Impact of Different Methods of Root-Zone Application of Biochar-Based Fertilizers on Young Cocoa Plants: Insights from a Pot-Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seeds, Soil and Biochar
2.2. Preparation of Biochar-Based Fertilizers
2.3. Experiential Setup
2.4. Plant Analysis
2.5. Statistical Analysis
3. Results
3.1. Morphological and Physiological Characteristics
3.2. Elemental Composition of Foliar Biomass
4. Discussion
4.1. Interaction of Biochar and BBF with Soil Nutrients
4.2. Improved Effects of BBF by Concentrated Root-Zone Application
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Challinor, A.J.; Adger, W.N.; Benton, T.G. Climate Risks Across Borders and Scales. Nat. Clim. Change 2017, 7, 621–623. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. In Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Knox, J.; Hess, T.; Daccache, A.; Wheeler, T. Climate Change Impacts on Crop Productivity in Africa and South Asia. Environ. Res. Lett. 2012, 7, 034032. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global Food Demand and the Sustainable Intensification of Agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassman, K.G.; Grassini, P. A Global Perspective on Sustainable Intensification Research. Nat. Sustain. 2020, 3, 262–268. [Google Scholar] [CrossRef] [Green Version]
- United Nations. World Population Prospects. In Department of Economic and Social Affairs, Population Division Online Edition. Rev. 1; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: An Introduction. In Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed.; Lehmann, J., Joseph, S., Eds.; Routledge: London, UK, 2015; pp. 33–46. [Google Scholar] [CrossRef]
- Hagemann, N.; Spokas, K.; Schmidt, H.P.; Kägi, R.; Böhler, M.A.; Bucheli, T.D. Activated Carbon, Biochar and Charcoal: Linkages and Synergies across Pyrogenic Carbon’s ABCs. Water 2018, 10, 182. [Google Scholar] [CrossRef] [Green Version]
- El-Naggar, A.; Lee, S.S.; Rinklebe, J.; Farooq, M.; Song, H.; Sarmah, A.K.; Zimmerman, A.R.; Ahmad, M.; Shaheen, S.M.; Ok, Y.S. Biochar Application to Low Fertility Soils: A Review of Current Status, and Future Prospects. Geoderma 2019, 337, 536–554. [Google Scholar] [CrossRef]
- Ali, S.; Rizwan, M.; Qayyum, M.F.; Ok, Y.S.; Ibrahim, M.; Riaz, M.; Arif, M.S.; Hafeez, F.; Al-Wabel, M.I.; Shahzad, A.N. Biochar Soil Amendment on Alleviation of Drought and Salt Stress in Plants: A Critical Review. Environ. Sci. Pollut. Res. 2017, 24, 12700–12712. [Google Scholar] [CrossRef]
- Omondi, M.O.; Xia, X.; Nahayo, A.; Liu, X.; Korai, P.K.; Pan, G. Quantification of Biochar Effects on Soil Hydrological Properties Using Meta-Analysis of Literature Data. Geoderma 2016, 274, 28–34. [Google Scholar] [CrossRef]
- Schmidt, H.P.; Anca-Couce, A.; Hagemann, N.; Werner, C.; Gerten, D.; Lucht, W.; Kammann, C. Pyrogenic Carbon Capture and Storage. GCB Bioenergy 2019, 11, 573–591. [Google Scholar] [CrossRef] [Green Version]
- Elias, D.M.O.; Ooi, G.T.; Ahmad Razi, M.F.; Robinson, S.; Whitaker, J.; McNamara, N.P. Effects of Leucaena Biochar Addition on Crop Productivity in Degraded Tropical Soils. Biomass Bioenergy 2020, 142, 105710. [Google Scholar] [CrossRef]
- Cornelissen, G.; Martinsen, V.; Shitumbanuma, V.; Alling, V.; Breedveld, G.D.; Rutherford, D.W.; Sparrevik, M.; Hale, S.E.; Obia, A.; Mulder, J. Biochar Effect on Maize Yield and Soil Characteristics in Five Conservation Farming Sites in Zambia. Agronomy 2013, 3, 256–274. [Google Scholar] [CrossRef] [Green Version]
- Kimetu, J.M.; Lehmann, J.; Ngoze, S.O.; Mugendi, D.N.; Kinyangi, J.M.; Riha, S.; Verchot, L.; Recha, J.W.; Pell, A.N. Reversibility of Soil Productivity Decline with Organic Matter of Differing Quality along a Degradation Gradient. Ecosystems 2008, 11, 726–739. [Google Scholar] [CrossRef]
- Jeffery, S.; Abalos, D.; Prodana, M.; Bastos, A.C.; van Groenigen, J.W.; Hungate, B.A.; Verheijen, F. Biochar Boosts Tropical but Not Temperate Crop Yields. Environ. Res. Lett. 2017, 12, 053001. [Google Scholar] [CrossRef]
- Ye, L.; Camps-Arbestain, M.; Shen, Q.; Lehmann, J.; Singh, B.; Sabir, M. Biochar Effects on Crop Yields with and without Fertilizer: A Meta-Analysis of Field Studies Using Separate Controls. Soil Use Manag. 2020, 36, 2–18. [Google Scholar] [CrossRef]
- Gao, S.; DeLuca, T.H.; Cleveland, C.C. Biochar Additions Alter Phosphorus and Nitrogen Availability in Agricultural Ecosystems: A Meta-Analysis. Sci. Total Environ. 2019, 654, 463–472. [Google Scholar] [CrossRef]
- Pandit, N.R.; Mulder, J.; Hale, S.E.; Martinsen, V.; Schmidt, H.P.; Cornelissen, G. Biochar Improves Maize Growth by Alleviation of Nutrient Stress in a Moderately Acidic Low-Input Nepalese Soil. Sci. Total Environ. 2018, 625, 1380–1389. [Google Scholar] [CrossRef]
- Koerselman, W.; Meuleman, A.F.M. The Vegetation N:P Ratio: A New Tool to Detect the Nature of Nutrient Limitation. J. Appl. Ecol. 1996, 33, 1441. [Google Scholar] [CrossRef]
- Shetty, R.; Prakash, N.B. Effect of Different Biochars on Acid Soil and Growth Parameters of Rice Plants under Aluminium Toxicity. Sci. Rep. 2020, 10, 12249. [Google Scholar] [CrossRef]
- Qian, L.; Chen, B. Interactions of Aluminum with Biochars and Oxidized Biochars: Implications for the Biochar Aging Process. J. Agric. Food Chem. 2014, 62, 373–380. [Google Scholar] [CrossRef]
- Xiang, Y.; Deng, Q.; Duan, H.; Guo, Y. Effects of Biochar Application on Root Traits: A Meta-Analysis. GCB Bioenergy 2017, 9, 1563–1572. [Google Scholar] [CrossRef]
- FAOSTAT. FAOSTAT Database (Food and Agriculture Organization Statistics); FAO: Rome, Italy, 2021. [Google Scholar]
- Läderach, P.; Martinez-Valle, A.; Schroth, G.; Castro, N. Predicting the Future Climatic Suitability for Cocoa Farming of the World’s Leading Producer Countries, Ghana and Côte d’Ivoire. Clim. Change 2013, 119, 841–854. [Google Scholar] [CrossRef] [Green Version]
- Schroth, G.; Läderach, P.; Martinez-Valle, A.I.; Bunn, C.; Jassogne, L. Vulnerability to Climate Change of Cocoa in West Africa: Patterns, Opportunities and Limits to Adaptation. Sci. Total Environ. 2016, 556, 231–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramtahal, G.; Umaharan, P.; Hanuman, A.; Davis, C.; Ali, L. The Effectiveness of Soil Amendments, Biochar and Lime, in Mitigating Cadmium Bioaccumulation in Theobroma cacao L. Sci. Total Environ. 2019, 693, 133563. [Google Scholar] [CrossRef] [PubMed]
- Shamshuddin, J.; Elisa Azura, A.; Shazana, M.A.R.S.; Fauziah, C.I.; Panhwar, Q.A.; Naher, U.A. Properties and Management of Acid Sulfate Soils in Southeast Asia for Sustainable Cultivation of Rice, Oil Palm, and Cocoa. Adv. Agron. 2014, 124, 91–142. [Google Scholar] [CrossRef]
- Sasmita, K.D.; Anwar, S.; Yahya, S.; Anas, I.; Djajakirana, G. Application of Biochar and Organic Fertilizer on Acid Soil as Growing Medium for Cacao (Theobroma cacao L.) Seedlings. Int. J. Sci. Basic Appl. 2017, 36, 261–273. [Google Scholar]
- Aggangan, N.S.; Cortes, A.D.; Reaño, C.E. Growth Response of Cacao (Theobroma cacao L.) Plant as Affected by Bamboo Biochar and Arbuscular Mycorrhizal Fungi in Sterilized and Unsterilized Soil. Biocatal. Agric. Biotechnol. 2019, 22, 101347. [Google Scholar] [CrossRef]
- Frimpong, K.A.; Phares, C.A.; Boateng, I.; Abban-Baidoo, E.; Apuri, L. One-Time Application of Biochar Influenced Crop Yield across Three Cropping Cycles on Tropical Sandy Loam Soil in Ghana. Heliyon 2021, 7, e06267. [Google Scholar] [CrossRef]
- Schmidt, H.P.; Pandit, B.H.; Cornelissen, G.; Kammann, C.I. Biochar-Based Fertilization with Liquid Nutrient Enrichment: 21 Field Trials Covering 13 Crop Species in Nepal. Land. Degrad. Dev. 2017, 28, 2324–2342. [Google Scholar] [CrossRef]
- Ostertag, R. Foliar Nitrogen and Phosphorus Accumulation Responses after Fertilization: An Example from Nutrient-Limited Hawaiian Forests. Plant Soil. 2010, 334, 85–98. [Google Scholar] [CrossRef]
- Sullivan, B.W.; Alvarez-Clare, S.; Castle, S.C.; Porder, S.; Reed, S.C.; Schreeg, L.; Townsend, A.R.; Cleveland, C.C. Assessing Nutrient Limitation in Complex Forested Ecosystems: Alternatives to Large-Scale Fertilization Experiments. Ecology 2014, 95, 668–681. [Google Scholar] [CrossRef] [Green Version]
- EBC. European Biochar Certificate—Guidelines for a Sustainable Production of Biochar; Version 10.1; European Biochar Foundation (EBC): Arbaz, Switzerland, 2022. [Google Scholar]
- van Vliet, J.A.; Giller, K.E. Mineral Nutrition of Cocoa: A Review. Adv. Agron. 2017, 141, 185–270. [Google Scholar] [CrossRef]
- Acheampong, K.; Hadley, P.; Daymond, A.J. Photosynthetic Activity and Early Growth of Four Cacao Genotypes as Influenced by Different Shade Regimes under West African Dry and Wet Season Conditions. Exp. Agric. 2013, 49, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Daymond, A.J.; Tricker, P.J.; Hadley, P. Genotypic Variation in Photosynthesis in Cacao Is Correlated with Stomatal Conductance and Leaf Nitrogen. Biol. Plant. 2011, 55, 99–104. [Google Scholar] [CrossRef]
- Quaye, A.; Konlan, S.; Arthur, A.; Pobee, P.; Dogbatse, J.A. Effect of Media Type and Compost Mixtures on Nutrient Uptake and Growth of Cocoa (Theobroma cacao L.) Seedling in the Nursery. Ghana J. Hortic. 2019, 14, 11–21. [Google Scholar]
- Kang, S.-W.; Yun, J.-J.; Park, J.-H.; Cho, J.-S.; Kang, S.-W.; Yun, J.-J.; Park, J.-H.; Cho, J.; Lonardo, S. Exploring Suitable Biochar Application Rates with Compost to Improve Upland Field Environment. Agronomy. 2021, 11, 1136. [Google Scholar] [CrossRef]
- Chan, K.Y.; van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S.; Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic Values of Greenwaste Biochar as a Soil Amendment. Soil Res. 2007, 45, 629–634. [Google Scholar] [CrossRef]
- Davidson, E.A.; Reis De Carvalho, C.J.; Vieira, I.C.G.; Figueiredo, R.D.O.; Moutinho, P.; Ishida, F.Y.; dos Santos, M.T.P.; Guerrero, J.B.; Kalif, K.; Sabá, R.T. Nitrogen and Phosphorus Limitation of Biomass Growth in a Tropical Secondary Forest. Ecol. Appl. 2004, 14, 150–163. [Google Scholar] [CrossRef] [Green Version]
- Karer, J.; Wimmer, B.; Zehetner, F.; Kloss, S.; Soja, G. Biochar Application to Temperate Soils: Effects on Nutrient Uptake and Crop Yield under Field Conditions. Agric. Food Sci. 2013, 22, 390–403. [Google Scholar] [CrossRef] [Green Version]
- Aikpokpodion, P.E. Nutrients Dynamics in Cocoa Soils, Leaf and Beans in Ondo State, Nigeria. Kamla Raj Enterp. 2017, 1, 1–9. [Google Scholar] [CrossRef]
- Borden, K.A.; Isaac, M.E. Management Strategies Differentially Affect Root Functional Trait Expression in Cocoa Agroforestry Systems. Agron. Sustain. Dev. 2019, 39, 21. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, S.; Sharma, P. Aluminum Stress Inhibits Root Growth and Alters Physiological and Metabolic Responses in Chickpea (Cicer Arietinum L.). Plant Physiol. Biochem. 2014, 85, 63–70. [Google Scholar] [CrossRef]
- Schmidt, H.P. Wurzelapplikation von Pflanzenkohle—Hohe Ertragssteigerung Mit Wenig Pflanzenkohle. Ithaka J. 2016, 1, 395–402. [Google Scholar]
- VOGT. Geo Injector Fluid—The Professional Technology for the Liquid Injection and Soil Aeration 2020. Available online: www.vogt-tec.de/geoinjector-fluid?lang=en (accessed on 21 March 2022).
- Pandit, N.R.; Mulder, J.; Hale, S.E.; Schmidt, H.P.; Cornelissen, G. Biochar from “Kon Tiki” Flame Curtain and Other Kilns: Effects of Nutrient Enrichment and Kiln Type on Crop Yield and Soil Chemistry. PLoS ONE 2017, 12, e0176378. [Google Scholar] [CrossRef] [Green Version]
- Cornelissen, G.; Pandit, N.R.; Taylor, P.; Pandit, B.H.; Sparrevik, M.; Schmidt, H.P. Emissions and Char Quality of Flame-Curtain “Kon Tiki” Kilns for Farmer-Scale Charcoal/Biochar Production. PLoS ONE 2016, 11, e0154617. [Google Scholar] [CrossRef] [Green Version]
- Lotz, S. The Effect of Biochar Application on Yield and Nutrient Uptake in Cocoa Plantations in Ghana. Master’s Thesis, Georg-August University of Goettingen, Göttingen, Germany, 2022. [Google Scholar]
- Schneidewind, U.; Niether, W.; Armengot, L.; Schneider, M.; Sauer, D.; Heitkamp, F.; Gerold, G. Carbon Stocks, Litterfall and Pruning Residues in Monoculture and Agroforestry Cacao Production Systems. Exp. Agric. 2019, 55, 452–470. [Google Scholar] [CrossRef]
Parameter | Relict Oxisol | ASF Biochar |
---|---|---|
Corg [%] | 0.3 | 84.4 |
TIC [%] | <0.1 | 0.9 |
N-min [%] | 0.003 | 0.5 |
Ash 550 °C [%] | n.a. 1 | 8.0 |
available P [%] | <0.001 | 2.3 |
Fe [%] | 30.5 | 1.8 |
Al [%] | 15.3 | n.a. 1 |
pH | 5.9 | 10.1 |
WHC [%] | 69 | n.a. 1 |
CEC [cmol kg−1] | 6.4 | n.a. 1 |
BET [m2 g−1] | n.a. 1 | 179 |
H/Corg | n.a. 1 | 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meyer zu Drewer, J.; Köster, M.; Abdulai, I.; Rötter, R.P.; Hagemann, N.; Schmidt, H.P. Impact of Different Methods of Root-Zone Application of Biochar-Based Fertilizers on Young Cocoa Plants: Insights from a Pot-Trial. Horticulturae 2022, 8, 328. https://doi.org/10.3390/horticulturae8040328
Meyer zu Drewer J, Köster M, Abdulai I, Rötter RP, Hagemann N, Schmidt HP. Impact of Different Methods of Root-Zone Application of Biochar-Based Fertilizers on Young Cocoa Plants: Insights from a Pot-Trial. Horticulturae. 2022; 8(4):328. https://doi.org/10.3390/horticulturae8040328
Chicago/Turabian StyleMeyer zu Drewer, Johannes, Mareike Köster, Issaka Abdulai, Reimund Paul Rötter, Nikolas Hagemann, and Hans Peter Schmidt. 2022. "Impact of Different Methods of Root-Zone Application of Biochar-Based Fertilizers on Young Cocoa Plants: Insights from a Pot-Trial" Horticulturae 8, no. 4: 328. https://doi.org/10.3390/horticulturae8040328
APA StyleMeyer zu Drewer, J., Köster, M., Abdulai, I., Rötter, R. P., Hagemann, N., & Schmidt, H. P. (2022). Impact of Different Methods of Root-Zone Application of Biochar-Based Fertilizers on Young Cocoa Plants: Insights from a Pot-Trial. Horticulturae, 8(4), 328. https://doi.org/10.3390/horticulturae8040328