Comparative Study on Chemical Constituents of Medicinal and Non-Medicinal Parts of Flos Abelmoschus manihot, Based on Metabolite Profiling Coupled with Multivariate Statistical Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Materials
2.3. UFLC-Triple TOF-MS/MS Analysis
2.3.1. Preparation of Standard and Sample Solutions
2.3.2. UFLC-Triple TOF-MS/MS Conditions
2.3.3. Identification of the Constituents
2.4. Multivariate Statistical Analysis
2.5. Relative Content Comparison of Differential Constituents
3. Results
3.1. Identification of the Constituents in Medicinal and Non-Medicinal Parts of FAM
3.1.1. Identification of Flavonoids
3.1.2. Identification of Organic Acids
3.1.3. Identification of Ester
3.1.4. Identification of Alkaloid
3.2. Multivariate Statistical Analysis
3.3. Relative Content Comparison of Differential Constituents
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The State Pharmacopoeia Commission of P. R. China. Pharmacopoeia of the People’s Repulic of China; Part I; China Medical Science and Technology Press: Beijing, China, 2020; p. 319. [Google Scholar]
- State Administration of Traditional Chinese Medicine. Chinese Materia Medica. Part 5; Shanghai Science and Technology Press: Shanghai, China, 1999; pp. 331–332. [Google Scholar]
- Qiu, Y.; Ai, P.F.; Song, J.J.; Liu, C.; Li, Z.W. Total flavonoid extract from Abelmoschus manihot (L.) Medic flowers attenuates d-galactose-induced oxidative stress in mouse liver through the Nrf2 pathway. J. Med. Food. 2017, 20, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.Y.; Ai, G.; Zhang, X.J.; Xu, H.J.; Huang, Z.M. Investigations of the total flavonoids extracted from flowers of Abelmoschus manihot (L.) Medic against α-naphthylisothiocyanate-induced cholestatic liver injury in rats. J. Ethnopharmacol. 2015, 172, 202–213. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.H.; Qian, J.; Li, Z.; Gong, A.; Zhong, S.; Qiao, L.; Qian, S.; Zhang, Y.; Dou, R.; Li, R.; et al. Bioactive compounds from Abelmoschus manihot L. alleviate the progression of multiple myeloma in mouse model and improve bone marrow microenvironment. OncoTargets Ther. 2020, 13, 959–973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Xue, C.; Duan, J.A.; Qian, D.; Tang, Y.; You, Y. Anticonvulsant, antidepressant-like activity of Abelmoschus manihot ethanol extract and its potential active components in vivo. Phytomedicine 2011, 18, 1250–1254. [Google Scholar] [CrossRef]
- Cheng, X.P.; Qin, S.; Dong, L.Y.; Zhou, J.N. Inhibitory effect of total flavone of Abelmoschus manihot L. Medic on NMDA receptor-mediated current in cultured rat hippocampal neurons. Neurosci. Res. 2006, 55, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; He, W.; Xia, P.; Sun, W.; Shi, M.; Zhou, Y.; Zhu, W.; Zhang, L.; Liu, B.; Zhu, J.; et al. Total extracts of Abelmoschus manihot L. attenuates adriamycin-induced renal tubule injury via suppression of ROS-ERK1/2-mediated NLRP3 inflammasome activation. Front. Pharmacol. 2019, 10, 567. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Dusabimana, T.; Kim, S.R.; Je, J.; Jeong, K.; Kang, M.C.; Cho, K.M.; Kim, H.J.; Park, S.W. Supplementation of Abelmoschus manihot ameliorates diabetic nephropathy and hepatic steatosis by activating autophagy in mice. Nutrients 2018, 10, 1703. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Ye, L.; Tao, J.; Ge, C.; Huang, L.; Yu, J. Total flavones of Abelmoschus manihot improve diabetic nephropathy by inhibiting the iRhom2/TACE signalling pathway activity in rats. Pharm. Biol. 2017, 56, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Beccaria, M.; Cabooter, D. Current developments in LC-MS for pharmaceutical analysis. Analyst 2020, 145, 1129–1157. [Google Scholar] [CrossRef]
- Cai, Z.; Liao, H.; Wang, C.; Chen, J.; Tan, M.; Mei, Y.; Wei, L.; Chen, H.; Yang, R.; Liu, X. A comprehensive study of the aerial parts of Lonicera japonica Thunb. based on metabolite profiling coupled with PLS-DA. Phytochem. Anal. 2020, 31, 786–800. [Google Scholar] [CrossRef]
- Fabre, N.; Rustan, I. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 2001, 12, 707–715. [Google Scholar] [CrossRef] [Green Version]
- Chen, G. Studies on the Chemical Constituents and Anhyperglycemic Action of Abelmoschus manihot L. Medie; Academy of Military Medical Sciences: Beijing, China, 2006. [Google Scholar]
- Zhang, Y.; He, W.; Li, C.; Chen, Q.; Han, L.; Liu, E.; Wang, T. Antioxidative flavonol glycosides from the flowers of Abelmouschus manihot. J. Nat. Med. 2013, 67, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Li, C.M.; An, Y.T.; Wang, T.; Shang, H.H.; Gao, X.M.; Zhang, Y. Isolation and identification of chemical constituents from the flowers of Abelmoschus manihot (L.) Medic (III). J. Shenyang Pharm. Univ. 2011, 28, 520–525. [Google Scholar]
- Xia, K.Y.; Zhang, C.L.; Cao, Z.Y.; Ge, H.T.; Tang, H.T. Chemical constituents from corolla abelmoschi. Strait Pharm. J. 2019, 31, 58–61. [Google Scholar]
- Liu, G.D.; Zhao, Y.W.; Li, Y.J.; Wang, X.J.; Si, H.H.; Huang, W.Z.; Wang, Z.Z.; Ma, S.P.; Xiao, W. Qualitative and quantitative analysis of major constituents from Dazhu Hongjingtian capsule by UPLC/Q-TOF-MS/MS combined with UPLC/QQQ-MS/MS. Biomed. Chromatogr. 2017, 31, 3887. [Google Scholar] [CrossRef]
- Li, L.; Zhao, Y.; Liu, W.; Feng, F.; Xie, N. HPLC with quadrupole TOF-MS and chemometrics analysis for the characterization of Folium Turpiniae from different regions. J. Sep. Sci. 2013, 36, 2552–2561. [Google Scholar] [CrossRef]
- Huang, G.Q.; Liang, J.; Wei, J.Y.; Huang, D.F.; Lin, J.; Chen, X.S.; Liu, X.F. Analysis and identification of chemical constituents in hypoglycemic effective fractions of Longan Folium based on UPLC-Q-Orbitrap HRMS. Chin. J. Exp. Tradit. Med. Formulae 2021, 27, 127–138. [Google Scholar]
- Xiao, G.L.; Jiang, J.Y.; Xu, A.L.; Li, Y.X.; Bi, X.L. Analysis of chemical constituents in Bushao Tiaozhi capsules by UPLC-Q-TOF-MS. Chin. J. Exp. Tradit. Med. Formulae 2020, 26, 190–199. [Google Scholar]
- Liu, J.; Chen, L.; Fan, C.R.; Li, H.; Huang, M.Q.; Xiang, Q.; Xu, W.; Xu, W.; Chu, K.D.; Lin, Y. Qualitative and quantitative analysis of major constituents of Paeoniae Radix Alba and Paeoniae Radix Rubra by HPLC-DAD-Q-TOF-MS/MS. China J. Chin. Mater. Med. 2015, 40, 63–67. [Google Scholar]
- Yang, Y.X.; Liao, S.G.; Wang, Z.; Li, Y.J.; Liang, Y.; Hao, X.Y.; Wang, Y.L. Analysis of water-soluble chemical constituents of Indigoferae Stachyoidis Radix by UHPLC-DAD-Q-TOF-MS/MS. Chin. J. Exp. Tradit. Med. Formulae 2014, 20, 669–677. [Google Scholar]
- Chi, Y.M.; Zhu, H.Y.; Ju, L.; Zhang, Y.; Shen, X.N.; Hua, X.Y.; Nie, F. Analysis of flavonols compounds in flos Abelmoschus Manihot by high performance liquid chromatography-electrospray ionization/quadrupole-time of flight-mass/mass spectrometry. Anal. Chem. 2009, 37, 227–231. [Google Scholar]
- Guo, J.M.; Xue, C.F.; Duan, J.A.; Shang, E.X.; Qian, D.W.; Tang, Y.P.; Ouyang, Q.; Sha, M. Fast characterization of major constituents in huangkui capsule using UPLC/QTOF MSE and MassFragment. In Proceedings of the 9th National Symposium on Natural Medicine Resources Proceedings and Abstrcats, Guangzhou, China, 18 July 2010; pp. 691–699. [Google Scholar]
- Hui, T.T.; Xia, Z.T.; Zhang, L.L.; Wu, N.F.; Chen, X.P.; Zhou, S.P. Identification and characterization of constituents in Yushu granules by HPLC-ESI-MS. Chin. J. Pharm. Anal. 2013, 33, 586–594. [Google Scholar]
- Ma, T.T.; Wang, Y.; Chen, X.Q.; Chen, X.P. LC/MS guided approach to discovering nephroprotective substances from Huangkui capsule. J. Zhejiang Univ. 2017, 46, 66–73. [Google Scholar]
- Fan, L. Quality Evaluation of Ampelopsis grossedentata Metabolic-Related Study of Its Bioactive Ingredient Dihydromyricetin; Huazhong University of Science and Technology: Wuhan, China, 2018. [Google Scholar]
- Mei, Y.; Wei, L.; Tan, M.; Wang, C.; Zou, L.; Chen, J.; Cai, Z.; Yin, S.; Zhang, F.; Shan, C.; et al. Qualitative and quantitative analysis of the major constituents in Spatholobi Caulis by UFLC-Triple TOF-MS/MS and UFLC-QTRAP-MS/MS. J. Pharm. Biomed. Anal. 2021, 194, 113803. [Google Scholar] [CrossRef]
- Keimu, A. Study on the Mass Pectrometric Analytical Method of Flavonoid Glycosides; Peking Union Medical College of China: Beijing, China, 2006. [Google Scholar]
- Rak, G.; Fodor, P.; Abrank, L. Three-step HPLC—ESI-MS/MS procedure for screening and identifying non-target flavonoid derivatives. Int. J. Mass Spectrom. 2010, 290, 32–38. [Google Scholar] [CrossRef]
- Shin, J.S.; Han, H.S.; Lee, S.B.; Myung, D.B.; Lee, K.; Lee, S.H.; Kim, H.J.; Lee, K.T. Chemical constituents from leaves of Hydrangea serrata and their anti−photoaging effects on UVB−irradiated human fibroblasts. Biol. Pharm. Bull. 2019, 42, 424–431. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.M.; Guo, X.Y.; Quan, Q.H.; Ji, R.F.; Sun, Q.Q.; Tian, J.Y.; Tan, P.; Liu, Y.G. Analysis on chemical constituent from Cudrania tricus pidata Bur by LTQ-Orbitrap MS. J. Chin. Mass Spectrom. Soc. 2018, 39, 599–606. [Google Scholar]
- Wang, Y. Studies on Analysis of Flavonoids of Flowers, Stems and Leaves of Abelmoschus manihot (L.) Medic; Beijing University of Chinese Medicine: Beijing, China, 2015. [Google Scholar]
- Kang, Y.; Mao, Y.N.; Wang, F.F.; Wu, W.Q.; Liu, Y. Analysis of chemical components in leaves of Hippophae rhamnoides by UPLC-LTQ Orbitrap MS. Mod. Chin. Med. 2018, 20, 1340–1346. [Google Scholar]
- Xu, W.; Fu, Z.Q.; Lin, J.; Huang, X.C.; Chen, D.; Yu, H.M.; Huang, Z.H.; Fan, S.M. Qualitative and quantitative analysis of major constituents in Tetrastigma hemsleyanum by HPLC-Q-TOF-MS and UPLC-QqQ-MS. China J. Chin. Mater. Med. 2014, 39, 4365–4372. [Google Scholar]
- Zeng, M.L.; Shen, N.T.; Wu, S.W.; Li, Q. Analysis on chemical constituents in Tetrastigma hemsleyanum by UPLC-Triple-TOF/MS. Chin. Tradit. Herb. Drugs 2017, 48, 874–883. [Google Scholar]
- Zhang, L.; Wang, H.H.; Yang, S.H.; Tu, Z.C.; Li, J.; Chen, J.; Huang, Y.Z. Characterization of chemical constituents in ethyl acetate fraction of lotus leaves by ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry. Food Sci. 2019, 40, 229–235. [Google Scholar]
- Gao, X.; Wan, Y.Y.; Li, C.Y.; Duan, X.B.; Ding, X.S.; Ju, W.Z. Systematic screening and assignment of flavones in total flavones of Abelmoschus manihot based on high-performance liquid chromatography time-of-flight mass spectrometry analysis and mass defect filter. Anal. Chem. 2020, 48, 262–274. [Google Scholar]
- Liu, C.X.; Chen, S.L.; Xiao, X.H.; Zhang, T.J.; Hou, W.B.; Liao, M.L. A new concept on quality marker of Chinese materia medica: Quality control for Chinese medicinal products. Chin. Tradit. Herb. Drugs. 2016, 47, 1443–1457. [Google Scholar]
- Wu, L.; Li, Q.; Liu, S.M.; An, X.F.; Huang, Z.M.; Zhang, B.; Yuan, Y.G.; Xing, C.Y. Protective effect of hyperoside against renal ischemia-reperfusion injury via modulating mitochondrial fission, oxidative stress, and apoptosis. Free Radic. Res. 2019, 53, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.D.; Tao, W.W.; Su, S.L.; Guo, S.; Zhu, Y.; Guo, J.M.; Qian, D.W.; Cong, X.D.; Tang, R.M.; Duan, J.A. Antidepressant activity of flavonoid ethanol extract of Abelmoschus manihot corolla with BDNF up-regulation in the hippocampus. Acta Pharm. Sin. 2017, 52, 222–228. [Google Scholar]
- An, X.F.; Zhang, L.; Yuan, Y.G.; Wang, B.; Yao, Q.M.; Li, L.; Zhang, J.S.; He, M.; Zhang, J.N. Hyperoside pre-treatment prevents glomerular basement membrane damage in diabetic nephropathy by inhibiting podocyte heparanase expression. Sci. Rep. 2017, 7, 6413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.; Wan, Y.G.; Wang, C.J.; Zhao, Q.; Wei, Q.X.; Tu, Y.; Yin, X.J. Mechanisms and effects of Abelmoschus manihot preparations in treating chronic kidney disease. China J. Chin. Mater. Med. 2012, 37, 2252–2256. [Google Scholar]
- Chen, Y.Z.; Gong, Z.X.; Cai, G.Y.; Gao, Q.; Chen, X.M.; Tang, L.; Wei, R.B.; Zhou, J.H. Efficacy and safety of Flos Abelmoschus manihot (Malvaceae) on type 2 diabetic nephropathy: A systematic review. Chin. J. Integr. Med. 2015, 21, 464–472. [Google Scholar] [CrossRef]
No. | tR (min) | Molecular Formula | MS1 (m/z) | MS2 (m/z) | Error (ppm) | Compound | Calyx | Stamen | References | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Corolla | Pistil | ||||||||||
1 * | 8.29 | C7H6O5 | 169.0150[M−H]− | 125.02[M−H−CO2]−, 107.01[M−H−CO2−H2O]− | 4.73 | 3,4,5-Trihydroxybenzoic acid | + | + | − | + | [18,19,20,21,22] |
2 | 8.49 | C13H16O10 | 331.0680[M−H]− | 169.01[M−H−glc]−, 125.02[M−H−glc−CO2]−, 107.01[M−H−glc−CO2−H2O]− | 2.81 | Gallic acid 3-O-β-glucoside | − | + | − | − | [21] |
3 | 11.43 | C13H16O9 | 315.0730[M−H]− | 153.02[M−H−glc]−, 109.03[M−H−glc−CO2]−, 91.02[M−H−glc−CO2−H2O] − | 2.67 | Protocatecheuic acid 3-O-β-d-glucoside | + | + | + | + | [23] |
4 * | 11.99 | C7H6O4 | 153.0194[M−H]− | 109.03[M−H−CO2]−, 91.02[M−H−CO2−H2O]− | 0.46 | 3,4-Dihydroxybenzoic acid | + | + | − | + | [21,22,23] |
5 | 12.03 | C13H16O8 | 299.0782[M−H]− | 137.02[M−H−glc]−, 119.03[M−H−glc−H2O]− | 3.21 | 4-Hydroxybenzoic acid β-d-glucosyl ester | + | + | + | + | [16] |
6 | 15.99 | C21H20O14 | 541.0838[M+HCOO]− | 495.08[M−H]−, 333.03[M−H−glc]−, 315.01[M−H−glc−H2O]−, 287.02[M−H−glc−H2O−CO]−, 195.00[1,2A]−, 167.00[1,3A]− | 2.57 | Hibiscetin-3-O-glucoside | − | + | − | − | [24,25] |
7 * | 16.41 | C16H18O9 | 353.0881[M−H]− | 191.05[M−H−C9H6O3]−, 127.04[M−H−C9H6O3−2H2O−CO]− | 0.82 | Chlorogenic acid | + | + | − | + | [21,26] |
8 | 18.56 | C21H20O14 | 541.0835[M+HCOO]− | 495.08[M−H]−, 333.03[M−H−glc]−, 315.01[M−H−glc−H2O]−, 287.02[M−H−glc−H2O−CO]−, 195.00[1,2A]−, 167.00[1,3A]− | 2.01 | Floramanoside B | − | + | − | − | [15,27] |
9 * | 18.75 | C9H8O4 | 179.0353[M−H]− | 135.04[M−H−CO2]− | 1.79 | Caffeic acid | + | + | − | + | [21] |
10 | 19.41 | C12H15NO5 | 252.0887[M−H]− | 234.08[M−H−H2O]−, 190.09[M−H−H2O−CO2]− | 3.95 | Acortatarine A | − | + | − | − | [17] |
11 * | 20.29 | C15H12O8 | 319.0466[M−H]− | 301.06[M−H−H2O]−, 193.01[M−H−B ring]−, 165.02[0,2A]−, 151.00[1,3A]− | 2.07 | Dihydromyricetin | − | + | − | + | [28,29] |
12 | 20.72 | C27H28O19 | 655.1151[M−H]− | 479.08[M−H−glu]−, 317.03[M−H−glu−glc]−, 195.00[1,2A]−, 167.00[1,3A]−, 139.00[1,3A−CO]− | −0.15 | Gossypetin 3-O-β-glucopyranoside-8-O-β-glucuronopyranoside | + | + | + | + | [24] |
13 | 21.23 | C27H28O19 | 655.1160[M−H]− | 479.08[M−H−glu]−, 317.03[M−H−glu−glc]−, 195.00[1,2A]−, 167.00[1,3A]−, 139.00[1,3A−CO]− | 1.22 | Gossypetin 3-O-β-glucuronopyranoside-8-O-β-glucopyranoside | + | + | + | + | [24] |
14 | 22.5 | C26H28O17 | 611.1251[M−H]− | 317.03[M−H−gal−xyl]−, 271.02[M−H−gal−xyl−CO−H2O]−, 179.00[1,2A]−, 151.00[1,3A]−, 137.02[1,2B]− | −0.44 | Floramanoside A | + | + | + | + | [15] |
15 | 22.89 | C21H20O13 | 479.0827[M−H]− | 317.03[M−H−gal]−, 271.02[M−H−gal−CO−H2O]−, 179.00[1,2A]−, 151.00[1,3A]−, 137.02[1,2B]− | −0.86 | Myricetin 7-O-β-d-galactopyranoside | − | + | − | − | [30,31] |
16 | 23.17 | C26H28O17 | 611.1272[M−H]− | 317.03[M−H−glc−xyl]−, 271.02[M−H−glc−xyl−CO−H2O]−, 179.00[1,2A]−, 151.00[1,3A]−, 137.02[1,2B]− | 2.99 | Myricetin 3-O-β-d-xylopyranosyl-(1→2)-β-d-glucopyranoside | + | + | + | + | [24] |
17 | 26.5 | C32H38O20 | 741.1904[M−H]− | 301.03[M−H−gal−rha−xyl]−, 271.02[M−H−gal−rha−xyl−CO]−, 255.03[M−H−gal−rha−xyl−CO−H2O]−, 179.00[1,2A]−, 151.00[1,3A]− | 2.74 | quercetin 3-O[β-D-xylopyranosyl (1→2)-α-L-rhamnopyranosyl (1→6) -β-d-galactopyranoside | + | + | + | + | [30] |
18 | 26.86 | C21H20O13 | 479.0832[M−H]− | 317.03[M−H−gal]−, 271.02[M−H−gal−CO−H2O]−, 179.00[1,2A]−, 151.00[1,3A]−, 137.02[1,2B]− | 0.19 | Myricetin 3-O-β-d-galactopyranoside | + | + | + | + | [30] |
19 | 27.05 | C27H30O17 | 625.1415[M−H]− | 317.03[M−H−gal−rha]−, 271.02[M−H−gal−rha−CO−H2O]−, 179.00[1,2A]−, 151.00[1,3A]−, 137.02[1,2B]− | 0.77 | Myricetin 3-robinobioside | + | + | + | + | [30,31] |
20 * | 27.52 | C21H20O13 | 479.0838[M−H]− | 317.03[M−H−glc]−, 271.02[M−H−glc−CO−H2O]−, 179.00[1,2A]−, 151.00[1,3A]−, 137.02[1,2B]− | 1.44 | Myricetin 3-O-β-d-glucopyranoside | + | + | + | + | [24,30] |
21 | 27.53 | C27H30O17 | 625.1425[M−H]− | 317.03[M−H−glc−rha]−, 271.02[M−H−glc−rha−CO−H2O]−, 179.00[1,2A]−, 151.00[1,3A]−, 137.02[1,2B]− | 2.37 | Myricetin 3-O-rutinose | − | + | + | + | [31] |
22 | 27.95 | C28H32O16 | 623.1600[M−H]− | 315.05[M−H−gal−rha]−, 271.02[M−H−gal−rha−CO2]− | −2.82 | Floramanoside D | + | + | + | + | [15,27] |
23 | 28.23 | C26H28O16 | 595.1308[M−H]− | 301.03[M−H−gal−xyl]−, 179.00[1,2A]−, 151.00[1,3A]− | 0.57 | Quercetin 3-O-β-d-xylopyranosyl-(1→2)-O-β-d-galactopyranoside | + | + | + | + | [32] |
24 | 28.79 | C26H28O16 | 595.1294[M−H]− | 301.03[M−H−glc−xyl]−, 179.00[1,2A]−, 151.00[1,3A]− | −1.78 | Quercetin 3-O-β-d-xylopyranosyl-(1→2)-β-d-glucopyranoside | + | + | + | + | [32] |
25 | 30.28 | C21H20O13 | 479.0830[M−H]− | 317.03[M−H−glc]−, 271.02[M−H−glc−CO−H2O]−, 195.00[1,2A]−, 167.00[1,3A]−, 139.00[1,3A−CO]− | −0.23 | Gossypetin 3-O-β-d-glucopyranoside | − | + | − | − | [25] |
26 | 31.17 | C23H22O14 | 521.0930[M−H]− | 479.08[M−H−C2H2O]−, 317.03[M−H−C2H2O−gal]−, 271.02[M−H−C2H2O−gal−CO−H2O]−, 179.00[1,2A]−, 151.00[1,3A]−, 137.02[1,2B]− | −1.30 | Myricetin 3-O-(6-O-acetyl-β-d-galactopyranoside) | − | + | − | + | [30,31] |
27 * | 33.07 | C21H20O12 | 463.0883[M−H]− | 301.03[M−H−glc]−, 179.00[1,2A]−, 151.00[1,3A]− | 0.22 | Quercetin 7-O-β-d-glucopyranoside | + | + | + | + | [33] |
28 | 33.18 | C21H18O15 | 509.0573[M−H]− | 333.03[M−H−glu]−, 195.00[1,2A]−, 167.00[1,3A]−, 137.02[1,2B]− | 0.02 | Floramanoside C | − | + | + | + | [15,27] |
29 * | 34.19 | C27H30O16 | 609.1455[M−H]− | 301.03[M−H−rha−gal]−, 271.02[M−H−rha−gal−CO]−, 255.03[M−H−rha−gal−CO−H2O]−, 179.00[1,2A]−, 151.00[1,3A]− | −1.00 | Quercetin 3-O-β-d-robinobioside | + | + | + | + | [30] |
30 * | 35.1 | C21H20O12 | 463.0883[M−H]− | 301.03[M−H−gal]−, 271.02[M−H−gal−CO]−, 255.03[M−H−gal−CO−H2O]−, 179.00[1,2A]−, 151.00[1,3A]− | 0.22 | Hyperin | + | + | + | + | [26,34] |
31 * | 35.55 | C27H30O16 | 609.1461[M−H]− | 301.03[M−H−rha−glc]−, 271.02[M−H−rha−glc−CO]−, 255.03[M−H−rha−glc−CO−H2O]−, 179.00[1,2A]−, 151.00[1,3A]− | −0.02 | Rutin | + | + | + | + | [24,26] |
32 * | 36.63 | C21H20O12 | 463.0877[M−H]− | 301.03[M−H−glc]−, 271.02[M−H−glc−CO]−, 255.03[M−H−glc−CO−H2O]−, 179.00[1,2A]−, 151.00[1,3A]− | −1.08 | Isoquercitrin | + | + | + | + | [30,34] |
33 * | 37.38 | C21H20O13 | 479.0815[M−H]− | 317.03[M−H−glc]−, 271.02[M−H−glc−CO−H2O]−, 179.00[1,2A]−, 151.00[1,3A]−, 137.02[1,2B]− | −3.36 | Myricetin 3′-O-β-d-glucopyranoside | + | + | + | + | [25,30] |
34 | 40.94 | C27H30O15 | 593.1506[M−H]− | 285.04[M−H−glc−xyl−CH2]−, 255.03[M−H−glc−xyl−CH2−CH2O]−,227.04[M−H−glc−xyl−CH2− CH2O −CO]− | −0.99 | 4′-Methoxyl-5,7-dihydroxyl flavone-[-O-β-d-xylopyranosyl-(1→3)]-O-β-d-glucopyranoside | + | + | + | + | [16] |
35 | 42.23 | C23H22O13 | 505.0981[M−H]− | 463.09[M−H−C2H2O]−, 301.03[M−H−C2H2O−gal]−, 271.02[M−H−C2H2O−gal−CO]−, 255.03[M−H−C2H2O−gal−CO−H2O]−, 179.00[1,2A]−, 151.00[1,3A]− | −1.31 | 6″-Acetylhyperin | + | + | + | + | [30] |
36 | 42.8 | C21H20O11 | 447.0932[M−H]− | 285.04[M−H−glc]−, 255.03[M−H−glc−CHO]−, 227.03[M−H−glc−CHO−CO]− | −0.20 | kaempferol 3-O-β-d-glucoside | + | + | + | + | [35] |
37 | 44.89 | C23H22O13 | 505.0985[M−H]− | 445.08[M−H−C2H2O−H2O]−, 301.03[M−H−C2H2O−glc]−, 271.02[M−H−C2H2O−glc−CO]−, 255.03[M−H−C2H2O−glc−CO−H2O]−, 179.00[1,2A]−, 151.00[1,3A]− | −0.51 | 7-O Acetyl Isoquercitrin | + | + | − | + | [30] |
38 | 44.9 | C23H22O14 | 521.0932[M−H]− | 479.08[M−H−C2H2O]−, 317.03[M−H−C2H2O−glc]−, 271.02[M−H−C2H2O−glc−CO−H2O]−, 179.00[1,2A]−, 151.00[1,3A]−, 137.02[1,2B]− | −0.92 | Myricetin 3′-O-(6-O-acetyl-β-d-glucopyranoside) | − | + | − | − | [30] |
39 * | 46.64 | C21H18O14 | 493.0621[M−H]− | 317.03[M−H−glu]−, 271.02[M−H−glu−CO−H2O]−, 195.00[1,2A]−, 167.00[1,3A]−, 139.00[1,3A−CO]− | −0.57 | Gossypetin 8-O-β-d-glucuronide | + | + | + | + | [24,25] |
40 | 46.98 | C15H10O8 | 317.0306[M−H]− | 271.02[M−H−CO−H2O]−, 195.00[1,2A]−, 167.00[1,3A]−, 139.00[1,3A−CO]− | 0.98 | Gossypetin | − | + | − | − | [24] |
41 * | 47.4 | C15H10O8 | 317.0309[M−H]− | 271.02[M−H−CO−H2O]−, 179.00[1,2A]−, 151.00[1,3A]−, 137.02[1,2B]− | 1.92 | Myricetin | + | + | + | + | [24,31] |
42 * | 47.93 | C23H22O13 | 505.0975[M−H]− | 463.09[M−H−C2H2O]−, 301.03[M−H−C2H2O−glc]−, 271.02[M−H−C2H2O−glc−CO]−, 255.03[M−H−C2H2O−glc−CO−H2O]−, 179.00[1,2A]−, 151.00[1,3A]− | −2.49 | Quercetin 3-O-(6-O-acetyl-β-d-glucopyranoside) | − | + | − | − | [30] |
43 | 50.34 | C21H20O13 | 479.0824[M−H]− | 317.03[M−H−glc]−, 271.02[M−H−glc−CO−H2O]−, 195.00[1,2A]−, 167.00[1,3A]−, 139.00[1,3A−CO]− | −1.48 | Gossypetin 3′-O-glucoside | − | + | − | − | [24] |
44 | 50.67 | C23H22O14 | 521.0930[M−H]− | 317.03[M−H−glu−C2H4]−, 299.02[M−H−glu−C2H4−H2O]−, 195.00[1,2A]−, 167.00[1,3A]− | −1.30 | Floramaroside F | − | + | − | − | [15,24] |
45 | 51.04 | C21H20O11 | 447.0923[M−H]− | 301.03[M−H−rha]−, 271.02[M−H−rha−CO]−, 255.03[M−H−rha−CO−H2O]−, 151.00[1,3A]−, 179.00[1,2A]− | −2.21 | Quercetin 3-O-α-l-rhamnopyranoside | + | + | − | − | [36,37] |
46 * | 51.28 | C21H20O12 | 463.0877[M−H]− | 301.03[M−H−glc]−, 273.04[M−H−glc−CO]−, 179.00[1,2A]−, 151.00[1,3A]− | −1.08 | Quercetin 3′-O-β-d-glucoside | + | + | + | + | [24] |
47 | 52.91 | C21H18O13 | 477.0674[M−H]− | 301.03[M−H−glu]−, 151.00[1,3A]−, 179.00[1,2A]− | −0.13 | Quercetin 3′-O-β-glucuronide | − | + | − | − | [26,38] |
48 | 52.92 | C23H22O13 | 505.0983[M−H]− | 463.09[M−H−C2H2O]−, 301.03[M−H−C2H2O−glc]−, 271.02[M−H−C2H2O−glc−CO]−, 255.03[M−H−C2H2O−glc−CO−H2O]−, 179.00[1,2A]−, 151.00[1,3A]− | −0.91 | Floramaroside E | − | + | − | − | [15,39] |
49 * | 53.46 | C15H10O7 | 301.0363[M−H]− | 273.04[M−H−CO]−, 179.00[1,2A]−, 151.00[1,3A]−, 107.01[1,2A−CO−CO2]− | 3.06 | Quercetin | + | + | + | + | [13,24] |
50 * | 53.61 | C30H26O13 | 593.1279[M−H]− | 447.09[M−H−C9H6O2]−, 285.04[M−H−C9H6O2−glc]−, 257.05[M−H−C9H6O2−glc−CO]−, 239.03[M−H−C9H6O2−glc−CO−H2O]− | −3.64 | Tiliroside | + | + | + | − | [21] |
51 | 53.98 | C32H28O14 | 635.1380[M−H]− | 285.04[M−H−C16H19O8]− | −4.14 | 3-O-kaempferol-3-O-acetyl-6-O-(p-coumaroyl)-β-d-glucopyranoside | + | − | + | + | [24] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, S.; Cai, Z.; Chen, C.; Mei, Y.; Wei, L.; Liu, S.; Zou, L.; Wu, N.; Yuan, J.; Liu, X.; et al. Comparative Study on Chemical Constituents of Medicinal and Non-Medicinal Parts of Flos Abelmoschus manihot, Based on Metabolite Profiling Coupled with Multivariate Statistical Analysis. Horticulturae 2022, 8, 317. https://doi.org/10.3390/horticulturae8040317
Yin S, Cai Z, Chen C, Mei Y, Wei L, Liu S, Zou L, Wu N, Yuan J, Liu X, et al. Comparative Study on Chemical Constituents of Medicinal and Non-Medicinal Parts of Flos Abelmoschus manihot, Based on Metabolite Profiling Coupled with Multivariate Statistical Analysis. Horticulturae. 2022; 8(4):317. https://doi.org/10.3390/horticulturae8040317
Chicago/Turabian StyleYin, Shengxin, Zhichen Cai, Cuihua Chen, Yuqi Mei, Lifang Wei, Shengjin Liu, Lisi Zou, Nan Wu, Jiahuan Yuan, Xunhong Liu, and et al. 2022. "Comparative Study on Chemical Constituents of Medicinal and Non-Medicinal Parts of Flos Abelmoschus manihot, Based on Metabolite Profiling Coupled with Multivariate Statistical Analysis" Horticulturae 8, no. 4: 317. https://doi.org/10.3390/horticulturae8040317
APA StyleYin, S., Cai, Z., Chen, C., Mei, Y., Wei, L., Liu, S., Zou, L., Wu, N., Yuan, J., Liu, X., Ge, H., Wang, D., & Wang, D. (2022). Comparative Study on Chemical Constituents of Medicinal and Non-Medicinal Parts of Flos Abelmoschus manihot, Based on Metabolite Profiling Coupled with Multivariate Statistical Analysis. Horticulturae, 8(4), 317. https://doi.org/10.3390/horticulturae8040317