Comparing Methods for the Analysis of δ13C in Falanghina Grape Must from Different Pedoclimatic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Vineyards
2.2. Freeze-Drying of Samples
2.3. Soluble Sugars Extraction and Carbon Isotope Analysis
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Summary for Policymakers. In Climate Change 2021: Sixth Assessment Report (ipcc.ch); Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2021. [Google Scholar]
- Naulleau, A.; Gary, C.; Prévot, L.; Hossard, L. Evaluating Strategies for Adaptation to Climate Change in Grapevine Production–A Systematic Review. Front. Plant Sci. 2021, 11, 607859. [Google Scholar] [CrossRef] [PubMed]
- Favor, K.; Udawatta, R.P. Belowground Services in Vineyard Agroforestry Systems. In Agroforestry and Ecosystem Services; Udawatta, R.P., Jose, S., Eds.; Springer: Cham, Switzerland, 2021; pp. 65–94. [Google Scholar] [CrossRef]
- Cataldo, E.; Salvi, L.; Mattii, G.B. Effects of irrigation on ecophysiology, sugar content and thiol precursors (3-S-cysteinylhexan-1-ol and 3-S-glutathionylhexan-1-ol) on cv. Sauvignon Blanc. Plant Physiol. Biochem. 2021, 164, 247–259. [Google Scholar] [CrossRef]
- De Micco, V.; Zalloni, E.; Battipaglia, G.; Erbaggio, A.; Scognamiglio, P.; Caputo, R.; Cirillo, C. Rootstock effect on tree-ring traits in grapevine under a climate change scenario. IAWA J. 2018, 39, 145–155. [Google Scholar] [CrossRef]
- Koundouras, S.; Marinos, V.; Gkoulioti, A.; Kotseridis, Y.; Van Leeuwen, C. Influence of vineyard location and vine water status on fruit maturation of nonirrigated cv. Agiorgitiko (Vitis vinifera L.). Effects on wine phenolic and aroma components. J. Agric. Food Chem. 2006, 54, 5077–5086. [Google Scholar] [CrossRef] [PubMed]
- Pagay, V.; Zufferey, V.; Lakso, A. The influence of water stress on grapevine (Vitis vinifera L.) shoots in a cool, humid climate: Growth, gas exchange and hydraulics. Funct. Plant Biol. 2016, 43, 827–837. [Google Scholar] [CrossRef] [PubMed]
- Pou, A.; Gulias, J.; Moreno, M.; Tomás, M.; Medrano, H.; Cifre, J. Cover crops in Vitis vinifera L. cv. Manto Negro under Mediterranean conditions: Effects on plant vigour, yield and grape quality. Oeno One 2011, 4, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Fischer, R.A.; Turner, N.C. Plant productivity in arid and semiarid zones. Annu. Rev. Plant Physiol. 1978, 29, 277–317. [Google Scholar] [CrossRef]
- Farquhar, G.D.; O’Leary, M.H.; Berry, J.A. On the relationship between carbon isotope discrimination and the intercellular carbon-dioxide concentration in leaves. Aust. J. Plant Physiol. 1982, 9, 121–137. [Google Scholar] [CrossRef]
- Altieri, S.; Mereu, S.; Cherubini, P.; Castaldi, S.; Sirignano, C.; Lubritto, C.; Battipaglia, G. Tree-ring carbon and oxygen isotopes indicate different water use strategies in three Mediterranean shrubs at Capo Caccia (Sardinia, Italy). Trees 2015, 29, 1593–1603. [Google Scholar] [CrossRef]
- Gibberd, M.R.; Walker, R.R.; Blackmore, D.H.; Condon, A.G. Transpiration efficiency and carbon-isotope discrimination of grapevines grown under well-watered conditions in either glasshouse or vineyard. Aust. J. Grape Wine Res. 2001, 7, 110–117. [Google Scholar] [CrossRef]
- Virgona, J.M.; Smith, J.P.; Holzapfel, B.P. Scions influence apparent transpiration efficiency of Vitis vinifera (cv. Shiraz) rather than rootstocks. Aust. J. Grape Wine Res. 2003, 9, 183–185. [Google Scholar] [CrossRef]
- Gaudillere, J.P.; Van Leeuwen, C.; Ollat, N. Carbon isotope composition of sugars in grapevine, an integrated indicator of vineyard water status. J. Exp. Bot. 2002, 53, 757–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Souza, C.R.; Maroco, J.P.; Dos Santos, T.P.; Rodrigues, M.L.; Lopes, C.M.; Pereira, J.S.; Chaves, M.M. Partial rootzone drying: Regulation of stomatal aperture and carbon assimilation in field-grown grapevines (Vitis vinifera cv. Moscatel). Funct. Plant Biol. 2003, 30, 653–662. [Google Scholar] [CrossRef]
- De Souza, C.R.; Maroco, J.P.; Dos Santos, T.P.; Rodrigues, M.L.; Lopes, C.M.; Pereira, J.S.; Chaves, M.M. Impact of deficit irrigation on water use efficiency and carbon isotope composition (13C) of field-grown grapevines under Mediterranean climate. J. Exp. Bot. 2005, 56, 2163–2172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brillante, L.; Mathieu, O.; Lévêque, J.; Van Leeuwen, C.; Bois, B. Water status and must composition in grapevine cv. Chardonnay with different soils and topography and a mini meta-analysis of the δ13C/water potentials correlation. J. Sci. Food Agric. 2018, 98, 691–697. [Google Scholar] [CrossRef]
- Koundouras, S.; Tsialtas, I.T.; Zioziou, E.; Nikolaou, N. Rootstock effects on the adaptive strategies of grapevine (Vitis vinifera L. cv. Cabernet–Sauvignon) under contrasting water status: Leaf physiological and structural responses. Agric. Ecosyst. Environ. 2008, 128, 86–96. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Tregoat, O.; Chone, X.; Bois, B.; Pernet, D.; Gaudillere, J.P. Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? J. Int. Sci. Vigne Vin 2009, 43, 121–134. [Google Scholar] [CrossRef]
- Costantini, E.A.C.; Pellegrini, S.; Bucelli, P.; Barbetti, R.; Campagnolo, S.; Storchi, P.; Magini, S.; Perria, R. Mapping suitability for Sangiovese wine by means of δ13C and geophysical sensors in soils with moderate salinity. Eur. J. Agron. 2010, 33, 208–217. [Google Scholar] [CrossRef]
- Santesteban, L.G.; Miranda, C.; Urretavizcaya, I.; Royo, J.B. Carbon isotope ratio of whole berries as an estimator of plant water status in grapevine (Vitis vinifera L.) cv. ‘Tempranillo’. Sci. Hortic. 2012, 146, 7–13. [Google Scholar] [CrossRef]
- Santesteban, L.G.; Miranda, C.; Royo, J.B. Regulated deficit irrigation effects on growth, yield, grape quality and individual anthocyanin composition in Vitis vinifera L. cv. Tempranillo. Agric. Water Manage. 2011, 98, 1171–1179. [Google Scholar] [CrossRef]
- Barbagallo, M.G.; Guidoni, S.; Hunter, J.J. Berry size and qualitative characteristics of Vitis vinifera L. cv. Syrah. S. Afr. J. Enol. Vitic 2011, 32, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Ollat, N.; Gaudillere, J.P. Carbon balance in developing grapevine berries. Acta Hortic. 2000, 526, 345–350. [Google Scholar] [CrossRef]
- Coulouma, G.; Prevot, L.; Lagacherie, P. Carbon isotope discrimination as a surrogate for soil available water capacity in rainfed areas: A study in the Languedoc vineyard plain. Geoderma 2020, 362, 114121. [Google Scholar] [CrossRef]
- Zufferey, V.; Verdenal, T.; Dienes, A.; Belcher, S.; Lorenzini, F.; Koestel, C.; Blackford, M.; Bourdin, G.; Gindro, K.; Spangenberg, J.E.; et al. The influence of vine water regime on the leaf gas exchange, berry composition and wine quality of Arvine grapes in Switzerland. OENO One 2020, 54, 553–568. [Google Scholar] [CrossRef]
- Damiano, N.; Bonfante, A.; Cirillo, C.; Amitrano, C.; Erbaggio, A.; Brook, A.; De Micco, V. Retrospective reconstruction of the ecophysiological grapevine behaviour through the analysis of tree-ring series to validate an approach to extract data from space-born and UAV techniques. In Proceedings of the 2019 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Portici, Italy, 24–26 October 2019; pp. 191–195. [Google Scholar] [CrossRef]
- Bonfante, A.; Basile, A.; Langella, G.; Manna, P.; Terribile, F. A physically oriented approach to analysis and mapping of terroirs. Geoderma 2011, 167–168, 103–117. [Google Scholar] [CrossRef]
- Bonfante, A.; Monaco, E.; Langella, G.; Mercogliano, P.; Bucchignani, E.; Manna, P.; Terribile, F. A dynamic viticultural zoning to explore the resilience of terroir concept under climate change. Sci. Total Environ. 2018, 624, 294–308. [Google Scholar] [CrossRef]
- Terribile, F.; Di Gennaro, A.; De Mascellis, R. Carta dei suoli della Valle Telesina (1:50,000). In Progetto UOT Relazione Finale Convenzione CNR-ISPAIM-Regione Campania Assessorato Alla Agricoltura; Raccolta di 10 Carte Pedologiche della Regione Campania; Stampa System Cart: Rome, Italy, 1996. [Google Scholar]
- Devaux, M.; Ghashghaie, J.; Bert, D.; Lambrot, C.; Gessler, A.; Bathellier, C.; Ogée, J.; Loustau, D. Carbon stable isotope ratio of phloem sugars in mature pine trees throughout the growing season: Comparison of two extraction methods. Rapid Commun. Mass Spectrom. 2009, 23, 2511–2518. [Google Scholar] [CrossRef]
- Perini, M.; Strojnik, L.; Paolini, M.; Camin, F. Gas Chromatography Combustion Isotope Ratio Mass Spectrometry for Improving the Detection of Authenticity of Grape Must. J. Agric. Food Chem. 2020, 68, 3322–3329. [Google Scholar] [CrossRef]
- Ricci, P.; Sirignano, C.; Altieri, S.; Pistillo, M.; Santoriello, A.; Lubritto, C. Paestum dietary habits during the Imperial period: Archaeological records and stable isotope measurement. Acta IMEKO 2016, 5, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-M.; Forney, C.; Bondada, B.; Leng, F.; Xie, Z.-S. The molecular regulation of carbon sink strength in grapevine (Vitis vinifera L.). Front. Plant Sci. 2021, 11, 606918. [Google Scholar] [CrossRef]
- Santesteban, L.G.; Miranda, C.; Barbarin, I.; Royo, J.B. Application of the measurement of the natural abundance of stable isotopes in viticulture: A review. Aust. J. Grape Wine Res. 2015, 21, 157–161. [Google Scholar] [CrossRef]
- Bchir, A.; Escalona, J.M.; Galle, A.; Hernandez-Montes, E.; Tortosa, I.; Braham, M.; Medrano, H. Carbon isotope discrimination (δ13C) as an indicator of vine water status and water use efficiency (WUE): Looking for the most representative sample and sampling time. Agric. Water Manag. 2016, 167, 11–20. [Google Scholar] [CrossRef]
- Gomez-Alonso, S.; Garcia-Romero, E. Effect of irrigation and variety on oxygen (δ18O) and carbon (δ13C) stable isotope composition of grapes cultivated in a warm climate. Aust. J. Grape Wine Res. 2010, 16, 283–289. [Google Scholar] [CrossRef]
- Nangia, V.; Oweis, T. Supplemental irrigation: A promising climate-resilience practice for sustainable dryland agriculture. In Innovations in Dryland Agriculture; Farooq, M., Siddique, K.H.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 549–564. [Google Scholar]
- Novara, A.; Cerda, A.; Barone, E.; Gristina, L. Cover crop management and water conservation in vineyard and olive orchards. Soil Tillage Res. 2021, 208, 104896. [Google Scholar] [CrossRef]
Site and Vineyards Information | SL | CA | GR | AC |
---|---|---|---|---|
Row orientation | N-S | E-W | E-W | E-W |
Landscape Systems * | Hills | Hills | Hills | Ancient alluvial terraces |
Soil type ** | Typic calciustolls | Typic calciustolls | Typic calciustolls | Typic calciustolls |
Soil series | Consociazione dei suoli Pennine | Consociazione dei suoli Pennine | Consociazione dei suoli Pennine | Consociazione dei suoli Taverna Starze |
Soil management | Tillage | Natural coverage | Natural coverage | Tillage |
Average Amerine & Winkler index (DDA) *** | 1697 | 1697 | 1697 | 1827 |
Average Potential CWSIcum (%)—Total stress *** | 6 | 6 | 6 | 20 |
Irrigation management | Rainfed | Rainfed | Rainfed | Supplemental irrigation |
Yield efficiency (Kg/cm2) | 0.951 ± 0.115 a | 0.288 ± 0.024 c | 0.591 ± 0.038 b | 0.924 ± 0.126 a |
d¹³ C | |
---|---|
‰ vs. PDB | |
Site | |
SL | –26.87 ± 0.24 b |
CA | –25.03 ± 0.06 a |
GR | –24.94 ± 0.08 a |
AC | –27.93 ± 0.16 c |
Matrix | |
Must (M) | –26.22 ± 0.41 a |
Extracted sugars (ES) | –26.16 ± 0.38 a |
Significance | |
Site | *** |
Matrix | NS |
Site × Matrix | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damiano, N.; Altieri, S.; Battipaglia, G.; De Micco, V. Comparing Methods for the Analysis of δ13C in Falanghina Grape Must from Different Pedoclimatic Conditions. Horticulturae 2022, 8, 226. https://doi.org/10.3390/horticulturae8030226
Damiano N, Altieri S, Battipaglia G, De Micco V. Comparing Methods for the Analysis of δ13C in Falanghina Grape Must from Different Pedoclimatic Conditions. Horticulturae. 2022; 8(3):226. https://doi.org/10.3390/horticulturae8030226
Chicago/Turabian StyleDamiano, Nicola, Simona Altieri, Giovanna Battipaglia, and Veronica De Micco. 2022. "Comparing Methods for the Analysis of δ13C in Falanghina Grape Must from Different Pedoclimatic Conditions" Horticulturae 8, no. 3: 226. https://doi.org/10.3390/horticulturae8030226
APA StyleDamiano, N., Altieri, S., Battipaglia, G., & De Micco, V. (2022). Comparing Methods for the Analysis of δ13C in Falanghina Grape Must from Different Pedoclimatic Conditions. Horticulturae, 8(3), 226. https://doi.org/10.3390/horticulturae8030226