Plant Regeneration Protocol for Recalcitrant Passionflower (Passiflora quadrangularis L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Plant Materials and Explants
2.2. Culture Media and Growth Conditions
2.3. Explant Asepsis
2.4. Initiation and Stabilization of In Vitro Plantlets
2.5. Shoot Subculturing
2.6. In Vitro Rooting of Regenerants
2.7. Acclimatization of Regenerants
2.8. Experimental Design and Data Analysis
3. Results
3.1. Explant Asepsis
3.2. Initiation and Stabilization of In Vitro Plantlets
3.3. Shoot Subculturing
3.4. In Vitro Rooting of Regenerants
3.5. Acclimatization of Regenerants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dhawan, K.; Dhawan, S.; Sharma, A. Passiflora: A review update. J. Ethnopharmacol. 2004, 94, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Bernardes, P.M.; Nicoli, C.F.; Alexandre, R.S.; Guilhen, J.H.S.; Praça-Fontes, M.M.; Ferreira, A.; da Silva Ferreira, M.F. Vegetative and reproductive performance of species of the genus Passiflora. Sci. Hortic. 2020, 265, 109193. [Google Scholar] [CrossRef]
- Vijay, A.; Nizam, A.; Radhakrishnan, A.M.; Anju, T.; Kashyap, A.K.; Kumar, N.; Kumar, A. Comparative study of ovule development between wild (Passiflora foetida L.) and cultivated (P. edulis Sims) species of Passiflora L. provide insights into its differential developmental patterns. J. Zool. Bot. Gard. 2021, 2, 502–516. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. Passion fruits. Encycl. Food Sci. Nutr. 2003, 2, 4368–4373. [Google Scholar] [CrossRef]
- Faleiro, F.G.; Junqueira, N.T.V.; Junghans, T.G.; de Jesus, O.N.; Miranda, D.; Otoni, W.C. Advances in passion fruit (Passiflora spp.) propagation. Rev. Bras. Frutic. 2019, 41, 1–17. [Google Scholar] [CrossRef]
- Torsten, U.; MacDougal, J.M. Passiflora: Passionflowers of the World, 1st ed.; Timber Press: Portland, OR, USA, 2004. [Google Scholar]
- Guevara, M.; Tejera, E.; Granda-Albuja, M.G.; Iturralde, G.; Chisaguano-Tonato, M.; Granda-Albuja, S.; Jaramillo-Vivanco, T.; Giampieri, F.; Battino, M.; Alvarez-Suarez, J.M. Chemical composition and antioxidant activity of the main fruits consumed in the western coastal region of Ecuador as a source of health-promoting compounds. Antioxidants 2019, 8, 387. [Google Scholar] [CrossRef] [Green Version]
- Costa, G.M.; Gazola, A.C.; Zucolotto, S.M.; Castellanos, L.; Ramos, F.A.; Reginatto, F.H.; Schenkel, E.P. Chemical profiles of traditional preparations of four South American Passiflora Species by chromatographic and capillary electrophoretic techniques. Braz. J. Pharmacogn. 2016, 26, 451–458. [Google Scholar] [CrossRef] [Green Version]
- Antognoni, F.; Zheng, S.; Pagnucco, C.; Baraldi, R.; Poli, F.; Biondi, S. Induction of flavonoid production by UV-B Radiation in Passiflora quadrangularis callus cultures. Fitoterapia 2007, 78, 345–352. [Google Scholar] [CrossRef]
- Shahbani, N.S.; Ramaiya, S.D.; Saupi, N.; Bujang, J.S.; Zakaria, M.H. Reproductive Biology and fruit setting of Passiflora quadrangularis L. (giant granadilla) in East Malaysia. Pertanika J. Trop. Agric. Sci. 2020, 43, 637–652. [Google Scholar] [CrossRef]
- Ramaiya, S.D.; Bujang, J.S.; Zakaria, M.H. Assessment of total phenolic, antioxidant, and antibacterial activities of Passiflora species. Sci. World J. 2014, 2014, 167309. [Google Scholar] [CrossRef] [Green Version]
- Yuldasheva, L.N.; Carvalho, E.B.; Catanho, M.T.J.A.; Krasilnikov, O.V. Cholesterol-dependent hemolytic activity of Passiflora quadrangularis leaves. Braz. J. Med. Biol. Res. 2005, 38, 1061–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandre, R.S.; Júnior, A.W.; Rondinelli, J. Germinação de sementes de genótipos de maracujazeiro. Pesqui. Agropecu. Bras. 2004, 39, 1239–1245. [Google Scholar] [CrossRef]
- Ożarowski, M.; Thiem, B. Development and optimization of a low-cost system for micropropagation of valuable medicinal plants of Passiflora species. In Proceedings of the Conference: I International Scientific and Practical Internet Conference "Investigations of medicinal plants—Theoretical and practical aspects", Kharkiv, Ukraine, 20–21 March 2014; At: Abstract book. National University of Pharmacy: Kharkiv, Ukraine, 2014; pp. 270–271. [Google Scholar]
- Boboc Oros, P.; Hitter Buru, T.; Cătană, C.; Cantor, M. In vitro plant tissue culture: Means for production of Passiflora species. Int. J. Innov. Approaches Agric. Res. 2020, 4, 505–523. [Google Scholar] [CrossRef]
- Rodríguez, A.; Fábio, C.; Faleiro, G.; Parra, M.; Ana, M.; Costa, M. Pasifloras Especies Cultivadas En El Mundo; ProImpress Cepass: Brasília, Brazil, 2020. [Google Scholar]
- Arogundade, O.; Oyekanmi, J.; Oresanya, A.; Ogunsanya, P.; Akinyemi, S.O.S.; Lava Kumar, P. First report of Passion Fruit Woodiness Virus associated with Passion Fruit Woodiness disease of passion fruit in Nigeria. Plant Dis. 2018, 102, 1181. [Google Scholar] [CrossRef]
- Drew, R.A. Micropropagation of Passiflora species (passionfruit). In High-Tech and Micropropagation V; Springer: Berlin/Heidelberg, Germany, 1997; Volume 39, pp. 135–149. [Google Scholar] [CrossRef]
- Boro, M.C.; Beriam, L.O.S.; Guzzo, S.D. Induced resistance against Xanthomonas axonopodis pv. Passiforae in passion fruit plants. Trop. Plant Pathol. 2011, 36, 74–80. [Google Scholar] [CrossRef]
- Hadaś, E.; Ozarowski, M.; Derda, M.; Thiem, B.; Cholewiński, M.; Skrzypczak, Ł.; Gryszczyńska, A.; Piasecka, A. The Use of extracts from Passiflora spp. in helping the treatment of acanthamoebiasis. Acta Pol. Pharm.-Drug Res. 2017, 74, 921–928. [Google Scholar]
- Otoni, W.C.; Pinto, D.L.P.; Rocha, D.I.; Vieira, L.M.; Dias, L.L.C.; da Silva, M.L.; da Silva, C.V.; Lani, E.R.G.; da Silva, L.C.; Tanaka, F.A.O. Organogenesis and somatic embryogenesis in passionfruit (Passiflora sps.). Somat. Embryog. Gene Expr. 2013, 1, 1–17. [Google Scholar]
- Fernando, J.A.; Vieira, M.L.C.; MacHado, S.R.; Appezzato-Da-Glória, B. New insights into the in vitro organogenesis process: The case of Passiflora. Plant Cell. Tissue Organ Cult. 2007, 91, 37–44. [Google Scholar] [CrossRef]
- Jafari, M.; Daneshvar, M.; Lotfi-Jalalabadi, A. Control of in vitro contamination of Passiflora caerulea by using of sodium hypochlorite. Indo-Am. J. Agric. Vet. Sci. 2016, 4, 8–15. [Google Scholar]
- Rathod, H.P.; Pohare, M.B.; Bhor, S.A.; Jadhav, K.P.; Batule, B.S.; Shahakar, S.; Wagh, S.G.; Wadekar, H.B.; Kelatkar, S.K.; Kulkarni, M.R. In vitro micropropagation of blue passion flower (Passiflora caerulea L.). Trends Biosci. 2014, 7, 3079–3082. [Google Scholar]
- Otahola, V.; Diaz, M. Regeneracion in vitro de Passiflora edulis f. flavicarpa y Passiflora quadrangularis utilizando dos tipos de explante provenientes de plantas adultas y bencilaminopurina. Udo 2010, 10, 23–28. [Google Scholar]
- Prithviraj, H.S.; Hemanth, K.; Prakasha, N.K.; Shobha, J. An efficient in vitro regeneration of multiple shoots from leaf explant of Passiflora caerulea L. an important medicinal plant. Int. J. Recent Sci. Res. 2015, 6, 7263–7265. [Google Scholar]
- Murashige, T.; Skoog, F. A Revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Mikosvki, A.I.; Silva, N.T.; Souza, C.S.; Machado, M.D.; Otoni, W.C.; Carvalho, I.F.; Rocha, D.I.; Silva, M.L. Tissue culture and biotechnological techniques applied to passion fruit with ornamental potential: An overview. Ornam. Hortic. 2019, 25, 189–199. [Google Scholar] [CrossRef]
- de Faria, R.B.; de Carvalho, I.F.; Rossi, A.A.B.; de Matos, E.M.; Rocha, D.I.; Paim Pinto, D.L.; Otoni, W.C.; da Silva, M.L. High responsiveness in de novo shoot organogenesis induction of Passiflora cristalina (Passifloraceae), a wild Amazonian passion fruit species. Vitr. Cell. Dev. Biol.-Plant 2018, 54, 166–174. [Google Scholar] [CrossRef]
- Vieira, L.M.; Rocha, D.I.; Taquetti, M.F.; da Silva, L.C.; de Campos, J.M.S.; Viccini, L.F.; Otoni, W.C. In vitro plant regeneration of Passiflora setacea D.C. (Passifloraceae): The Influence of explant type, growth regulators, and incubation conditions. Vitr. Cell. Dev. Biol.-Plant 2014, 50, 738–745. [Google Scholar] [CrossRef]
- Garcia, R.; Pacheco, G.; Falcão, E.; Borges, G.; Mansur, E. Influence of type of explant, plant growth regulators, salt composition of basal medium, and light on callogenesis and regeneration in Passiflora suberosa L. (Passifloraceae). Plant Cell. Tissue Organ Cult. 2011, 106, 47–54. [Google Scholar] [CrossRef]
- Davey, M.R.; Cancino, G.O.; Gill, M.I.S.; Anthony, P.; Power, J.B. Micropropagation of tropical fruits: Beneficial effects of non-ionic surfactants. ISHS Acta Hortic. 2003, 616, 353–358. [Google Scholar] [CrossRef]
- Lowe, K.C.; Davey, M.R.; Power, J.B.; Mulligan, B. Surfactant supplements systems in plant culture. Agrofoodindustry High-Tech. 1993, 4, 9–13. [Google Scholar]
- Kok, A.D.X.; Mohd Yusoff, N.F.; Sekeli, R.; Wee, C.Y.; Lamasudin, D.U.; Ong-Abdullah, J.; Lai, K.S. Pluronic F-68 improves callus proliferation of recalcitrant rice cultivar via enhanced carbon and nitrogen metabolism and nutrients uptake. Front. Plant Sci. 2021, 12, 667434. [Google Scholar] [CrossRef]
- Kok, A.D.X.; Wan Abdullah, W.M.A.N.; Tan, N.P.; Ong-Abdullah, J.; Sekeli, R.; Wee, C.Y.; Lai, K.S. Growth promoting effects of Pluronic f-68 on callus proliferation of recalcitrant rice cultivar. 3 Biotech 2020, 10, 116. [Google Scholar] [CrossRef] [PubMed]
- Irshad, M.; Rizwan, H.M.; Debnath, B.; Anwar, M.; Li, M.; Liu, S.; He, B.; Qiu, D. Ascorbic acid controls lethal browning and Pluronic F-68 promotes high-frequency multiple shoot regeneration from cotyldonary node explant of okra (Abelmoschus sculentus L.). HortScience 2018, 53, 183–190. [Google Scholar] [CrossRef]
- Barbulescu, D.M.; Burton, W.A.; Salisbury, P.A. Pluronic F-68: An answer for shoot regeneration recalcitrance in microspore-derived Brassica napus embryos. Vitr. Cell. Dev. Biol.-Plant 2011, 47, 282–288. [Google Scholar] [CrossRef]
- Khas, M.E.; Abbasifar, A.; Valizadehkaji, B. Optimization of in vitro propagation of purple passion fruit (Passiflora edulis), an important medicinal and ornamental plant. Int. J. Hortic. Sci. Technol. 2020, 7, 305–314. [Google Scholar] [CrossRef]
- Trevisan, F.; Mendes, B.M.J. Optimization of in vitro organogenesis in passion fruit (Passiflora edulis f. flavicarpa). Sci. Agric. 2005, 62, 346–350. [Google Scholar] [CrossRef]
- Huh, Y.S.; Lee, J.K.; Nam, S.Y. Effect of plant growth regulators and antioxidants on in vitro plant regeneration and callus induction from leaf explants of purple passion fruit (Passiflora edulis Sims). J. Plant Biotechnol. 2017, 44, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Tuhaise, S.; Nakavuma, J.L.; Adriko, J.; Ssekatawa, K.; Kiggundu, A. In vitro regeneration of Ugandan passion fruit cultivars from leaf discs. BMC Res. Notes 2019, 12, 425. [Google Scholar] [CrossRef]
- Drew, R.A. In vitro culture of adult and juvenile bud explants of Passiflora species. Plant Cell. Tissue Organ Cult. 1991, 26, 23–27. [Google Scholar] [CrossRef]
- Reis, L.B.; Paiva Neto, V.B.; Toledo Picoli, E.A.; Costa, M.G.C.; Rego, M.M.; Carvalho, C.R.; Finger, F.L.; Otoni, W.C. Axillary bud development of passionfruit as affected by ethylene precursor. Vitr. Cell. Dev. Biol.-Plant 2003, 39, 618–622. [Google Scholar] [CrossRef]
- Faria, J.L.C.; Segura, J.; de Biolog, D.; de Farmacia, F.; de Valencia, U.; Vicent, A.; Estell, A.; August, R.; Smith, M.A.L. In vitro control of adventitious bud differentiation by inorganic medium components and silver thiosulfate in explants of Passiflora edulis f. flavicarpa. Vitr. Cell. Dev. Biol.-Plant 1997, 33, 209–212. [Google Scholar] [CrossRef]
- Pua, E.-C. Morphogenesis in cell and tissue cultures: Role of ethylene and polyamines. In Morphogenesis in Plant Tissue Culture; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; pp. 255–303. [Google Scholar]
- Kumar, V.; Parvatam, G.; Ravishankar, G.A. AgNO3—A potential regulator of ethylene activity and plant growth modulator. Electron. J. Biotechnol. 2009, 12, 8–9. [Google Scholar] [CrossRef] [Green Version]
- Pinto, A.P.C.; Monteiro-Hara, A.C.B.A.; Stipp, L.C.L.; Mendes, B.M.J. In vitro organogenesis of Passiflora alata. Vitr. Cell. Dev. Biol.-Plant 2010, 46, 28–33. [Google Scholar] [CrossRef]
- Singh, C.R. Review article review on problems and its remedy in plant tissue culture. Asian J. Biol. Sci. 2018, 11, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Buendía-González, L.; Orozco-Villafuerte, J.; Cruz-Sosa, F.; Chávez-Ávila, V.M.; Vernon-Carter, E.J. Clonal propagation of mesquite tree (Prosopis laevigata Humb. & Bonpl. Ex Willd. M.C. Johnston). I. via cotyledonary nodes. Vitr. Cell. Dev. Biol.-Plant 2007, 43, 260–266. [Google Scholar] [CrossRef]
- Benson, E.E. Special Symposium: In vitro plant recalcitrance: An introduction. Vitr. Cell. Dev. Biol.-Plant 2000, 36, 141–148. [Google Scholar] [CrossRef]
- Benson, E.E. Do free radicals have a role in plant tissue culture recalcitrance? Vitr. Cell. Dev. Biol.-Plant 2000, 36, 163–170. [Google Scholar] [CrossRef]
- Boboc, P.; Cantor, M.; Pop, R. Studies concerning in vivo and in vitro vegetative propagation of Passiflora quadrangularis species. J. Hortic. For. Biotechnol. 2017, 21, 69–76. [Google Scholar]
- Ozarowski, M.; Thiem, B. Progress in micropropagation of Passiflora spp. to produce medicinal plants: A mini-review. Rev. Bras. Farmacogn.-Braz. J. Pharmacogn. 2013, 23, 937–947. [Google Scholar] [CrossRef] [Green Version]
- Puchtler, H.; Waldrop, F.S.; Conner, H.M.; Terry, M.S. Carnoy Fixation: Practical and Theoretical Considerations. Histochemie 1968, 16, 361–371. [Google Scholar] [CrossRef]
- Șerbănescu-Jitariu, G.; Andrei, M.; Rădulescu-Mitroiu, N.; Petria, E. Practicum de Biologie Vegetal; Ceres: Bucharest, Romania, 1983; pp. 263–265. [Google Scholar]
- Nakayama, F. Cultivo in vitro de tejidos de Passiflora caerulea. Rev. Fac. Agron. Univ. Nac. Plata 1966, 42, 63–74. [Google Scholar]
- Becerra, D.C.; Forero, A.P.; Góngora, G.A. Age and physiological condition of donor plants affect in vitro morphogenesis in leaf explants of Passiflora edulis f. flavicarpa. Plant Cell. Tissue Organ Cult. 2004, 79, 87–90. [Google Scholar] [CrossRef]
- Sozo, J.S.; Cruz, D.C.; Pavei, A.F.; Medeiros, I.; Wolfart, M.; Ramlov, F.; Montagner, D.F.; Maraschin, M.; Viana, A.M. In vitro culture and phytochemical analysis of Passiflora tenuifila Killip and Passiflora setacea DC (Passifloraceae). In Protocols for In Vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants, 2nd ed.; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2016; Volume 1391. [Google Scholar] [CrossRef] [Green Version]
- de Carvalho, P.P.; Antoniazzi, C.A.; de Faria, R.B.; de Carvalho, I.F.; Rocha, D.I.; da Silva, M.L. In vitro organogenesis from root explants of Passiflora miniata Mast., an amazonian species with ornamental potential. Braz. Arch. Biol. Technol. 2019, 62, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.Y.; Song, S.J.; Landrein, S. In vitro organogenesis and plant regeneration of Passiflora xishuangbannaensis, a species with extremely small populations. Glob. Ecol. Conserv. 2021, 31, e01836. [Google Scholar] [CrossRef]
- Minipara, D.; Dhaduk, H.; Patil, G.; Narayanan, S.; Kumar, S. Identification of best surface sterilization treatment and control of endophytic bacterial contamination in Annona squamosa L. Int. J. Plant Soil Sci. 2019, 29, 1–10. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Ramanathan, S.; Sengodagounder, S.; Senniappan, C.; Shanmuganathan, R.; Brindhadevi, K.; Kaliannan, T. Optimizing the sterilization methods for initiation of the five different clones of the Eucalyptus hybrid species. Biocatal. Agric. Biotechnol. 2019, 22, 101361. [Google Scholar] [CrossRef]
- Onwubiko, N.C.; Nkogho, C.S.; Anyanwu, C.P.; Onyeishi, G.C. Effect of different concentration of sterilant and exposure time on sweet potato (Ipomoea batatas Lam) explants. Int. J. Curr. Microbiol. Appl. Sci. 2013, 2, 14–20. [Google Scholar]
- Cassells, A.C. Problems in tissue culture: Culture contamination. In Micropropagation: Technology and Application; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991; pp. 31–44. [Google Scholar] [CrossRef]
- Leifert, C.; Morris, C.E.; Waites, W.M. Ecology of Microbial saprophytes and pathogens in tissue culture and field-grown plants: Reasons for contamination problems in vitro. Crit. Rev. Plant Sci. 1994, 13, 139–183. [Google Scholar] [CrossRef]
- Ugur, R. Development of in vitro sterilization protocol for DO-1 (Prunus domestica) rootstock. Appl. Ecol. Environ. Res. 2020, 18, 2339–2349. [Google Scholar] [CrossRef]
- Azofeifa-Bolaños, J.B.; Rivera-Coto, G.; Paniagua-Vásquez, A.; Cordero-Solórzano, R.; Salas-Alvarado, E. Disinfection effect of nodal segments from Vanilla planifolia Andrews on the morphogenetic response of in vitro plants. Agron. Mesoam. 2019, 30, 33–49. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Zhang, D.; Liu, F.; Qin, M.; Tian, D. Micropropagation of Nelumbo nucifera ‘Weishan Hong’ through germfree mature embryos. Vitr. Cell. Dev. Biol.-Plant 2019, 55, 305–312. [Google Scholar] [CrossRef]
- Hesami, M.; Daneshvar, M.H.; Lotfi-Jalalabadi, A. Effect of sodium hypochlorite on control of in vitro contamination and seed germination of Ficus religiosa. Iran. J. Plant Physiol. 2017, 7, 2157–2162. [Google Scholar] [CrossRef]
- Jafari, M.; Daneshvar, M.H.; Lotfi, A. In vitro shoot proliferation of Passiflora caerulea L. via cotyledonary node and shoot tip explants. Biotechnologia 2017, 98, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Pipino, L.; Braglia, L.; Giovannini, A.; Fascella, G.; Mercuri, A. In vitro regeneration of Passiflora species with ornamental value. Propag. Ornam. Plants 2008, 8, 47–49. [Google Scholar]
- Eed, A.M.; Reddy, S.A.; Reddy, K.M.; Silva, J.A.T.; Reddy, P.V.; Beghum, H.; Venkatsubbaiah, P.Y. Effect of antibiotics and fungicides on the in vitro production of Citrus limonia Osbeck nodal segment and shoot tip explants. Asian Australas. J. Plant Sci. Biotechnol. 2010, 4, 66–70. [Google Scholar]
- Mng’omba, S.A.; du Toit, E.S.; Akinnifesi, F.K.; Sileshi, G. Efficacy and utilization of fungicides and other antibiotics for aseptic plant cultures. In Fungicides for Plant and Animal Diseases; InTech: Houston, TX, USA, 2012; pp. 245–254. [Google Scholar] [CrossRef] [Green Version]
- Ravindra Kumar, K.; Singh, K.P.; Raju, D.; Bhatia, R.; Panwar, S. Influence of genotypes, growth regulators and basal media on direct differentiation of shoot buds from leaf segments of marigold (Tagetes spp.). Indian J. Exp. Biol. 2019, 57, 30–39. [Google Scholar]
- Venkatachalam, P.; Jinu, U.; Gomathi, M.; Mahendran, D.; Ahmad, N.; Geetha, N.; Sahi, S.V. Role of silver nitrate in plant regeneration from cotyledonary nodal segment explants of Prosopis cineraria (L.) Druce: A recalcitrant medicinal leguminous tree. Biocatal. Agric. Biotechnol. 2017, 12, 286–291. [Google Scholar] [CrossRef]
- Prammanee, S.; Thumjamras, S.; Chiemsombat, P.; Pipattanawong, N. Efficient shoot regeneration from direct apical meristem tissue to produce virus-free purple passion fruit plants. Crop Prot. 2011, 30, 1425–1429. [Google Scholar] [CrossRef]
- Muriithi, M.M. Analysis of Molecular Phylogeny of Kenyan Passion Fruit (Passiflora edulis) and Their Micropropagation to Establish Genetic Stability in Regenerants. Ph.D. Thesis, School of Biological Sciences College of Biological and Physical Sciences, University of Nairobi, Nairobi, Kenya, 2014. [Google Scholar] [CrossRef]
- Deepak, K.V.; Narayanan, G.S.; Prakash, M.; Murugan, S.; Anandan, R. Efficient plant regeneration and histological evaluations of regenerants through organogenesis and somatic embryogenesis in Spermacoce hispida L.—An underutilized medicinally important plant. Ind. Crops Prod. 2019, 134, 292–302. [Google Scholar] [CrossRef]
- Aslam, M.M.; Karanja, J.K.; Zhang, Q.; Lin, H.; Xia, T.; Akhtar, K.; Liu, J.; Miao, R.; Xu, F.; Xu, W. In vitro regeneration potential of white lupin (Lupinus albus) from cotyledonary nodes. Plants 2020, 9, 318. [Google Scholar] [CrossRef] [Green Version]
- Shekhawat, M.S.; Manokari, M.; Ravindran, C.P. An improved micropropagation protocol by ex vitro rooting of Passiflora edulis Sims. f. flavicarpa Deg. through nodal segment culture. Scientifica 2015, 2015, 578676. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Xin, X.; Wei, H.; Qiu, X.; Liu, B. In vitro regeneration, ex vitro rooting and foliar stoma studies of Pseudostellaria heterophylla (Miq.) Pax. Agronomy 2020, 10, 949. [Google Scholar] [CrossRef]
- Shiji, P.C.; Siril, E.A. An improved micropropagation and ex vitro rooting of a commercially important crop henna (Lawsonia Inermis L.). Physiol. Mol. Biol. Plants 2018, 24, 1273–1284. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.P.; Jayakumar, E.; Jeyachandran, R.; Nandagobalan, V.; Doss, A. Direct organogenesis of Passiflora foetida L. through nodal explants. Plant Tissue Cult. Biotechnol. 2012, 22, 87–91. [Google Scholar] [CrossRef]
Stage | Culture Media | Plant Growth Regulators (mg/L) | ||||
---|---|---|---|---|---|---|
BAP | KIN | TDZ | NAA | IBA | ||
Initiation (preliminary stage) | ||||||
MS-0 (Ct) | MS | - | ||||
MS-I.1 | MS | 0.5 | ||||
MS-I.2 | MS | 1 | ||||
MS-I.3 | MS | 1.5 | ||||
MS-I.4 | MS | 2 | ||||
MS-I.5 | MS | 2.5 | ||||
MS-I.6 | MS | 3 | ||||
MS-I.7 | MS | 1 | 1 | |||
MS-I.8 | MS | 2 | 1 | |||
MS-I.9 | MS | 3 | 1 | |||
MS-I.10 | MS | 1 | 2 | |||
MS-I.11 | MS | 2 | 2 | |||
MS-I.12 | MS | 3 | 2 | |||
Initiation (2nd stage) | ||||||
MS-0 (Ct) | MS | - | ||||
MS-1 | MS | 2 | ||||
MS-2 | MS | 2 | 1 | |||
Subculture | ||||||
MS-0 (Ct) | MS | |||||
MS-2 | MS | 2 | 1 | |||
MS-3 | MS | 2 | 1 | |||
MS-4 | MS | 2 | 0.5 | |||
Rooting induction | ||||||
½ MS-0 (Ct) | ½ MS | - | ||||
½ MS-5 | ½ MS | 1 | ||||
½ MS-6 | ½ MS | 1 |
Treatment | Pretreatment | Treatment | ||||
---|---|---|---|---|---|---|
Chemical Agent | Conc. 1 | Duration (min) | Chemical Agent | Conc. | Duration (min) | |
T1 | EtOH | 70% | 1 | NaClO 2 | 15% (v/v) | 10 |
T2 | 15 | |||||
T3 | 20 | |||||
T4 | 25% (v/v) | 10 | ||||
T5 | 15 | |||||
T6 | 20 | |||||
T7 | 50% (v/v) | 10 | ||||
T8 | 15 | |||||
T9 | 20 | |||||
T10 | Rifampicin | 15 µg/mL | 15 | EtOH NaClO | 70% 50% | 1 10 |
T11 | 30 | |||||
T12 | Benomyl | 2 g/L | 15 | |||
T13 | 30 | |||||
T14 | Rifampicin + Benomyl | 15 µg/mL 2 g/L | 15 | |||
T15 | 30 |
Treatment | Survival (%) | Contamination (%) | Browning (%) | Phytotoxicity (%) | Microbial | Contaminant Abundance | Incubation Period (Days) |
---|---|---|---|---|---|---|---|
T1 | 0.00 c | 100 a | 33.33 b | 0.00 e | F & B | ++++ | 2–4 |
T2 | 0.00 c | 100 a | 25.00 b,c | 0.00 e | F & B | ++++ | 2–4 |
T3 | 0.00 c | 73.33 b | 35.00 a,b | 20.00 d | F & B | +++ | 2–6 |
T4 | 0.00 c | 100.00 a | 36.67 a.b | 0.00 e | F & B | ++++ | 2–4 |
T5 | 16.67 c | 46.67 c | 63.33 a | 0.00 e | F & B | +++ | 3–5 |
T6 | 45.00 a,b | 38.33 c,d | 25.83 b,c | 21.67 d | F & B | +++ | 3–6 |
T7 | 60.00 a | 26.67 e,f | 46.67 a,b | 0.00 e | B | + | 2–4 |
T8 | 38.33 b | 26.67 e,f | 30.00 b | 23.33 d | B | + | 2–5 |
T9 | 0.00 | 0.00 g | 0.00 c | 100 a | - | - | - |
T10 | 50.00 a,b | 26.67 e,f | 31.67 b | 0.00 e | F & B | ++ | 3–5 |
T11 | 18.33 c | 28.33 d,e,f | 0.00 c | 66.67 c | F | +++ | 3–7 |
T12 | 43.33 a,b | 33.33 d,e | 37.50 a,b | 0.00 e | B | + | 5–7 |
T13 | 0.00 | 18.33 f | 0.00 c | 85.00 b | B | + | 5–7 |
T14 | 61.67 a | 0.00 g | 39.83 a,b | 0.00 e | - | - | - |
T15 | 0.00 | 0.00 g | 0.00 c | 100 a | - | - | - |
DS 5% | 18.14–21.3 | 10.22–12.313 | 25.8–30.64 | 4.79–5.68 |
Treatment | PGRs (mg/L) BAP KIN | Regeneration Frequency (%) | Callus Incidence (%) | Browning (%) | Phenolic Secretion (%) | No.of Shoots/ Explant | Shoot Length (cm) | |
---|---|---|---|---|---|---|---|---|
MS-I.0 (Ct) | 0 | 0 | 0.00 f | 47.77 a,b | 83.33 a | 0.00 g | 0.00 f | 0.00 f |
MS-I.1 | 0.5 | 0 | 0.00 f | 22.22 e | 80.00 a,b | 0.00 g | 0.00 f | 0.00 f |
MS-I.2 | 1.0 | 0 | 5.55 e,f | 36.66 b,c | 56.66 d,e,f | 15.55 e,f | 1.44 c,d,e | 0.63 e |
MS-I.3 | 1.5 | 0 | 16.66 b,c,d | 37.77 b,c | 47.77 f,g | 25.55 b,c,d | 2.08 b,c,d | 1.64 c,d |
MS-I.4 | 2.0 | 0 | 33.33 a | 51.11 a | 32.22 h | 17.77 e | 2.52 a,b | 2.54 a |
MS-I.5 | 2.5 | 0 | 22.22 b,c | 56.66 a | 37.77 g,h | 21.11 c,d,e | 1.69 b,c,d,e | 2.42 a |
MS-I.6 | 3.0 | 0 | 12.22 c,d,e | 37.77 b,c | 51.11 e,f,g | 33.33 a | 1.24 d,e | 2.47 a |
MS-I.7 | 1.0 | 1.0 | 13.33 c,d,e | 20.00 e | 67.77 b,c,d | 18.88 d,e | 1.13 e | 1.42 d |
MS-I.8 | 2.0 | 1.0 | 24.44 a,b | 34.44 c,d | 42.22 f,g,h | 11.11 f | 3.19 a | 1.80 b,c,d |
MS-I.9 | 3.0 | 1.0 | 25.55 a,b | 27.77 c,d,e | 47.77 f,g | 22.22 c,d,e | 2.19 b,c | 2.05 a,b,c |
MS-I.10 | 1.0 | 2.0 | 20.00 b,c,d | 27.78 c,d,e | 53.89 d,e,f | 20.00 d,e | 1.63 c,d,e | 2.23 a,b |
MS-I.11 | 2.0 | 2.0 | 10.00 d,e,f | 23.33 d,e | 63.33 c,d,e | 27.77 a,b,c | 1.50 c,d,e | 2.33 a,b |
MS-I.12 | 3.0 | 2.0 | 11.11 d,e | 16.67 e | 74.44 a,b,c | 30.00 a,b | 1.53 c,d,e | 2.03 a,b,c |
DS 5% | 9.55–11.22 | 10.32–12.12 | 13.69–16.08 | 6.25–7.34 | 0.77–0.90 | 0.49–0.58 |
Explant Position | Culture Media | Regeneration Frequency (%) | Callus Incidence (%) | Browning (%) | Phenolic Secretion (%) | No.of Shoots/ Explant | Shoot Length (cm) |
---|---|---|---|---|---|---|---|
vertical | MS-0 (Ct) | 0.00 d | 51.11 c,d | 78.88 a | 1.11 c | 0.00 c | 0.00 a |
MS-1 | 35.55 b | 56.66 b,c,d | 26.66 b | 28.89 a | 2.58 a | 2.34 a | |
MS-2 | 27.78 c | 40.00 d | 50.00 b | 13.33 b | 2.41 a | 2.52 a | |
horizontal | MS-0 (Ct) | 3.33 d | 82.22 a | 41.11 b | 17.77 b | 1.33 b | 1.07 a |
MS-1 | 52.22 a | 71.11 a,b | 35.55 b | 13.33 b | 2.69 a | 2.88 a | |
MS-2 | 36.66 b | 70.00 a,b,c | 33.33 b | 2.22 c | 2.72 a | 2.61 a | |
DS 5% | 5.66–6.03 | 18.77–20.01 | 23.33–24.88 | 8.46–9.02 | 1.01–1.07 | 0.80–0.85 |
Culture Media | No Treatment (Ct) | AgNO3 (mg/L) | Pluronic F-68 (%) | ||
---|---|---|---|---|---|
1 | 2 | 0.2 | 0.4 | ||
Regeneration frequency (%) | |||||
MS-0 (Ct) | 0.00 g | 0.00 g | 0.00 g | 0.00 g | 4.44 g |
MS-1 | 33.33 f | 64.44 c,d | 61.11 d | 84.44 a | 70.00 b,c,d |
MS-2 | 24.45 f | 48.89 e | 71.11 b,c | 73.33 b,c | 76.67 a,b |
DS 5% = 8.58–10.28 | |||||
Browning (%) | |||||
MS-0 (Ct) | 100.0 a | 26.67 c | 21.11 c,d | 22.22 c,d | 12.22 c,d |
MS-1 | 50.00 b | 18.89 c,d | 7.78 d | 16.67 c,d | 7.78 d |
MS-2 | 52.22 b | 16.67 c,d | 6.67 d | 11.11 c,d | 5.56 d |
DS 5% = 15.80–18.91 | |||||
No. of shoots/explant | |||||
MS-0 (Ct) | 0.00 g | 0.00 g | 0.00 g | 0.00 g | 1.11 f |
MS-1 | 2.52 e | 3.31 d | 3.92 b,c | 4.02 b,c | 4.36 a,b |
MS-2 | 3.15 d | 3.60 c,d | 3.99 b,c | 3.94 b,c | 4.71 a |
DS 5% = 0.56–0.67 | |||||
Shoot length (cm) | |||||
MS-0 (Ct) | 0.00 e | 0.00 e | 0.00 e | 0.00 e | 1.03 d |
MS-1 | 2.59 b | 2.49 b | 2.76 a,b | 2.81 a,b | 3.06 a |
MS-2 | 1.80 c | 2.54 b | 2.75 a,b | 2.76 a,b | 2.77 a,b |
DS 5% = 0.40–0.47 |
Subculture | Culture Media | Callus Incidence (%) | No. of Shoots | Shoot Length (cm) |
---|---|---|---|---|
Subculture 2 | MS-0 (Ct) | 91.11 a | 0.87 f | 2.02 e |
MS-2 | 62.22 b,c | 4.45 d | 3.58 c,d | |
MS-3 | 51.11 c,d | 5.01 c | 3.76 c | |
MS-4 | 75.55 a,b | 3.03 e | 3.14 d | |
Subculture 6 | MS-0 (Ct) | 35.55 d,e | 3.49 e | 3.24 d |
MS-2 | 17.78 e | 5.83 b | 4.28 a,b | |
MS-3 | 15.55 e | 7.17 a | 4.48 a | |
MS-4 | 20.00 e | 5.27 c | 3.94 b,c | |
DS 5% | 21.88–24.03 | 0.55–0.60 | 0.46–0.50 |
Culture Media | Rooting (%) | Regenerative Response (days) | Number of Main Roots |
---|---|---|---|
½ MS-0 (Ct) | 11.11 b | 20.79 a | 1.18 c |
MS-5 | 61.11 a | 14.35 b | 5.72 b |
MS-6 | 54.44 a | 14.21 b | 9.61 a |
DS 5% | 20.72–21.14 | 0.87–0.89 | 1.19–1.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boboc Oros, P.; Cantor, M.; Cordea, M.I.; Cătană, C. Plant Regeneration Protocol for Recalcitrant Passionflower (Passiflora quadrangularis L.). Horticulturae 2022, 8, 337. https://doi.org/10.3390/horticulturae8040337
Boboc Oros P, Cantor M, Cordea MI, Cătană C. Plant Regeneration Protocol for Recalcitrant Passionflower (Passiflora quadrangularis L.). Horticulturae. 2022; 8(4):337. https://doi.org/10.3390/horticulturae8040337
Chicago/Turabian StyleBoboc Oros, Paula, Maria Cantor, Mirela Irina Cordea, and Corina Cătană. 2022. "Plant Regeneration Protocol for Recalcitrant Passionflower (Passiflora quadrangularis L.)" Horticulturae 8, no. 4: 337. https://doi.org/10.3390/horticulturae8040337
APA StyleBoboc Oros, P., Cantor, M., Cordea, M. I., & Cătană, C. (2022). Plant Regeneration Protocol for Recalcitrant Passionflower (Passiflora quadrangularis L.). Horticulturae, 8(4), 337. https://doi.org/10.3390/horticulturae8040337