Seasonal Fluctuations of Crop Yield, Total Phenolic Content and Antioxidant Activity in Fresh or Cooked Borage (Borago officinalis L.), Mallow (Malva sylvestris L.) and Buck’s-Horn Plantain (Plantago coronopus L.) Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Growth Analysis
2.3. Boiling Treatment
2.4. Experimental Design
2.5. Total Phenolic Content
2.6. Antioxidant Activity
2.7. Statistical Analysis
3. Results
3.1. Crop Yield
3.2. TPC and AA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sánchez-Mata, M.C.; Tardío, J. Mediterranean Wild Edible Plants. Ethnobotany and Food Composition Tables; Springer Nature: New York, NY, USA, 2016. [Google Scholar]
- Marrelli, M.; Statti, G.; Conforti, F. A review of biologically active natural products from Mediterranean wild edible plants: Benefits in the treatment of obesity and its related disorders. Molecules 2020, 25, 649. [Google Scholar] [CrossRef] [Green Version]
- Pinela, J.; Carvalho, A.M.; Ferreira, I.C. Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today’s society. Food Chem. Toxicol. 2017, 110, 165–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceccanti, C.; Landi, M.; Benvenuti, S.; Pardossi, A.; Guidi, L. Mediterranean wild edible plants: Weeds or “new functional crops”? Molecules 2018, 23, 2299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zemmouri, H.; Ammar, S.; Boumendjel, A.; Messarah, M.; El Feki, A.; Bouaziz, M. Chemical composition and antioxidant activity of Borago officinalis L. leaf extract growing in Algeria. Arab. J. Chem. 2019, 12, 1954–1963. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Hashemi, S.A.; Behbudi, G.; Mazraedoost, S.; Omidifar, N.; Gholami, A.; Chiang, W.H.; Babapoor, A.; Pynadathu Rumjit, N. A review on health benefits of Malva sylvestris L. nutritional compounds for metabolites, antioxidants, and anti-inflammatory, anticancer, and antimicrobial applications. Evid.-Based Complement. Altern. Med. 2021, 2021, 5548404. [Google Scholar] [CrossRef]
- Teğin, İ.; Canpolat, G.; Fidan, M. The antioxidant capacity, total phenolic content and phenolic compounds of Plantago coronopus L. subsp. coronopus in naturally distributed in Akdoğmuş-Siirt. In Proceedings of the 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies, Ankara, Turkey, 19–21 October 2018. [Google Scholar]
- Abu-Qaoud, H.; Shawarb, N.; Hussen, F.; Jaradat, N.; Shtaya, M. Comparison of qualitative, quantitative analysis and antioxidant potential between wild and cultivated Borago officinalis leaves from palestine. Pak. J. Pharm. Sci. 2018, 31, 953–959. [Google Scholar]
- Navaey, H.N.; Hzari, M.Y.; Seraji, R.A.N.; Eslami, H. Germination reduce in borage (Borago officinalis L.) seed under seed deteriorating conditions. Inter. J. Farming Allied Sci. 2014, 3, 358–361. [Google Scholar]
- Conforti, F.; Sosa, S.; Marrelli, M.; Menichini, F.; Statti, G.A.; Uzunov, D.; Tubaro, A.; Menichini, F.; Della Loggia, R. In vivo anti-inflammatory and in vitro antioxidant activities of Mediterranean dietary plants. J. Ethnopharmacol. 2008, 116, 144–151. [Google Scholar] [CrossRef]
- Matsui, K.; Kurishita, S.; Hisamitsu, A.; Kajiwara, T. A lipid-hydrolysing activity involved in hexenal formation. Biochem. Soc. Trans. 2000, 28, 857–860. [Google Scholar] [CrossRef]
- Wannes, W.A.; Mhamdi, B.; Saidani Tounsi, M.; Marzouk, B. Lipid and volatile composition of borage (Borago officinalis L.) leaf. Trends Phytochem. Res. 2017, 1, 143–148. [Google Scholar]
- Bimakr, M.; Ganjloo, A.; Zarringhalami, S.; Ansarian, E. Ultrasound-assisted extraction of bioactive compounds from Malva sylvestris leaves and its comparison with agitated bed extraction technique. Food Sci. Biotechnol. 2017, 26, 1481–1490. [Google Scholar] [CrossRef] [PubMed]
- Samavati, V.; Manoochehrizade, A. Polysaccharide extraction from Malva sylvestris and its antioxidant activity. Int. J. Biol. Macromol. 2013, 60, 427–436. [Google Scholar] [CrossRef]
- Petkova, N.; Popova, A.; Alexieva, I. Antioxidant properties and some phytochemical components of the edible medicinal Malva sylvestris L. J. Med. Plants 2019, 7, 96–99. [Google Scholar]
- Della Greca, M.; Cutillo, F.; Abrosca, B.D.; Fiorentino, A.; Pacifico, S.; Zarrelli, A. Antioxidant and radical scavenging properties of Malva sylvestris. Nat. Prod. Commun. 2009, 4, 1934578X0900400702. [Google Scholar]
- Terninko, I.I.; Onishchenko, U.E.; Frolova, A. Research phenolic compounds Malva sylvestris by high performance liquid chromatography. Pharma Innov. 2014, 3, 46–50. [Google Scholar]
- Cutillo, F.; D’Abrosca, B.; Della Greca, M.; Fiorentino, A.; Zarrelli, A. Terpenoids and phenol derivatives from Malva silvestris. Phytochemistry 2006, 67, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Zhen-Yu, W. Impact of anthocyanin from Malva sylvestris on plasma lipids and free radical. J. For. Res. 2005, 16, 228–232. [Google Scholar] [CrossRef]
- Koyro, H.W. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environ. Exp. Bot. 2006, 56, 136–146. [Google Scholar] [CrossRef]
- Beara, I.N.; Lesjak, M.M.; Jovin, E.Đ.; Balog, K.J.; Anackov, G.T.; Orcic, D.Z.; Mimica-Dukic, N.M. Plantain (Plantago L.) species as novel sources of flavonoid antioxidants. J. Agric. Food Chem. 2009, 57, 9268–9273. [Google Scholar] [CrossRef] [PubMed]
- Ceccanti, C.; Finimundy, T.C.; Melgar, B.; Pereira, C.; Ferreira, I.C.; Barros, L. Sequential steps of the incorporation of bioactive plant extracts from wild Italian Plantago coronopus L. and Cichorium intybus L. leaves in fresh egg pasta. Food Chem. 2022, 384, 132462. [Google Scholar] [CrossRef]
- Jdey, A.; Falleh, H.; ben Jannet, S.; Mkadmini Hammi, K.; Dauvergne, X.; Ksouri, R.; Magné, C. Phytochemical investigation and antioxidant, antibacterial and anti-tyrosinase performances of six medicinal halophytes. S. Afr. J. Bot. 2017, 112, 508–514. [Google Scholar] [CrossRef]
- Puccinelli, M.; Pezzarossa, B.; Pintimalli, L.; Malorgio, F. Selenium biofortification of three wild species, Rumex acetosa L., Plantago coronopus L., and Portulaca oleracea L., grown as microgreens. Agronomy 2021, 11, 1155. [Google Scholar] [CrossRef]
- Pardossi, A.; Malorgio, F.; Incrocci, L.; Tognoni, F. Hydroponic technologies for greenhouse crops. In Crops: Quality, Growth and Biotechnology; Ramdane, D., Ed.; WFL Publisher: Helsinki, Finland, 2005; pp. 360–378. [Google Scholar]
- Rouphael, Y.; Kyriacou, M.C.; Petropoulos, S.A.; de Pascale, S.; Colla, G. Improving vegetable quality in controlled environments. Sci. Hortic. 2018, 234, 275–289. [Google Scholar] [CrossRef]
- Senizza, B.; Zhang, L.; Miras-Moreno, B.; Righetti, L.; Zengin, G.; Ak, G.; Bruni, R.; Lucini, L.; Sifola, M.I.; El-Nakhel, C.; et al. The strength of the nutrient solution modulates the functional profile of hydroponically grown lettuce in a genotype-dependent manner. Foods 2020, 9, 1156. [Google Scholar] [CrossRef] [PubMed]
- Teodor, R.U.S.U.; Moraru, P.I.; Mintas, O.S. Influence of environmental and nutritional factors on the development of lettuce (Lactuca sativa L.) microgreens grown in a hydroponic system: A review. Not Botanicae Horti Agrobot. Cluj-Napoca 2021, 49, 12427. [Google Scholar]
- Puccinelli, M.; Landi, M.; Maggini, R.; Pardossi, A.; Incrocci, L. Iodine biofortification of sweet basil and lettuce grown in two hydroponic systems. Sci. Hortic. 2021, 276, 109783. [Google Scholar] [CrossRef]
- Nicola, S.; Ertani, A. The Floating Growing System and New Growing System® to grow leafy vegetables and herbs. In Proceedings of the III International Symposium on Soilless Culture and Hydroponics: Innovation and Advanced Technology for Circular Horticulture, Lemesos, Cyprus, 19 March 2021. [Google Scholar]
- Ceccanti, C.; Landi, M.; Incrocci, L.; Pardossi, A.; Guidi, L. Suitability of hydroponically grown Rumex acetosa L. as fresh-cut produce. Horticulturae 2020, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Luna, T.; Mousseaux, M.R.; Dumroese, R.K. Common Native Forbs of the Northern Great Basin Important for Greater Sage-Grouse; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA; US Department of the Interior, Bureau of Land Management, Oregon-Washington Region, U.S.A.: Portland, OR, USA, 2018; p. 387. [Google Scholar]
- Tabaraki, R.; Yosefi, Z.; Asadi, G.H.A. Chemical composition and antioxidant properties of Malva sylvestris L. J. Res. Agric. Sci. 2012, 8, 59–68. [Google Scholar]
- Guarrera, P.M.; Savo, V. Perceived health properties of wild and cultivated food plants in local and popular traditions of Italy: A review. J. Ethnopharmacol. 2013, 146, 659–680. [Google Scholar] [CrossRef]
- Giusti, F.; Capuano, E.; Sagratini, G.; Pellegrini, N. A comprehensive investigation of the behaviour of phenolic compounds in legumes during domestic cooking and in vitro digestion. Food Chem. 2019, 285, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Ertekin, F.B.; Nazli, K.; Guzel, S.Z.B. Antioxidant activity and phenolic acid content of selected vegetable broths. Czech J. Food Sci. 2017, 35, 469–475. [Google Scholar] [CrossRef]
- Domínguez-Fernández, M.; Irigoyen, Á.; de los Angeles Vargas-Alvarez, M.; Ludwig, I.A.; de Peña, M.P.; Cid, C. Influence of culinary process on free and bound (poly) phenolic compounds and antioxidant capacity of artichokes. Int. J. Gastron. Food Sci. 2021, 25, 100389. [Google Scholar] [CrossRef]
- Chen, X.; Hanschen, F.S.; Neugart, S.; Schreiner, M.; Vargas, S.A.; Gutschmann, B.; Baldermann, S. Boiling and steaming induced changes in secondary metabolites in three different cultivars of pak choi (Brassica rapa subsp. chinensis). J. Food Compos. Anal. 2019, 82, 103232. [Google Scholar] [CrossRef]
- Garcia-Herreros, C.; Garcia-Iñiguez-de-Ciriano, M.; Astiasarán, I.; Ansorena-Artieda, D. Antioxidant activity and phenolic content of water extracts of Borago officinalis L: Influence of plant part and cooking procedures. Ital. J. Food Sci. 2010, 22, 156–164. [Google Scholar]
- Alcusón, G.; Remón, S.; Salvador, M.L. Quality related aspects of sous-vide processing of borage (Borago officinalis L.) stems. LWT 2017, 85, 104–109. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Pantanella, E.; Cardarelli, M.; Colla, G.; Rea, E.; Marcucci, A. Aquaponics vs. hydroponics: Production and quality of lettuce crop. In Proceedings of the XXVIII international horticultural congress on science and horticulture for people, Lisbon, Portugal, 22 August 2010. [Google Scholar]
- Gonnella, M.; Serio, F.; Conversa, G.; Santamaria, P. Production and nitrate content in lamb’s lettuce grown in floating system. Acta Hortic. 2004, 644, 61–68. [Google Scholar] [CrossRef]
- Malorgio, F.; Diaz, K.E.; Ferrante, A.; Mensuali-Sodi, A.; Pezzarossa, B. Effects of selenium addition on minimally processed leafy vegetables grown in a floating system. J. Sci. Food Agric. 2009, 89, 2243–2251. [Google Scholar] [CrossRef]
- Fabek, S.; Toth, N.; Benko, B.; Borošić, J.; Zutić, I.; Novak, B. Lamb’s lettuce growing cycle and yield as affected by abiotic factors. Acta Hortic. 2009, 893, 887–894. [Google Scholar] [CrossRef]
- Urlic, B.; Dumicic, G.; Romic, M.; Ban, S.G. The effect of N. and NaCl on growth, yield, and nitrate content of salad rocket (Eruca sativa Mill.). J. Plant Nutr. 2017, 18, 2611–2618. [Google Scholar] [CrossRef]
- Corrado, G.; Chiaiese, P.; Lucini, L.; Miras-Moreno, B.; Colla, G.; Rouphael, Y. Successive harvests affect yield, quality and metabolic profile of sweet basil (Ocimum basilicum L.). Agronomy 2020, 10, 830. [Google Scholar] [CrossRef]
- Johnson, G.E.; Buzby, K.M.; Semmens, K.J.; Waterland, N.L. Comparison of two harvest methods for lettuce production in an aquaponic system. J. Agric. Sci. 2016, 9, 64–74. [Google Scholar] [CrossRef]
- Bantis, F.; Kaponas, C.; Charalambous, C.; Koukounaras, A. Strategic successive harvesting of rocket and spinach baby leaves enhanced their quality and production efficiency. Agriculture 2021, 11, 465. [Google Scholar] [CrossRef]
- Ciriello, M.; Formisano, L.; El-Nakhel, C.; Kyriacou, M.C.; Soteriou, G.A.; Pizzolongo, F.; Romano, R.; de Pascale, S.; Rouphael, Y. Genotype and successive harvests interaction affects phenolic acids and aroma profile of genovese basil for pesto sauce production. Foods 2021, 10, 278. [Google Scholar] [CrossRef]
- Ceccanti, C.; Landi, M.; Rocchetti, G.; Miras Moreno, M.B.; Lucini, L.; Incrocci, L.; Pardossi, A.; Guidi, L. Hydroponically grown Sanguisorba minor Scop.: Effects of cut and storage on fresh-cut produce. Antioxidants 2019, 8, 631. [Google Scholar] [CrossRef] [Green Version]
- Degl’Innocenti, E.; Pardossi, A.; Tognoni, F.; Guidi, L. Physiological basis of sensitivity to enzymatic browning in “lettuce”, “escarole” and “rocket salad” when stored as fresh-cut products. Food Chem. 2007, 104, 209–215. [Google Scholar] [CrossRef]
- Lattanzio, V.; Lattanzio, V.M.T.; Cardinali, A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In Phytochemistry: Advances in Research; Imperato, F., Ed.; Research Signpost: Trivandrum, India, 2006; pp. 23–67. [Google Scholar]
- Ksouri, R.; Megdiche, W.; Debez, A.; Falleh, H.; Grignon, C.; Abdelly, C. Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol. Biochem. 2007, 45, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Hejazi, M.M.; Shariatmadari, H.; Khoshgoftarmanesh, A.H.; Dehghani, F. Copper effects on growth, lipid peroxidation, and total phenolic content of rosemary leaves under salinity stress. J. Agric. Sci. Technol. 2012, 14, 205–212. [Google Scholar]
- Toivonen, P.M.; Wiersma, P.A.; Hampson, C.; Lannard, B. Effect of short-term air storage after removal from controlled-atmosphere storage on apple and fresh-cut apple quality. J. Sci. Food Agric. 2010, 90, 580–585. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef] [PubMed]
- Beghdad, M.C.; Benammar, C.; Bensalah, F.; Sabri, F.Z.; Belarbi, M.; Chemat, F. Antioxidant activity, phenolic and flavonoid content in leaves, flowers, stems and seeds of mallow (Malva sylvestris L.) from North Western of Algeria. Afr. J. Biotec. 2014, 13, 486–491. [Google Scholar]
- Janković, T.; Zdunić, G.; Beara, I.; Balog, K.; Pljevljakušić, D.; Stešević, D.; Šavikin, K. Comparative study of some polyphenols in Plantago species. Biochem. Syst. Ecol. 2012, 42, 69–74. [Google Scholar] [CrossRef]
- Ltaeif, H.B.; Sakhraoui, A.; González-Orenga, S.; Landa Faz, A.; Boscaiu, M.; Vicente, O.; Rouz, S. Responses to salinity in four Plantago species from Tunisia. Plants 2021, 10, 1392. [Google Scholar] [CrossRef]
- Arias-Rico, J.; Macías-León, F.J.; Alanís-García, E.; Cruz-Cansino, N.D.S.; Jaramillo-Morales, O.A.; Barrera-Gálvez, R.; Ramírez-Moreno, E. Study of edible plants: Effects of boiling on nutritional, antioxidant, and physicochemical properties. Foods 2020, 9, 599. [Google Scholar] [CrossRef] [PubMed]
- Martìnez Garcìa, L.; Ceccanti, C.; Negro, C.; De Bellis, L.; Incrocci, L.; Pardossi, A.; Guidi, L. Effect of drying methods on phenolic compounds and antioxidant activity of Urtica dioica L. leaves. Horticulturae 2021, 7, 10. [Google Scholar] [CrossRef]
- Monente, C.; Ludwig, I.A.; Irigoyen, A.; De Peña, M.P.; Cid, C. Assessment of total (free and bound) phenolic compounds in spent coffee extracts. J. Agric. Food Chem. 2015, 63, 4327–4334. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ardo, S.; Bunning, M.; Parry, J.; Zhou, K.; Stushnoff, C.; Stoniker, F.; Yu, L.; Kendall, P. Total phenolic content and DPPH radical scavenging activity of lettuce (Lactuca sativa L.) grown in Colorado. LWT 2007, 40, 552–557. [Google Scholar] [CrossRef]
- Barimah, J.; Yanney, P.; Laryea, D.; Quarcoo, C. Effect of drying methods on phytochemicals, antioxidant activity and total phenolic content of dandelion leaves. Am. J. Food Nutr. 2017, 5, 136–141. [Google Scholar]
- Fitriansyah, S.N.; Aulifa, D.L.; Febriani, Y.; Sapitri, E. Correlation of total phenolic, flavonoid and carotenoid content of Phyllanthus emblica extract from Bandung with DPPH scavenging activities. Pharmacogn. J. 2018, 10, 447–452. [Google Scholar] [CrossRef] [Green Version]
- Rana, Z.H.; Alam, M.K.; Akhtaruzzaman, M. Nutritional composition, total phenolic content, antioxidant and α-amylase inhibitory activities of different fractions of selected wild edible plants. Antioxidants 2019, 8, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Season | Species | Mean Air Temperature (°C) | Mean Air Relative Humidity (%) | Cumulative Solar Radiation (MJ m−2) | Sowing Date | Planting | C1 | C2 | C3 |
---|---|---|---|---|---|---|---|---|---|
Days from sowing | |||||||||
Winter | B. officinalis | 18.8 | 67.3 | 62.4 | 14/12/2020 | 28 | 49 | 63 | 77 |
M. sylvestris | 19.0 | 66.2 | 78.6 | 32 | 56 | 70 | 84 | ||
P. coronopus | 19.5 | 62.9 | 133.1 | 49 | 77 | 91 | 105 | ||
Spring | B. officinalis | 24.0 | 54.3 | 77.7 | 22/03/2021 | 21 | 42 | 49 | 56 |
M. sylvestris | 24.0 | 54.3 | 77.7 | 21 | 42 | 49 | 56 | ||
P. coronopus | 25.6 | 48.3 | 216.9 | 35 | 56 | 70 | 84 |
Cut (C) | Growing Season (GS) | Heat Treatment (HT) | TPC (mg GAE g−1 DW) | AA (mg TE g−1 DW) |
---|---|---|---|---|
C1 | Winter | Raw | 5.31 | 10.21 cd |
Boiled | 0.99 | 4.43 d | ||
Spring | Raw | 7.28 | 7.42 cd | |
Boiled | 7.91 | 12.98 bcd | ||
C2 | Winter | Raw | 9.71 | 28.24 a |
Boiled | 1.65 | 4.34 d | ||
Spring | Raw | 13.85 | 7.91 cd | |
Boiled | 11.43 | 17.70 abc | ||
C3 | Winter | Raw | 28.37 | 17.77 abc |
Boiled | 8.41 | 9.15 cd | ||
Spring | Raw | 17.00 | 22.66 ab | |
Boiled | 8.21 | 11.56 bcd | ||
MEAN EFFECT | ||||
C1 | 5.37 c | 8.76 b | ||
C2 | 9.16 b | 14.55 a | ||
C3 | 15.50 a | 15.29 a | ||
Winter | 9.07 b | 12.36 | ||
Spring | 10.95 a | 13.37 | ||
Raw | 13.59 a | 15.70 a | ||
Boiled | 6.43 b | 10.03 b | ||
C1 | Winter | 3.15 d | 7.32 | |
Spring | 7.60 c | 10.20 | ||
C2 | Winter | 5.68 cd | 16.29 | |
Spring | 12.64 b | 12.81 | ||
C3 | Winter | 18.39 a | 13.46 | |
Spring | 12.61 b | 17.11 | ||
C1 | Raw | 6.30 cd | 8.82 b | |
Boiled | 4.45 d | 8.71 b | ||
C2 | Raw | 11.78 b | 18.08 a | |
Boiled | 6.54 cd | 11.02 b | ||
C3 | Raw | 22.69 a | 20.22 a | |
Boiled | 8.31 c | 10.36 b | ||
Winter | Raw | 14.46 a | 18.74 a | |
Boiled | 3.68 c | 5.97 c | ||
Spring | Raw | 12.71 a | 12.66 b | |
Boiled | 9.18 b | 14.08 ab | ||
ANOVA | ||||
C | *** | *** | ||
GS | ** | ns | ||
HT | *** | *** | ||
C × GS | *** | ns | ||
C × HT | *** | * | ||
GS × HT | *** | *** | ||
C × GS × HT | ns | *** |
Cut (C) | Growing Season (GS) | Heat Treatment (HT) | TPC (mg GAE g−1 DW) | AA (mg TE g−1 DW) |
---|---|---|---|---|
C1 | Winter | Raw | 3.33 e | 4.43 |
Boiled | 1.34 e | 7.35 | ||
Spring | Raw | 9.75 bc | 7.63 | |
Boiled | 6.23 cde | 15.36 | ||
C2 | Winter | Raw | 4.80 de | 3.85 |
Boiled | 4.04 e | 12.80 | ||
Spring | Raw | 7.30 bcde | 6.70 | |
Boiled | 8.58 bc | 22.15 | ||
C3 | Winter | Raw | 9.89 bc | 10.49 |
Boiled | 7.93 bcd | 17.04 | ||
Spring | Raw | 16.23 a | 20.26 | |
Boiled | 10.46 b | 19.09 | ||
MEAN EFFECT | ||||
C1 | 5.16 b | 8.69 c | ||
C2 | 6.18 b | 11.38 b | ||
C3 | 11.13 a | 16.72 a | ||
Winter | 5.22 b | 9.33 b | ||
Spring | 9.76 a | 15.20 a | ||
Raw | 8.55 a | 8.89 b | ||
Boiled | 6.43 b | 15.63 a | ||
C1 | Winter | 2.33 | 5.89 d | |
Spring | 7.99 | 11.50 b | ||
C2 | Winter | 4.42 | 8.33 c | |
Spring | 7.94 | 14.43 a | ||
C3 | Winter | 8.91 | 13.77 a | |
Spring | 13.35 | 19.68 a | ||
C1 | Raw | 6.54 c | 6.03 c | |
Boiled | 3.78 d | 11.36 b | ||
C2 | Raw | 6.05 c | 5.28 c | |
Boiled | 6.31 c | 17.48 a | ||
C3 | Raw | 13.06 a | 15.38 b | |
Boiled | 9.19 b | 13.75 a | ||
Winter | Raw | 6.01 | 6.26 d | |
Boiled | 4.44 | 12.40 b | ||
Spring | Raw | 11.09 | 11.53 c | |
Boiled | 8.42 | 18.87 a | ||
ANOVA | ||||
C | *** | *** | ||
GS | *** | *** | ||
HT | *** | *** | ||
C × GS | ns | *** | ||
C × HT | *** | *** | ||
GS × HT | ns | *** | ||
C × GS × HT | * | ns |
Cut (C) | Growing Season (GS) | Heat Treatment (HT) | TPC (mg GAE g−1 DW) | AA (mg TE g−1 DW) |
---|---|---|---|---|
C1 | Winter | Raw | 4.51 e | 2.38 |
Boiled | 13.46 bcde | 15.39 | ||
Spring | Raw | 12.73 bcde | 28.44 | |
Boiled | 37.24 a | 51.44 | ||
C2 | Winter | Raw | 4.86 de | 2.71 |
Boiled | 16.36 bc | 16.80 | ||
Spring | Raw | 4.64 e | 5.70 | |
Boiled | 14.15 bcd | 14.36 | ||
C3 | Winter | Raw | 7.20 cde | 3.48 |
Boiled | 15.15 bc | 13.86 | ||
Spring | Raw | 21.16 b | 8.60 | |
Boiled | 12.67 bcde | 10.89 | ||
MEAN EFFECT | ||||
C1 | 16.99 a | 24.41 a | ||
C2 | 10.00 b | 9.89 b | ||
C3 | 14.05 a | 9.21 b | ||
Winter | 10.26 b | 9.10 b | ||
Spring | 17.10 a | 19.91 a | ||
Raw | 9.18 b | 8.55 b | ||
Boiled | 18.17 a | 20.46 a | ||
C1 | Winter | 8.98 c | 8.89 b | |
Spring | 24.99 a | 39.94 a | ||
C2 | Winter | 10.61 c | 9.76 b | |
Spring | 9.40 c | 10.03 b | ||
C3 | Winter | 11.17 bc | 8.67 b | |
Spring | 16.92 b | 9.75 b | ||
C1 | Raw | 8.62 cd | 15.41 bc | |
Boiled | 25.35 a | 33.42 a | ||
C2 | Raw | 4.75 d | 4.21 d | |
Boiled | 15.25 b | 15.58 b | ||
C3 | Raw | 14.18 bc | 6.04 cd | |
Boiled | 13.91 bc | 12.38 bcd | ||
Winter | Raw | 5.52 | 2.86 | |
Boiled | 14.99 | 15.35 | ||
Spring | Raw | 12.84 | 14.25 | |
Boiled | 21.35 | 25.56 | ||
ANOVA | ||||
C | *** | *** | ||
GS | *** | *** | ||
HT | *** | *** | ||
C × GS | *** | *** | ||
C × HT | *** | * | ||
GS × HT | ns | ns | ||
C × GS × HT | *** | ns |
Species | AA | |||
---|---|---|---|---|
r | p | N | ||
B. officinalis | TPC | 0.49 ** | 0.002 | 36 |
M. sylvestris | TPC | 0.30 ns | 0.072 | 36 |
P. coronopus | TPC | 0.87 *** | <0.001 | 36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ceccanti, C.; Landi, M.; Guidi, L.; Pardossi, A.; Incrocci, L. Seasonal Fluctuations of Crop Yield, Total Phenolic Content and Antioxidant Activity in Fresh or Cooked Borage (Borago officinalis L.), Mallow (Malva sylvestris L.) and Buck’s-Horn Plantain (Plantago coronopus L.) Leaves. Horticulturae 2022, 8, 253. https://doi.org/10.3390/horticulturae8030253
Ceccanti C, Landi M, Guidi L, Pardossi A, Incrocci L. Seasonal Fluctuations of Crop Yield, Total Phenolic Content and Antioxidant Activity in Fresh or Cooked Borage (Borago officinalis L.), Mallow (Malva sylvestris L.) and Buck’s-Horn Plantain (Plantago coronopus L.) Leaves. Horticulturae. 2022; 8(3):253. https://doi.org/10.3390/horticulturae8030253
Chicago/Turabian StyleCeccanti, Costanza, Marco Landi, Lucia Guidi, Alberto Pardossi, and Luca Incrocci. 2022. "Seasonal Fluctuations of Crop Yield, Total Phenolic Content and Antioxidant Activity in Fresh or Cooked Borage (Borago officinalis L.), Mallow (Malva sylvestris L.) and Buck’s-Horn Plantain (Plantago coronopus L.) Leaves" Horticulturae 8, no. 3: 253. https://doi.org/10.3390/horticulturae8030253
APA StyleCeccanti, C., Landi, M., Guidi, L., Pardossi, A., & Incrocci, L. (2022). Seasonal Fluctuations of Crop Yield, Total Phenolic Content and Antioxidant Activity in Fresh or Cooked Borage (Borago officinalis L.), Mallow (Malva sylvestris L.) and Buck’s-Horn Plantain (Plantago coronopus L.) Leaves. Horticulturae, 8(3), 253. https://doi.org/10.3390/horticulturae8030253