 | <0.01 | 0.01 | <0.01 | <0.01 | <0.01 | Pungent |
Pu 4 | p-Benzoquinone | NE | Pungent | |||||||
T 1 | (E,Z)-Alloocimene | NE | Terpenic | |||||||
T 2 | (E,E)-Alloocimene | NE | Terpenic | |||||||
Wa 1 | 1-Octanol | 110 [23] | 0.02 | 0.01 | 0.01 | <0.01 | <0.01 | 0.14 | Waxy, citrus | |
Wa 2 | (Z)-3-Nonenol | NE | Waxy, cilantro | |||||||
Wa 3 | 1-Tetradecanol | NE | Waxy | |||||||
Wa 4 | Hexadecanal | NE | Waxy | |||||||
Wa 5 | Ethyl octanoate | 5 [36] | 0.16 | Waxy, pineapple, apple | ||||||
Wa 6 | Ethyl laurate | 400 [26] | <0.01 | Waxy, fruity | ||||||
Wa 7 | Ethyl nonanoate | 377 [23] | <0.01 | Waxy, fatty oily, fruity, wine | ||||||
Wa 8 | Ethyl decanoate | 23 [26] | 0.01 | Waxy, coconut | ||||||
Wa 9 | Ethyl palmitate | 2000 [23] | <0.01 | Waxy, balsamic | ||||||
Wo 1 | 4-Oxoisophorone | NE | Woody, citrus, musty | |||||||
Wo 2 | α-Farnesene | 87 [37] | 0.03 | 0.21 | 0.03 | 0.02 | 0.05 | Woody, green vegetative nuance |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wu, J.; Wang, H.; Zhang, K.; Song, F. Evaluation and Comparison of Pear Flower Aroma Characteristics of Seven Cultivars. Horticulturae 2022, 8, 352. https://doi.org/10.3390/horticulturae8050352
Li X, Wu J, Wang H, Zhang K, Song F. Evaluation and Comparison of Pear Flower Aroma Characteristics of Seven Cultivars. Horticulturae. 2022; 8(5):352. https://doi.org/10.3390/horticulturae8050352
Chicago/Turabian StyleLi, Xiaoying, Junkai Wu, Haijing Wang, Kai Zhang, and Fuhang Song. 2022. "Evaluation and Comparison of Pear Flower Aroma Characteristics of Seven Cultivars" Horticulturae 8, no. 5: 352. https://doi.org/10.3390/horticulturae8050352
APA StyleLi, X., Wu, J., Wang, H., Zhang, K., & Song, F. (2022). Evaluation and Comparison of Pear Flower Aroma Characteristics of Seven Cultivars. Horticulturae, 8(5), 352. https://doi.org/10.3390/horticulturae8050352