Assessment of Yield and Nitrate Content of Wall Rocket Grown under Diffuse-Light- or Clear-Plastic Films and Subjected to Different Nitrogen Fertilization Levels and Biostimulant Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design, Setting, and Crop Characteristics and Management
2.2. Plastic Films Properties, Nitrogen Rates, and Biostimulant Application
2.3. Yield Measurements, Nitrate Content, SPAD Index and Color Parameters
2.4. Temperature Measurements and Soil Nitrate and Total Nitrogen Analysis
2.5. Statistical Analysis
3. Results
3.1. Envrionmental Conditions: Air Temperatures and Soil Nitrogen Content
3.2. Statistical Results of Yield and Crop Parameters
3.3. Yield as Affected by the Experimental Factors
3.4. Yield Parameters
3.5. Nitrate Content, SPAD Index, and Color Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- D’Antuono, L.F.; Elementi, S.; Neri, R. Glucosinolates in Diplotaxis and Eruca leaves: Diversity, taxonomic relations and applied aspects. Phytochemistry 2008, 69, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Sánchez, A.; Llorach, R.; Gil, M.I.; Ferreres, F. Identification of new flavonoid glycosides and flavonoid profiles to characterize rocket leafy salads (Eruca vesicaria and Diplotaxis tenuifolia). J. Agric. Food Chem. 2007, 55, 1356–1363. [Google Scholar] [CrossRef] [PubMed]
- Siomos, A.S.; Koukounaras, A. Quality and postharvest physiology of rocket leaves. Fresh Prod. 2007, 1, 59–65. [Google Scholar]
- Non Renseigné, U.A.; Iqbal, M. Nitrate accumulation in plants, factors affecting the process, and human health implications. A review. Agron. Sustain. Dev. 2007, 27, 45–57. [Google Scholar]
- Colla, G.; Kim, H.J.; Myriacou, M.C.; Rouphael, Y. Nitrate in fruits and vegetables. Sci. Hortic. 2018, 237, 221–238. [Google Scholar] [CrossRef]
- Salehzadeh, H.; Maleki, A.; Rezaee, R.; Shahmoradi, B.; Ponnet, K. The nitrate content of fresh and cooked vegetables and their health-related risks. PLoS ONE 2020, 15, e0227551. [Google Scholar] [CrossRef]
- Cavaiuolo, M.; Ferrante, A. Nitrates and glucosinolates as strong determinants of the nutritional quality in rocket leafy salads. Nutrients 2014, 6, 1519–1538. [Google Scholar] [CrossRef] [Green Version]
- Barker, A.V.; Maynard, D.N. Nutritional factors affecting nitrate accumulation in spinach. Commun. Soil Sci. Plant Anal. 1971, 2, 47. [Google Scholar] [CrossRef]
- Stagnari, F.; Di Bitetto, V.; Pisante, M. Effects of N fertilizers and rates on yield, safety and nutrients in processing spinach genotypes. Sci. Hortic. 2007, 114, 225–233. [Google Scholar] [CrossRef]
- Abubaker, S.M.; Abu-Zahra, T.R.; Alzubi, Y.A.; Tahboub, A.B. Nitrate accumulation in spinach (Spinacia oleracea L.) tissues under different fertilization regimes. J. Food Agric. Environ. 2010, 8, 778–780. [Google Scholar]
- Breimer, T. Environmental factors and cultural measures affecting the nitrate content in spinach. Fert. Res. 1982, 3, 191–292. [Google Scholar] [CrossRef] [Green Version]
- Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Nocerino, S.; Rouphael, Y.; Colla, G.; El-Nakhel, C.; Mori, M. Nitrogen Use and Uptake Efficiency and Crop Performance of Baby Spinach (Spinacia oleracea L.) and Lamb’s Lettuce (Valerianella locusta L.) Grown under Variable Sub-Optimal N Regimes Combined with Plant-Based Biostimulant Application. Agronomy 2020, 10, 278. [Google Scholar] [CrossRef] [Green Version]
- Bian, Z.; Wang, Y.; Zhang, X.; Li, T.; Grundy, S.; Yang, Q.; Cheng, R. A Review of Environment Effects on Nitrate Accumulation in Leafy Vegetables Grown in Controlled Environments. Foods 2020, 9, 732. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Li, H.Y.; Yu, J.; Liu, H.; Cao, Z.Y.; Manukovsky, N.S.; Liu, H. Interaction effects of light intensity and nitrogen concentration on growth, photosynthetic characteristics and quality of lettuce (Lactuca sativa L. Var. youmaicai). Sci. Hort. 2017, 214, 51–57. [Google Scholar] [CrossRef]
- Santamaria, P. Nitrate in vegetables: Toxicity, content, intake and EC regulation. J. Sci. Food Agric. 2006, 86, 10–17. [Google Scholar] [CrossRef]
- Di Mola, I.; Rouphael, Y.; Colla, G.; Fagnano, M.; Paradiso, R.; Mori, M. Morph physiological traits and nitrate content of greenhouse lettuce as affected by irrigation with saline water. HortScience 2017, 52, 1716–1721. [Google Scholar] [CrossRef] [Green Version]
- Di Mola, I.; Rouphael, Y.; Ottaiano, L.; Duri, L.G.; Mori, M.; De Pascale, S. Assessing the effects of salinity on yield, leaf gas exchange and nutritional quality of spring greenhouse lettuce. Acta Hortic. 2018, 1227, 479–484. [Google Scholar] [CrossRef]
- Caruso, G.; Formisano, L.; Cozzolino, E.; Pannico, A.; El-Nakhel, C.; Rouphael, Y.; Tallarita, A.; Cenvinzo, V.; De Pascale, S. Shading affects Yield, Elemental Composition and Antioxidants of Perennial Wall Rocket Crops Grown from Spring to Summer in Southern Italy. Plants 2020, 9, 933. [Google Scholar] [CrossRef]
- Drews, M.; Schonhof, I.; Krumbein, A. Influence of growth season on the content of nitrate, vitamin C, beta-carotin, and sugar of head lettuce under greenhouse conditions. Gartenbauwissenschaft 1995, 60, 180–187. [Google Scholar]
- Department of Energy. Available online: https://www.energy.gov/eere/solar/solar-radiation-basics (accessed on 19 November 2021).
- Heuberger, H.; Preager, U.; Georgi, M.; Schirrmacher, G.; Graßmann, J.; Schnitzler, W.H. Precision stressing by UV-B radiation to improvequality of spinach under protected cultivation. Acta Hort. 2004, 659, 201–206. [Google Scholar] [CrossRef]
- Peet, M.M. Greenhouse crop stress management. Acta Hort. 1999, 481, 643–654. [Google Scholar] [CrossRef]
- Warren, W.J.; Hand, D.W.; Hannah, M.A. Light interception and photosynthetic efficiency in some glasshouse crops. J. Exp. Bot. 1992, 43, 363–373. [Google Scholar]
- Li, T.; Yang, Q. Advantages of diffuse light for horticultural production and perspectives for further research. Front. Plant Sci. 2015, 6, 704. [Google Scholar] [CrossRef] [Green Version]
- Gu, L.; Baldocchi, D.D.; Wofsy, S.C.; William Munger, J.; Michalsky, J.J.; Urbanski, S.P.; Boden, T.A. Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis. Science 2003, 299, 2035–2038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcelis, L.F.M.; Broekhuijsen, A.G.M.; Meinen, E.; Nijs, E.M.F.M.; Raaphorst, M.G.M. Quantification of the growth response to light quantity of greenhouse grown crops. Acta Hortic. 2006, 711, 97–103. [Google Scholar] [CrossRef]
- Poorter, H.; Anten, N.P.R.; Marcelis, L.F.M. Physiological mechanisms in plant growth models: Do we need a supra-cellular systems biology approach? Plant Cell Environ. 2013, 36, 1673–1690. [Google Scholar] [CrossRef]
- Fausey, B.A.; Heins, R.D.; Cameron, A.C. Daily light integral affects flowering and quality of greenhouse-grown Achillea, Gaura, and Lavandula. HortScience 2005, 40, 114–118. [Google Scholar] [CrossRef] [Green Version]
- Hemming, S.; Dueck, T.; Janse, J.; Van Noort, F. The effect of diffuse light on crops. Acta Hortic. 2008, 801, 1293–1300. [Google Scholar] [CrossRef] [Green Version]
- Kanniah, K.D.; Beringer, J.; North, P.; Hutley, L. Control of atmospheric particles on diffuse radiation and terrestrial plant productivity: A review. Prog. Phys. Geogr. 2012, 36, 209–237. [Google Scholar] [CrossRef]
- Roderick, M.L.; Farquhar, G.D.; Berry, S.L.; Noble, I.R. On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 2001, 129, 21–30. [Google Scholar] [CrossRef]
- Di Mola, I.; Conti, S.; Cozzolino, E.; Melchionna, G.; Ottaiano, L.; Testa, A.; Sabatino, L.; Rouphael, Y.; Mori, M. Plant-Based protein hydrolysate improves salinity tolerance in hemp: Agronomical and physiological aspects. Agronomy 2021, 11, 342. [Google Scholar] [CrossRef]
- Urban, O.; Klem, K.; Ač, A.; Havránková, K.; Holišová, P.; Navrátil, M.; Zitová, M.; Kozlová, K.; Pokorný, R.; Šprtová, M.; et al. Impact of clear and cloudy sky conditions on the vertical distribution of photosynthetic CO2 uptake within a spruce canopy. Funct. Ecol. 2012, 26, 46–55. [Google Scholar] [CrossRef]
- Steiner, A.L.; Chameides, W.L. Aerosol-induced thermal effects increase modelled terrestrial photosynthesis and transpiration. Tellus B Chem. Phys. Meteorol. 2005, 57, 404–411. [Google Scholar] [CrossRef]
- Colla, G.; Nardi, S.; Cardarelli, M.; Ertani, A.; Lucini, L.; Canaguier, R.; Rouphael, Y. Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. 2015, 196, 28–38. [Google Scholar] [CrossRef]
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 2017, 8, 2202. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Colla, G. Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1655. [Google Scholar] [CrossRef] [Green Version]
- Chiaiese, P.; Corrado, G.; Colla, G.; Kyriacou, M.C.; Rouphael, Y. Renewable sources of plant biostimulation: Microalgae as a sustainable means to improve crop performance. Front. Plant Sci. 2018, 9, 1782. [Google Scholar] [CrossRef] [Green Version]
- Maraldisementi. Available online: https://www.maraldisementi.it/en/wild-rocket/ (accessed on 19 November 2021).
- Di Mola, I.; Ottaiano, L.; Cozzolino, E.; Sabatino, L.; Sifola, M.I.; Mormile, P.; Mori, M. Optical Characteristics of greenhouse plastic films affect yield and some quality traits of spinach (Spinacia oleracea L.) Subjected to Different Nitrogen Doses. Horticulturae 2021, 7, 200. [Google Scholar] [CrossRef]
- Fertenia. Available online: https://www.fertenia.it/schede/biostimolanti/stimolo.pdf (accessed on 19 November 2021).
- Bremner, J.M. Total nitrogen. In Methods of Soil Analysis. Agronomy Monograph; Part 2; Black, C.A., Evans, D.D., White, I.L., Ensminger, L.E., Clark, F.E., Eds.; American Society of Agronomy: Madison, WI, USA, 1965; Volume 9, pp. 1149–1178. [Google Scholar]
- Jiang, H.; Yang, Y.; Wang, H.; Bai, Y.; Bai, Y. Surface Diffuse Solar Radiation Determined by Reanalysis and Satellite over East Asia: Evaluation and Comparison. Remote Sens. 2020, 12, 1387. [Google Scholar] [CrossRef]
- Cozzolino, E.; Di Mola, I.; Ottaiano, L.; El-Nakhel, C.; Mormile, P.; Rouphael, Y.; Mori, M. The potential of greenhouse diffusing cover material on yield and nutritive values of lamb’s lettuce grown under diverse nitrogen regimes. Italus Hortus 2020, 27, 55–67. [Google Scholar] [CrossRef]
- He, J.; See, X.E.; Qin, L.; Choong, T.W. Effects of root-zone temperature on photosynthesis, productivity and nutritional quality of aeroponically grown salad rocket (Eruca sativa) vegetable. Am. J. Plant Sci. 2016, 7, 1993–2005. [Google Scholar] [CrossRef] [Green Version]
- Duek, T.; Janse, J.; Li, T.; Kempkes, F.; Eveleens, B. Influence of diffuse glass on the growth and production of tomato. Acta Hort. 2012, 956, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Chun, H.; Yum, S.; Kang, Y.; Kim, H.; Lee, S. Environments and canopy productivity of green pepper (Capsicum annuum L.) in a greenhouse using light-diffused woven film. Korean J. Hortic. Sci. Technol. 2005, 23, 367–371. [Google Scholar]
- Neugart, S.; Schreiner, M. UVB and UVA as eustressors in horticultural and agricultural crops. Sci. Hort. 2018, 234, 370–381. [Google Scholar] [CrossRef]
- Kittas, C.; Tchamitchian, M.; Katsoulas, N.; Karaiskou, P.; Papaioannou, C.H. Effect of two UV-absorbing greenhouse-covering films on growth and yield of an eggplant soilless crop. Sci. Hort. 2006, 110, 30–37. [Google Scholar] [CrossRef]
- Paul, N.D.; Moore, J.P.; McPherson, M.; Lambourne, C.; Croft, P.; Heaton, J.C.; Wargent, J.J. Ecological responses to UV radiation: Interactions between the biological effects of UV on plants and on associated organisms. Phys. Plant. 2012, 145, 565–581. [Google Scholar] [CrossRef]
- Sakalauskaite, J.; Viškelis, P.; Duchovskis, P.; Dambrauskiene, E.; Sakalauskiene, S.; Samuoliene, G.; Brazaityte, A. Supplementary UV-B irradiation effects on basil (Ocimum basilicum L.) growth and phytochemical properties. J. Food Agric. Environ. 2012, 10, 342–346. [Google Scholar]
- Pal, M.A.; Sharma, A.; Abrol, Y.P.; Sengupta, U.K. Exclusion of UV-B radiation from normal solar spectrum on growth of mung bean and maize. Agric. Ecosyst. Environ. 1997, 61, 29–34. [Google Scholar] [CrossRef]
- European Community. Reg. n 1258 of 2 December 2011. Off. J. Eur. Union 2011, L320, 15–17. [Google Scholar]
- Bonasia, A.; Lazzizera, C.; Elia, A.; Conversa, G. Nutritional, biophysical and physiological characteristics of wild rocket genotypes as affected by soilless cultivation system, salinity level of nutrient solution and growing period. Front. Plant Sci. 2017, 8, 300. [Google Scholar] [CrossRef] [Green Version]
- Di Mola, I.; Ottaiano, L.; Cozzolino, E.; Senatore, M.; Giordano, M.; El-Nakhel, C.; Mori, M. Plant-based biostimulants influence the agronomical, physiological, and qualitative responses of baby rocket leaves under diverse nitrogen conditions. Plants 2019, 8, 522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Giordano, M.; Rouphael, Y.; Colla, G.; Mori, M. Effect of vegetal-and seaweed extract-based biostimulants on agronomical and leaf quality traits of plastic tunnel-grown baby lettuce under four regimes of nitrogen fertilization. Agronomy 2019, 9, 571. [Google Scholar] [CrossRef] [Green Version]
- Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Giordano, M.; Rouphael, Y.; El Nakhel, C.; Mori, M. Effect of seaweed (Ecklonia maxima) extract and legume-derived protein hydrolysate biostimulants on baby leaf lettuce grown on optimal doses of nitrogen under greenhouse conditions. Aust. J. Crop. Sci 2020, 14, 1456–1464. [Google Scholar] [CrossRef]
Cycle | Agricultural Practices (DAT/DAPH *) | Harvest | |||
---|---|---|---|---|---|
Fertilization | Biostimulant 1 | Biostimulant 2 | Biostimulant 3 | DAT/DAPH * | |
I | 18 | 26 | 33 | 40 | 50 |
II | 7 | 14 | 21 | 30 | 68 |
III | 6 | 14 | 21 | 27 | 34 |
IV | 6 | 10 | 17 | 23 | 30 |
V | 4 | 8 | 14 | 19 | 27 |
VI | 3 | 5 | 11 | 17 | 23 |
Treatments | N-NO3 | Total N |
---|---|---|
ppm | % | |
N0 | 56.3 c | 0.105 b |
N1 | 97.2 b | 0.103 b |
N2 | 173.2 a | 0.114 a |
Control | 80.7 b | 0.105 b |
StMo | 137.1 a | 0.109 a |
Plastic Film (P) | ns | ns |
Biostimulant (B) | 0.001 | 0.001 |
Fertilization (F) | 0.001 | 0.001 |
Harvest (H) | ns | ns |
Significance | Yield | Leaf DM | Leaf Nb | Leaf AW | L* | a* | b* | SPAD | Nitrate |
---|---|---|---|---|---|---|---|---|---|
Plastic films (P) | 0.01 | 0.01 | 0.01 | 0.01 | ns | 0.01 | 0.01 | 0.01 | ns |
Biostimulant (B) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | ns | 0.01 | 0.05 | 0.01 |
Fertilization (F) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | ns | 0.01 | 0.01 | 0.01 |
Harvest (H) | 0.01 | 0.01 | 0.01 | 0.01 | ns | 0.01 | ns | 0.01 | 0.01 |
P × B | 0.01 | 0.01 | 0.01 | 0.05 | 0.01 | 0.01 | 0.01 | 0.05 | ns |
P × F | 0.01 | ns | 0.05 | 0.01 | ns | ns | ns | ns | ns |
P × H | 0.01 | ns | ns | ns | ns | ns | ns | ns | 0.01 |
B × F | ns | 0.01 | 0.05 | ns | 0.01 | ns | 0.01 | 0.01 | 0.01 |
B × H | 0.01 | ns | ns | ns | ns | ns | ns | ns | 0.01 |
F × H | 0.01 | 0.01 | 0.01 | ns | ns | ns | ns | ns | 0.01 |
P × B × F | ns | ns | ns | ns | ns | ns | ns | ns | ns |
P × B × H | ns | ns | ns | ns | ns | ns | ns | ns | 0.01 |
P × F × H | ns | ns | ns | ns | ns | ns | ns | ns | ns |
B × F × H | ns | ns | ns | ns | ns | ns | ns | ns | 0.01 |
P × B × F × H | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Treatments | Leaves | |||
---|---|---|---|---|
Dry Matter (%) | N° Plant−1 | g Leaf−1 | ||
Film1 | StMo | 10.7 b | 292.9 a | 0.23 a |
Control | 13.8 a | 220.6 bc | 0.20 ab | |
Film2 | StMo | 12.1 ab | 232.3 b | 0.21 a |
Control | 14.1 a | 195.0 c | 0.19 b | |
Film1 | N0 | 14.4 ns | 180.6 bc | 0.15 c |
N1 | 11.3 ns | 282.4 a | 0.24 ab | |
N2 | 10.9 ns | 307.2 a | 0.26 a | |
Film2 | N0 | 15.0 ns | 143.9 c | 0.16 c |
N1 | 12.6 ns | 219.0 b | 0.21 b | |
N2 | 11.7 ns | 278.1 a | 0.23 ab | |
Control | N0 | 16.5 a | 126.4 d | 0.14 ns |
N1 | 13.1 b | 232.2 bc | 0.21 ns | |
N2 | 12.3 bc | 264.8 b | 0.24 ns | |
StMo | N0 | 13.0 b | 198.1 c | 0.17 ns |
N1 | 10.9 cd | 269.2 b | 0.23 ns | |
N2 | 10.3 d | 320.5 a | 0.25 ns |
Treatments | Leaves | |||
---|---|---|---|---|
Dry Matter (%) | N° Plant−1 | g Leaf−1 | ||
N0 | I | 11.8 fh | 160.7 lm | 0.19 ns |
II | 13.3 cd | 140.6 m | 0.19 ns | |
III | 14.1 c | 153.2 lm | 0.16 ns | |
IV | 16.9 a | 137.9 m | 0.17 ns | |
V | 15.5 b | 144.2 m | 0.14 ns | |
VI | 16.8 a | 237.1 fg | 0.09 ns | |
N1 | I | 10.2 i | 182.6 hi | 0.24 ns |
II | 12.9 de | 194.5 hi | 0.23 ns | |
III | 11.9 eh | 249.4 ef | 0.24 ns | |
IV | 11.6 gh | 250.7 ef | 0.25 ns | |
V | 12.3 dg | 270.2 de | 0.22 ns | |
VI | 12.8 df | 356.7 b | 0.16 ns | |
N2 | I | 10.0 i | 177.9 il | 0.26 ns |
II | 11.8 gh | 211.7 gh | 0.26 ns | |
III | 11.7 gh | 297.1 cd | 0.27 ns | |
IV | 11.4 gh | 312.3 c | 0.27 ns | |
V | 12.1 eg | 350.2 b | 0.22 ns | |
VI | 11.0 hi | 406.8 a | 0.19 ns |
Treatments | L* | a* | b* | SPAD | |
---|---|---|---|---|---|
Film1 | Control | 41.5 a | −7.31 a | 18.2 a | 39.5 c |
StMo | 40.4 b | −7.13 ab | 17.5 ab | 43.0 a | |
Film2 | Control | 41.6 a | −6.76 c | 17.3 b | 38.8 c |
StMo | 41.4 a | −6.98 bc | 17.5 ab | 42.0 b | |
Control | N0 | 42.3 a | −7.05 ns | 19.0 a | 33.5 e |
N1 | 41.2 b | −6.99 ns | 17.3 bc | 40.6 c | |
N2 | 41.2 b | −7.06 ns | 17.0 c | 43.3 d | |
StMo | N0 | 41.0 b | −7.12 ns | 18.0 b | 38.4 d |
N1 | 40.9 b | −7.00 ns | 17.5 bc | 43.3 b | |
N2 | 40.8 b | −7.03 ns | 17.1 bc | 45.7 a |
Treatments | L* | a* | b* | SPAD |
---|---|---|---|---|
I | 41.1 ns | −7.64 a | 17.8 ns | 35.3 e |
II | 41.2 ns | −7.27 ab | 17.4 ns | 42.9 ab |
III | 41.5 ns | −7.57 a | 17.9 ns | 41.8 c |
IV | 41.0 ns | −6.75 bc | 17.6 ns | 43.5 a |
V | 41.1 ns | −6.24 c | 17.2 ns | 41.9 bc |
VI | 41.6 ns | −6.79 bc | 17.8 ns | 39.5 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Mola, I.; Ottaiano, L.; Cozzolino, E.; El-Nakhel, C.; Rippa, M.; Mormile, P.; Corrado, G.; Rouphael, Y.; Mori, M. Assessment of Yield and Nitrate Content of Wall Rocket Grown under Diffuse-Light- or Clear-Plastic Films and Subjected to Different Nitrogen Fertilization Levels and Biostimulant Application. Horticulturae 2022, 8, 138. https://doi.org/10.3390/horticulturae8020138
Di Mola I, Ottaiano L, Cozzolino E, El-Nakhel C, Rippa M, Mormile P, Corrado G, Rouphael Y, Mori M. Assessment of Yield and Nitrate Content of Wall Rocket Grown under Diffuse-Light- or Clear-Plastic Films and Subjected to Different Nitrogen Fertilization Levels and Biostimulant Application. Horticulturae. 2022; 8(2):138. https://doi.org/10.3390/horticulturae8020138
Chicago/Turabian StyleDi Mola, Ida, Lucia Ottaiano, Eugenio Cozzolino, Christophe El-Nakhel, Massimo Rippa, Pasquale Mormile, Giandomenico Corrado, Youssef Rouphael, and Mauro Mori. 2022. "Assessment of Yield and Nitrate Content of Wall Rocket Grown under Diffuse-Light- or Clear-Plastic Films and Subjected to Different Nitrogen Fertilization Levels and Biostimulant Application" Horticulturae 8, no. 2: 138. https://doi.org/10.3390/horticulturae8020138
APA StyleDi Mola, I., Ottaiano, L., Cozzolino, E., El-Nakhel, C., Rippa, M., Mormile, P., Corrado, G., Rouphael, Y., & Mori, M. (2022). Assessment of Yield and Nitrate Content of Wall Rocket Grown under Diffuse-Light- or Clear-Plastic Films and Subjected to Different Nitrogen Fertilization Levels and Biostimulant Application. Horticulturae, 8(2), 138. https://doi.org/10.3390/horticulturae8020138