Next Article in Journal
Transcriptional Effects of Rootstock on Scion after Drought: A Case Study of Using MdGH3 RNAi as the Rootstock
Previous Article in Journal
The Potential Roles of the N and P Supplies on the Internal Browning Incidence in Sweet Cherries in the Southern Chile
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Comparison of Wild and Introduced Dracocephalum jacutense P.: Significant Differences of Multicomponent Composition

by
Mayya P. Razgonova
1,2,*,
Zhanna M. Okhlopkova
3,
Zoya G. Rozhina
3,
Polina S. Egorova
4,
Sezai Ercisli
5 and
Kirill S. Golokhvast
3,6,7
1
N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia
2
Institute of Life Science and Biomedicine, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia
3
Department of Biology, North-Eastern Federal University, Belinsky Str. 58, 677000 Yakutsk, Russia
4
Yakutsk Botanical Garden, Institute for Biological Problems of Cryolithozone Siberian Branch of Russian Academy Sciences, Lenina pr. 41, 677000 Yakutsk, Russia
5
Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
6
Laboratory of Supercritical Fluid Research and Application in Agrobiotechnology, Tomsk State University, Lenin Str. 36, 634050 Tomsk, Russia
7
Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, 633501 Krasnoobsk, Russia
*
Author to whom correspondence should be addressed.
Horticulturae 2022, 8(12), 1211; https://doi.org/10.3390/horticulturae8121211
Submission received: 30 October 2022 / Revised: 11 December 2022 / Accepted: 12 December 2022 / Published: 17 December 2022

Abstract

:
Dracocephalum jacutense is endemic to eastern Siberia of Russia and is accepted in the rare and endangered category. The plant was first collected by K.S. Baikov in 1985 in the vicinity of the village Sangar (Kobyaysky district, Yakutia) and then described by G.A. Peshkova in “Flora of Siberia” in 1997. D. jacutense has been introduced in the Botanical Garden of Yakutia since 2009. The aim of this work is to conduct a comparative analysis of the chemical composition of aerial parts (leaves, inflorescences, stems) of D. jacutense Peschkova collected both in controlled conditions (the Botanical Garden of Yakutia) and in a natural-grown area (the vicinity of the village of Sangar, Kobyaysky district of Yakutia). A total of 156 bioactive compounds were successfully characterized in extracts of D. jacutense based on their accurate MS (Mass Spectrometry) fragment ions by searching online databases and the reported literature. The detailed study of the composition by tandem mass spectrometry revealed a significant difference in the polyphenol composition of the samples. Wild-grown plant samples had a higher number of polyphenolic compounds (92 compounds) than plant samples grown in the Botanical Garden (56 compounds), which were not previously described in the genus Dracocephalum. In addition, a total of 37 compounds of other chemical groups were identified that were not previously identified in the genus Dracocephalum. In general, the extract of D. jacutense, which was grown in wild conditions, was found to be a richer source of flavones, flavanols, flavan-3-ols, phenolic acids, and anthocyanidins compared to plants grown in controlled conditions in the Botanical Garden. Our results build on the current understanding of the biochemical richness of wild-grown samples over controlled-grown ones and preserve a rare and endangered D. jacutense in the flora of Yakutia. We proposed to be preserved on the basis of the development of an in vitro micropropagation protocol in our lab in the near future.

1. Introduction

Dracocephalum L. is a genus of herbaceous plants of the Lamiaceae family. There are five species of the genus Dracocephalum L. in the flora of the Republic of Sakha (Yakutia): D. palmatum Steph., D. ruyschiana L., D. nutans L., D. stellerianum Hiltebr. and D. jacutense Peschkova. D. jacutense Peschkova is listed in the Red Data Book of Yakutia [1,2].
Dracocephalum jacutense is a local endemic of Eastern Siberia and is found in a narrow growing condition. D. jacutense was first collected by K.S. Baikov in 1985 in the vicinity of the village Sangar (Kobyaysky district, Yakutia) and then described by G.A. Peshkova in “Flora of Siberia” in 1997 [3]. The plant has been introduced in the Botanical Garden of Yakutia since 2009 (Figure 1).
D. jacutense is an herbaceous perennial with an ascending, hairy stem up to 40 cm long. P.S. Egorova revealed that the ontogenesis of the species in culture lasts about 10 years, while the complete ontogeny of wild populations lasts 24–32 years [4]. Flowering is regular each year in contrast to seed production; therefore, non-systematic seed production can become a vulnerable point in the cultivation and maintenance of the optimal abundance of the specie (Figure 2A).
The genus Dracocephalum L. is noted for its high medicinal properties and the presence of nutrients. The content of bioactive substances in the aerial part of plants is rich and diverse, including cardenolides, tannins, coumarins, flavonoids, etc. [5]. Terpenoids, steroids, flavonoids, lignans, phenols, coumarins, cyanogenic compounds, and glucosides have been identified in the chemical composition of the genus Dracocephalum L. Among them, some components have antioxidant, antihypoxic, and immunomodulatory effects [6]. By optimizing extraction, scientists isolated and studied oils from the seeds of Lallemantia iberica (Dracocephalum ibericum M. Bieb.) and proposed to use them as fatty acid sources [7]. It has been experimentally proven that extracts of D. palmatum S. and D. ruyschiana L. growing in Yakutia contain a large number of polyphenols with biological activity [8,9,10,11,12]. At the same time, research on the chemical composition of D. jacutense Peschkova has not been carried out so far due to the rare occurrence of the species.
At present, there is a great interest in the search for plant composition of wild and cultivated ones that provide health benefits, such as functional foods. Among them, those of plant origin have a wide content of nutrients and phytochemical components with a variety of chemical structures with different physiological effects on the human body. The interest in natural antioxidants, especially from plant origin, has increased in recent years as well. Different plants contain high concentrations of bioactive compounds such as polyphenols, including anthocyanins, phenolic acids, tannins, carotenoids, vitamins A, C, and E, folic acid, and minerals such as calcium, selenium, and zinc. The dietary intake of polyphenols is suggested to prevent and lower the risk of chronic diseases.
Thus, the aim of this work is to conduct a comparative analysis of the chemical composition of the aerial parts (leaves + inflorescences + stems) of D. jacutense Peschkova collected both in the controlled grown conditions in the Botanical Garden of Yakutia and in the wild growing condition in the vicinity of the village of Sangar, Kobyaysky district of Yakutia (Figure 2A,B).

2. Materials and Methods

2.1. Plant Material

Aerial plant parts (leaves, stems, inflorescences) of Dracocephalum jacutense Peschkova were collected both from wild growing plants (during expedition work on the territory of the Kobyaysky district of Yakutia from 14 July to 19 July, 2022, N 63°53′52.5−72.8″; E 127°30′39.9−49″ and from introduced plants (in Botanical Garden of Yakutia, Yakutsk, N 62°02′42″; E 129°61′54″). The aerial parts (leaves + stems + inflorescences) were collected at the stage of full flowering of the plant. A few seeds were at the stage of milky ripeness and were husked (extracted) from inflorescences during processing before drying the aerial parts.

2.2. Chemicals and Reagents

HPLC-grade acetonitrile was purchased from Fisher Scientific (Southborough, UK), and MS-grade formic acid was from Sigma-Aldrich (Steinheim, Germany). Ultra-pure water was prepared from SIEMENS ULTRA clear (SIEMENS water technologies, Germany), and all other chemicals were analytical grade.

2.3. Fractional Maceration

Fractional maceration technique was applied to obtain highly concentrated extracts. From 500 g of the sample, 10 g of sample was randomly selected for maceration. The total amount of the extractant (ethyl alcohol of reagent grade) was divided into 3 parts, and the parts of plant were consistently infused with the first, second, and third parts. The solid–solvent ratio was 1:20. The infusion of each part of the extractant lasted 7 days at room temperature.

2.4. Liquid Chromatography

HPLC was performed using Shimadzu LC-20 Prominence HPLC (Shimadzu, Kyoto, Japan) equipped with a UV sensor and C18 silica reverse phase column (4.6 mm × 150 mm, particle size: 2.7 μm) to perform the separation of multicomponent mixtures. The gradient elution program with two mobile phases (A, deionized water; B, acetonitrile with formic acid 0.1% v/v) was as follows: 0–2 min, 0% B; 2–50 min, 0–100% B; control washing 50–60 min 100% B. The entire HPLC analysis was performed with a UV–vis detector SPD- 20A (Shimadzu, Kyoto, Japan) at a wavelength of 230 nm for identification compounds; the temperature was 50 °C, and the total flow rate was 0.25 mL min−1. The injection volume was 10 μL. Additionally, liquid chromatography was combined with a mass spectrometric ion trap to identify compounds.

2.5. Mass Spectrometry

MS analysis was performed on an ion trap amaZon SL (Bruker Daltoniks, Germany) equipped with an ESI source in negative and positive ion modes. The optimized parameters were obtained as follows: ionization source temperature: 70 °C, gas flow: 4 l/min, nebulizer gas (atomizer): 7.3 psi, capillary voltage: 4500 V, end plate bend voltage: 1500 V, fragmentary: 280 V, collision energy: 60 eV. A four-stage ion separation mode (MS/MS mode) was implemented.
MS analysis was supported by the Decree No. 220 by the Government of the Russian Federation (Mega-grant No 20-2961-3099)

3. Results

The extracts of both wild-grown and introduced D. jacutense aerial parts were analyzed by HPLS-MS/MS ion trap to better interpret the diversity of available phytochemicals. Extracts of the aerial plant part (inflorescences + leaves + stems) of wild and introduced plants were analyzed. Each type of extract showed a significant difference in the polyphenol composition, as well as in the compositions of other bioactive compounds. The structural identification of each compound was carried out on the basis of their accurate mass and MS/MS fragmentation by HPLC-ESI-ion trap-MS/MS. A total of 156 bioactive compounds were successfully characterized in extracts of D. jacutense based on their accurate MS fragment ions by searching online databases and the reported literature.
All the identified compounds, along with molecular formulas, MS/MS data, and their comparative profile for D. jacutense, are summarized in Table A1 (Appendix A). A total of 105 polyphenolic compounds and 51 compounds of other chemical groups were identified in extracts of wild D. jacutense and introduced D. jacutense, respectively, a total of 156 compounds. Of these, polyphenols in wild plant extracts are 70.2% (91 compounds), and in introduced plant extracts—65% (52 compounds). For example: some newly annotated polyphenols from the genus Dracocephalum are described below. The flavonol isorhamnetin was found in extracts from the leaves and flowers of D. jacutense. The CID-spectrum (collision-induced dissociation spectrum) in negative ion modes of isorhamnetin from extracts of D. jacutense is shown in Figure 3.
The [M–H] ion produced one fragment ion at m/z 283 (Figure 3). The fragment ion with m/z 283 yields three daughter ions at m/z 189, m/z 163, and m/z 137. The fragment ion with m/z 163 yields a daughter ion at m/z 135. It was identified in the bibliography in extracts of Embelia [13], Rosmarinus officinalis [14], propolis [15], and Actinidia valvata [16].
The flavonol kaempferol-3,7-di-O-glucoside was found in extracts from flowers of D. jacutense. The CID-spectrum in positive ion modes of kaempferol-3,7-di-O-glucoside from extracts of D. jacutense is shown in Figure 4.
The [M + H]+ ion produced two fragment ions at m/z 287 and m/z 449 (Figure 4). The fragment ion with m/z 287 yields four daughter ions at m/z 231, m/z 213, m/z 175, and m/z 137. The fragment ion with m/z 213 yields two daughter ions at m/z 185 and m/z 157. It was identified in the bibliography in extracts of tomato [17], rapeseed petals [18], Taraxacum officinale [19]. The anthocyanidin malonyl-shisonin was found in extracts from flowers of D. jacutense. The CID-spectrum in positive ion modes of malonyl-shisonin from extracts of D. jacutense is shown in Figure 5.
The [M + H]+ ion produced four fragment ion at m/z 287, m/z 595, m/z 535, and m/z 491 (Figure 5). The fragment ion with m/z 287 yields three daughter ions at m/z 259, m/z 213, and m/z 147. The fragment ion with m/z 213 yields one daughter ion at m/z 185. It was identified in the bibliography in extracts of Perilla frutescens [20,21].

4. Discussion

The identity between individual compounds in extracts of wild and introduced plants is found in 15 flavones, 5 flavanols, 2 flavan-3-ols, 5 flavanones, hydroxybenzoic acid, 4 phenolic acids, phenylpropanoic acid, lignan, dihydrochalcone, coumarin, coumarin glucoside, and anthocyanidin, the total for 38 polyphenolic compounds (Table 1). A total of 50 polyphenols were identified only in extracts of wild D. jacutense, for example: flavonoid (3,5-diacetyltambulin), isoflavone (apigenin 7-O-bets-D-(6-O-malonyl)-glucoside), isoflavanone (ferreirin), hydroxycoumarins (umbelliferone, umbelliferone hexoside), etc. A total of 14 polyphenols were identified only in the introduction of D. jacutense. Identity was also found between compounds presented in other groups; extracts of wild and introduced plants equally contain benzenediol, L-tryptophan, two omega-3-fatty acids, pterocarpan, oxylipin, an anabolic steroid, and two triterpene acids, a total of nine individual compounds from different groups.
A total of 58.9% of compounds from other chemical groups (23 compounds) were identified in wild D. jacutense extracts alone, including purine (adenosine), an alkaloid (mesembrenol), diterpenoid naphthoquinone (tanshinone B), four hydroxy fatty acids (hydroxyoctadecadienoic acid, hydroxy eicosenoic acid, 13-trihydroxy-octadecenoic acid, trihydroxy eicosatetraenoic acid), sterol (stigmasterol), carotenoids (cryptoxanthin, zeaxanthin, (all-E)-β-cryptoxanthin laurate), etc. A total of 42,8% of compounds from other groups (12 compounds) were identified only in extracts of introduced D. jacutense: two diterpenoids, two triterpenes, indole sesquiterpene alkaloid, etc.
The similarity between extracts of wild and introduced D. jacutense was noted for 54 compounds that belong to 12 groups of polyphenols and 12 groups of other compounds. The full similarity in quantity and individual compounds for polyphenols was noted in the group of flavanones. Benzene diol, pterocarpan, vebonol, phenylpropanoic acid, dihydrochalcone, coumarin, coumarin glucoside, stearidonic and linolenic acids were found in other groups of compounds in both wild and introduced D. jacutense. The difference between the extracts of wild and introduced D. jacutense was noted for 103 individual compounds, including 13 groups of polyphenols and 24 groups of other compounds.
Polyphenols present only in extracts of wild D. jacutense have also been described in representatives of D. moldavica [22], mentha [23], S. officinalis [24], G. linguiforme, A. cordifolia [25] and D. palmatum [12]. Polyphenols present only in extracts of the introduced D. jacutense were found earlier in Jasminum urophyllum [26].
Other groups of compounds that were identified only in extracts of wild D. jacutense were also previously described in D. komarovi [27], Sarsaparilla [28], Sceletium [29], Rosa rugosa [30], Lonicera japonica [31], carotenoids [32], olive leaves [33], and D. palmatum [12]. Other groups of compounds that were identified only in extracts of introduced D. jacutense were previously found in D. komarovi [27], Rhus coriaria [34], olive leaves [33], and D. palmatum [12].
Flavones, flavonols, flavanones, and phenolic acids from polyphenolic compounds, identified in extracts of wild and introduced D. jacutense, were previously described in representatives of D. moldavica, D. palmatum, D. ruyschiana, Mentha, Eucalyptus, Rosmarinus, L. japonica, P. incarnata, Rh. coriaria, and C. kucha.

5. Conclusions

The results indicated a high variability between the wild and introduced D. jacutense samples in the number of polyphenolic compounds. In general, it can be summarized that wild-grown D. jacutense had 40 polyphenolic compounds and 11 compounds from other groups indicated richness than the introduced D. jacutense samples. Wild D. jacutense extracts contain 39.4% more flavones, 46.1% more flavanols, 50% more flavan-3-ols, 57.1% more phenolic acids, eight times more anthocyanidins than the introduced plant sample of D. jacutense which means that these could represent a potential source of compounds to develop new drugs for human health. In addition, wild-grown D. jacutense had two times higher many triterpene acids than the introduced one. In plant samples, certain profiles of polyphenols were described for the first time. A total of 56 polyphenols were found in D. jacutense that were not previously described in the genus Dracocephalum. Furthermore, 37 compounds of other chemical groups were identified that were not previously identified in the genus Dracocephalum. The plant will be preserved by the propagation of in vitro micropropagation protocol. In the past years, a growing demand for healthy food has been noted in the market. More recently, people have been primarily interested in plant composition, which is appealing and helps in preventing various diseases and contains high levels of promoted bioactive compounds. Our results could therefore be very useful for further clinical and nutritional studies on the polyphenol-rich plant D. jacutense.

Author Contributions

Conceptualization, M.P.R., Z.M.O.; methodology Z.G.R., P.S.E. and K.S.G.; software, M.P.R. and K.S.G.; validation, Z.M.O., M.P.R. and K.S.G.; formal analysis, M.P.R. and Z.M.O.; investigation, Z.M.O. and K.S.G.; resources, K.S.G.; data curation Z.G.R. and P.S.E.; writing—original draft preparation—M.P.R., Z.G.R. and Z.M.O.; writing—review and editing M.P.R.; S.E. and K.S.G.; visualization, M.P.R.; S.E. and Z.M.O.; supervision, K.S.G.; project administration, Z.M.O., K.S.G. All authors have read and agreed to the published version of the manuscript.

Funding

The study was carried out at the North-Eastern Federal University at the expense of the Russian Science Foundation Grant No. 22-14-20031, https://rscf.ru/en/project/22-14-20031/ and the Grant of the Yakut Science Foundation based on Agreement No. 194-06_22D.

Institutional Review Board Statement

No applicable.

Informed Consent Statement

No applicable.

Data Availability Statement

No applicable.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A

Table A1. Compounds identified from the extracts of D. jacutense in positive and negative ionization modes by HPLC-ion trap-MS/MS.
Table A1. Compounds identified from the extracts of D. jacutense in positive and negative ionization modes by HPLC-ion trap-MS/MS.
Class of CompoundsIdentified CompoundsFormulaMassMolecular Ion [M-H]-Molecular Ion [M+H]+2 Fragmentation MS/MS 3 Fragmentation MS/MS 4 Fragmentation MS/MS References
POLYPHENOLS
1FlavoneFormononetin [Biochanin B; Formononetol] *C16H12O4268.2641 269213170; 156; 129141Astragali Radix [35,36,37]; Huolisu Oral Liquid [38]
2FlavoneApigenin [5,7-Dixydroxy-2-(40Hydroxyphenyl)-4H-Chromen-4-One]C15H10O5270.2369 269225181117Dracocephalum palmatum [8]; Dracocephalum [12]; Lonicera japonicum [31]; Andean blueberry [39]
3FlavoneAcacetin [Linarigenin; Buddleoflavonol]C16H12O5284.2635 285268211; 143 Dracocephalum palmatum [8]; Dracocephalum [12]; Dracocephalum moldavica [22]; Wissadula periplocifolia [40]
4FlavoneCalycosin [3′-Hydroxyformononetin] *C16H12O5284.2635 285253; 242; 225; 200235; 221; 209; 203 Astragali Radix [35,36,37]; Huolisu Oral Liquid [38]
5FlavoneGenkwanin [Gengkwanin; Puddumetin; Apigenin 7-Methyl Ether]C16H12O5284.2635 285165 Dracocephalum palmatum [8]; Rosmarinus officinalis [14]; Mentha [41]
6FlavoneLuteolinC15H10O6286.2363 287286; 153171153Dracocephalum palmatum [8]; Dracocephalum [12]; Lonicera japonicum [31]
7FlavoneDiosmetin [Luteolin 4′-Methyl Ether; Salinigricoflavonol]C16H12O6300.2629 301286258 Dracocephalum [12]; Dracocephalum moldavica [22]; Lonicera japonicum [31]; Andean blueberry [39]; Mentha [41]
8FlavoneChrysoeriol [Chryseriol]C16H12O6300.2629 301286; 167258203Dracocephalum palmatum [8]; Rhus coriaria [34]; Propolis [15]
9FlavoneHomoeriodictyol *C16H14O6302.2789 303285; 177163145Mentha [41]
10FlavoneCirsimaritin [Scrophulein; 4′,5-Dihydroxy-6,7-Dimethoxyflavone; 7-Methylcapillarisin] *C17H14O6314.2895 315282254226; 119Rosmarinus officinalis [14]; Ocimum [42]
11FlavoneDihydroxy-dimethoxy(iso)flavone *C17H14O6314.2895 315300; 272272257; 243; 217; 201; 185; 167Rosmarinus officinalis [14]; Propolis [15]; Astragali radix [36]
12Flavone5,7-Dimethoxyluteolin *C17H14O6314.2895313 285; 213; 185185; 145 Syzygium aromaticum [43]; Rosa rugosa [44]
13FlavoneMyricetin *C15H10O8318.2351 319291; 219; 143191; 143173Propolis [15]; Sanguisorba officinalis [24]; Andean blueberry [39]; millet grains [45]
14FlavoneIsothymusinC17H14O7330.2889 331303; 203203; 275203Dracocephalum palmatum [8]
15FlavoneCirsiliol *C17H14O7330.2889 331316; 298; 233; 157297; 187; 134 Ocimum [42]
16FlavoneDimethoxy-trihydroxy(iso)flavone *C17H14O7330.2889 331316; 226298; 226270; 226Propolis [15]; Jatropha [46]
17FlavoneNevadensinC18H16O7344.3154 345312; 241; 147284; 269269; 213; 135Dracocephalum [12]; Mentha [41]; Ocimum [42]
18FlavoneGardenin B [Demethyltangeretin] *C19H18O7358.342 359326; 298298270; 239; 162 Mentha [41]; Ocimum [42]; Actinocarya tibetica [47]
19FlavoneDihydroxy-tetramethoxy(iso)flavone *C19H18O8374.3414 375342313; 151299; 151Propolis [15]
20Flavone5-Hydroxy-6,7,8,3′,4′-pentamethoxyflavone *C20H20O8388.3680 389356313295; 221; 149Mentha [41]
21FlavoneApigenin O-hexosideC21H20O10432.3775431 269269; 225; 149224; 157Dracocephalum palmatum [8]; F. glaucescens; F. pottsii [25]; Chamaecrista nictitans [48]
22FlavoneApigenin-7-O-glucoside [Apigetrin; Cosmosiin]C21H20O10432.3775 433271153 Dracocephalum palmatum [8]; Mentha [23]; Dracocephalum [12]
23FlavoneAromadendrin 7-O-rhamnoside *C21H22O10434.3934433 287; 259; 229257; 227; 199; 157199Eucalyptus [49]; Zostera marina [50]
24FlavoneApigenin 7-O-glucuronideC21H18O11446.361 447271153271; 171Dracocephalum [12]; Perilla frutescens [20]; Eucalyptus Globulus [51]; Bougainvillea [52]
25FlavoneAcacetin 7-O-glucoside [Tilianin]C22H22O10446.4041 447285; 149270242Dracocephalum palmatum [8]; Dracocephalum [12]; Bougainvillea [52]
26FlavoneLuteolin 7-O-glucoside [Cynaroside; Luteoloside]C21H20O11448.3769 449287; 199153 Dracocephalum [12]; Lonicera japonicum [31]; Passiflora incarnata [53]
27Flavone3′-methoxyacacetin 7-O-beta-D-glucuronideC22H20O12476.3870475 374; 347; 275275; 247; 175247; 175; 147Dracocephalum moldavica [22]
28FlavoneAcacetin 7-O-beta-D-glucuronideC22H20O11460.3876 461270; 242; 153242 Dracocephalum [12]; Dracocephalum moldavica [22]
29Flavone6,4′-Dimethoxyisoflavone-7-O-glucoside *C23H24O10460.4307 461285270; 242; 153242Astragali radix [36]
30FlavoneDiosmetin-7-O-beta-glucosideC22H22O11462.4035 463287168123Dracocephalum [12]; Dracocephalum moldavica [22]; Oxalis corniculata [54]
31FlavoneApigenin-O-rhamnoside *C22H22O11462.4035 463273; 153153; 171171Passion fruit [55]
32FlavoneChrysoeriol-7-O-glucuronide *C22H20O12476.3870 477301286258Propolis [15]
33FlavoneAcacetin 7-beta-O-(6”-acetyl)-glucosideC24H24O11488.4408 489472; 354; 296; 223 Dracocephalum moldavica [22]
34IsoflavoneApigenin 7-O-beta-D-(6”-O-malonyl)-glucosideC24H22O13518.4237 519184; 500; 466; 371; 258125 Dracocephalum [12]; Dracocephalum moldavica [22]; Zostera marina [56]
35FlavoneAcacetin 7-O-beta-D-(6”-O-malonylated)-glucosideC25H24O13532.4503 533371; 285; 191; 165353; 285; 191; 165147Dracocephalum moldavica [22]
36FlavoneDiosmetin-7-O-beta-D-(6”-malonyl)-glucosideC25H24O14548.4497 549387; 285370; 272; 147328; 250; 208; 147Dracocephalum moldavica [22]
37FlavoneChrysoeriol O-hexoside C-hexoside *C28H32O16624.5441 625445; 463; 377; 347357; 217 Triticum aestivum L. [57,58]
38FlavoneIsovitexin 2”-O-glucoside-7-O-glucoside [Apigenin 6-C-glucoside 2”-O-glucoside-7-O-glucoside] *C33H40O20756.6587 757595; 569; 464; 347; 273577; 503; 431; 335; 242; 182 Passiflora incarnata [53]
39FlavonolKaempferol [3,5,7-Trihydroxy-2-(4-hydro- xyphenyl)-4H-chromen-4-one] C15H10O6286.2363 287269; 202233; 205216Dracocephalum [12]; Rapeseed petals [18]; Lonicera japonicum [31]; Rhus coriaria (Sumac) [34]; Andean blueberry [39]
40FlavonolQuercetinC15H10O7302.2357 303285; 228; 165229; 165141Propolis [15]; Actinidia valvata [16]; Rhus coriaria [34]; Potato leaves [59]
41FlavonolHerbacetin [3,5,7,8-Tetrahydroxy-2-(4-hydro- xyphenyl)-4H-chromen-4-one] * C15H10O7302.2357 303203; 275221 Ocimum [42]; Rhodiola rosea [60,61]
42FlavonolDihydroquercetin (Taxifolin; Taxifoliol)C15H12O7304.2516 305287286; 186185Dracocephalum [12]; Andean blueberry [39]; Eucalyptus [49];
43FlavonolIsorhamnetin [Isorhamnetol; Quercetin 3′-Methyl ether; 3-Methylquercetin] *C16H12O7316.2623 317299; 257; 214; 173281; 188 Embelia [13]; Rosmarinus officinalis [14]; Propolis [15]; Actinidia valvata [16]; Andean blueberry [39]
44Flavonoid3,5—Diacetyltambulin *C22H20O9428.3888427 381; 249249; 161161; 124A. cordifolia [25]
45FlavonolDihydrokaempferol-3-O-rhamnoside *C21H22O10434.3934 435287; 261259; 205187Vitis vinifera [62,63]
46FlavonolAstragalin [Kaempferol 3-O-glucoside; Kaempferol-3-Beta-Monoglucoside; Astragaline]C21H20O11448.3769447 285; 327241199Dracocephalum [12]; Lonicera japonicum [31]; Mexican lupine species [64]
47FlavonolQuercitrin [Quercetin 3-O- rhamnoside; Quercetrin] * C21H20O11448.3769 449302202; 174; 127175Embelia [13]; Propolis [15]; Rhus coriaria [34]; Bryophyllum pinnatum [54]; Euphorbia hirta [65]
48FlavonolKaempferol-3-O-glucuronideC21H18O12462.3604 463287268; 169241; 119Dracocephalum [12]; A. cordifolia; G. linguiforme [25]; Rhus coriaria [34]; Strawberry [55]
49FlavonolTaxifolin-3-O-hexoside [Dihydroquercetin-3-O-hexoside] *C21H22O12466.3922 467305; 259; 195; 153259; 195; 153231; 149Andean blueberry [39]; millet grains [45]; Euphorbia hirta [65] Actinidia deliciosa [66];
50FlavonolKaempferol 3-O-rutinosideC27H30O15594.5181 595287; 345; 389; 449287; 245; 153171Dracocephalum [12]; Lonicera japonicum [31]; Rhus coriaria [34];
51FlavonolKaempferol-3,7-Di-O-glucoside *C27H30O16610.5175 611287; 449287; 213; 185; 137185; 157Tomato [17]; Rapeseed petals [18]; Taraxacum officinale [19]
52FlavonolKaempferol dihexoside rhamnoside *C33H40O20756.6587 757595; 287287; 213; 137185; 168C. edulis [25]
53Flavan-3-ol(epi)Afzelechin *C15H14O5274.2687 275228; 210; 175; 157; 132212; 203; 183; 170194A. cordifolia; F. glaucescens; F. herrerae [25]; Cassia granidis [67]; Cassia abbreviata [68]
54Flavan-3-olCatechin [D-Catechol] *C15H14O6290.2681 291207; 123123 Vaccinium macrocarpon [69]; Vigna inguiculata [70]; Camellia kucha [71]; Actinidia [72]
55Flavan-3-ol(epi)catechinC15H14O6290.2681 291273; 117255; 145 Dracocephalum [12]; C. edulis [25]; Andean blueberry [39]
56Flavan-3-olGallocatechin [+(-)Gallocatechin]C15H14O7306.2675 307289259 Dracocephalum [12]; G. linguiforme [25]; Licania ridigna [73]; Rhodiola rosea [74]
57Flavan-3-ol(epi)Afzelechin derivative *C18H16O10392.3136 393275; 179191 Zostera marina [50]
58Flavan-3-olCatechin 3-O-gallate *C22H18O10442.3723 443273; 205263; 211; 171; 143 Vitis vinifera [62]; Camellia kucha [71]; Terminalia arjuna [75]
59Flavan-3-olEpigallocatechin-3-gallate *C22H18O11458.3717 459290; 207207; 123 F. glaucescens [25]; Vitis vinifera [62]; Camellia kucha [71]
60FlavanoneNaringenin [Naringetol; Naringenine]C15H12O5272.5228 273153; 256125 Dracocephalum palmatum [8]; Dracocephalum [12] Rapeseed petals [18]; Andean blueberry [39]
61FlavanoneEriodictyol [3′,4′,5,7-tetrahydroxy-flavanone]C15H12O6288.2522 289163; 271145117Dracocephalum palmatum [8]; Dracocephalum [12]; Mentha [23]; Andean blueberry [39]
62IsolavanoneFerreirinC16H14O6302.2789 303177; 285163135Mentha [23]
63FlavanonePrunin [Naringenin-7-O-glucoside]C21H22O10434.3934433 271; 151269; 151 Dracocephalum palmatum [8]; Dracocephalum [12]; Rapeseed petals [18]
64FlavanoneEriodictyol-7-O-glucoside [Pyracanthoside; Miscanthoside]C21H22O11450.3928449 285; 151243; 151 Dracocephalum [12]; Mentha [23]; Dracocephalum palmatum [7,8]
65FlavanoneEriodictyol-7-O-glucuronideC21H20O12464.3763463 285; 151285; 243; 151 Thymus vulgaris [76]; Mentha [77]
66Hydroxybenzoic acid Protocatechuic acidC7H6O4154.1201 155127117 Lonicera japonicum [31]; Rhus coriaria [34]; Eucalyptus Globulus [51]; Vaccinium macrocarpon [69]; Actinidia [72]
67Hydroxycinnamic acidp-Coumaric acid [4-Hydroxycinnamic acid; P-Hydroxycinnamic acid; 4-Coumarate]C9H8O3164.1580 165147119 Rapeseed petals [18]; F. pottsii [25]; Rhus coriaria [34]; Andean blueberry [39]; Brazilian propolis [78]
68Hydroxycinnamic acidCaffeic acidC9H8O4180.1574 181135119 Dracocephalum palmatum [8]; Dracocephalum [12]; Eucalyptus [49]
69Hydroxycinnamic acid3,4-Dihydroxyhydrocinnamic acidC9H10O4182.1733 183137 Eucalyptus Globulus [51]
70Phenolic acid2,3,4,5-Tetrahydroxybenzoic acid [2-Hydroxygallussaure; 3,4,5-Trihydroxysalicylic acid]C7H6O6186.1189 187144 PubChem
71Phenolic acidSalvianic acid A [Danshensu]C9H10O5198.1727197 179; 135135 Huolisu Oral Liquid [38]; Mentha [77]; Hedyotis diffusa [79]
72Phenolic acid2,3-Dihydroxy-4-Mathoxycinnamic acidC10H10O5210.1834 211192; 134134; 174 A. cordifolia [25]
73Hydroxybenzoic acidEllagic acid [Benzoaric acid; Elagostasine; Lagistase; Eleagic acid]C14H6O8302.1926301 284221112Dracocephalum [12]; Rhus coriaria [34]; Eucalyptus [49]; Eucalyptus Globulus [51]
74Phenolic acidProtocatechuic acid-O-hexosideC13H16O9316.2607315 153; 123123 Rhus coriaria [34]; Eucalyptus Globulus [51]; Euphorbia hirta [65]
75Phenolic acidSalvianolic acid GC18H12O7340.2837 341296; 208278; 208235; 164Dracocephalum [12]; Mentha [41]; Salvia miltiorrhiza [80]
76Phenolic acidCaffeic acid-4-O-beta-D-hexoside [Caffeoyl-O-hexoside]C15H18O9342.298341 179; 119143; 131 Dracocephalum [12]; Cherimoya, papaya [55]; Sasa veitchii [81]
77Phenolic acidChlorogenic acid [3-O-Caffeoylquinic acid]C16H18O9354.3087 355179; 338; 227127 Dracocephalum palmatum [8]; Rapeseed petals [18]; Lonicera japonicum [31]; Rhus coriaria [34]; Andean blueberry [39]
78Phenolic acidIsochlorogenic acidC16H18O9354.3087 355323; 269; 165295; 208; 133295; 249; 221Actinidia [72]
79Phenolic acidRosmarinic acidC18H16O8360.3148359 161133 Dracocephalum palmatum [8]; Dracocephalum [12]; Mentha [41]; Zostera marina [56]; Salvia miltiorrhiza [80]; Lepechinia [82]
80 3-Prenyl-4-(dihydrocinnamoyloxy)-cinnamic acidC23H24O4364.4343 365261; 185233; 179179; 151Brazilian propolis [78]
81Phenolic acidCaffeic acid derivativeC16H18O9Na377.2985377 341; 215179 Dracocephalum [12]; Bougainvillea [52]
82Phenolic acid1/3/4/5-p-Coumaroylquinic acid +C2H2OC18H20O9380.3460 381321; 275; 233260; 218; 143 Actinidia [72]
83Phenolic acid8,8′-Aryl-Diferulic acidC20H18O8386.3521385 193; 285193; 161 millet grains [45]
84Phenolic acidCaffeic acid hexoside dimerC31H40O17684.6391683 341179; 161143Strawberry, Lemon, Cherimoya, Passion fruit [55]
85Phenolic acidDidehydrosalvianolic acid BC36H28O16716.5979 717574319; 263; 187299; 177Mentha [77]
86Phenolic acidSalvianolic acid B [Danfensuan B]C36H30O16718.6138717 519; 321321; 279279; 185Huolisu Oral Liquid [38]; Bougainvillea [52]; Mentha [77]; Salvia miltiorrhiza [80]
87Phenylpropanoic acid Sagerinic acidC36H32O16720.6297719 359161; 197133Dracocephalum palmatum [8]; Rosmarinus officinalis [14]; Perilla frutescens [20]; Huolisu Oral Liquid [38]; Mentha [41]
88Phenolic acidClerodendranoic acid HC36H32O16720.6297719 359161 Lepechinia [82];
89LignanPhillygenin [Sylvatesmin; Phyllygenol; Forsythigenol]C21H24O6372.4117371 163; 325119 Lignans [83]
90LignanMedioresinolC21H24O7388.4111387 207; 163; 119163 Rosmarinus officinalis [14]; Lignans [83]; Punica granatum [84]
91NeolignanUrolignoside + H2OC25H34O11510.5309 511493; 451; 421; 349; 285349; 254; 147331; 289; 259Jasminum urophyllum [26]; Actinidia [72]
92DihydrochalconePhloretin [Dihydronaringenin; Phloretol]C15H14O5274.2687 275255; 229; 131237; 209; 164 G. linguiforme [25]; Rosa rugosa [44]; Punica granatum [84]
93HydroxycoumarinUmbelliferone [Skimmetin; Hydragin]C9H6O3162.1421 163145; 135; 117117 Sanguisorba officinalis [24]; F. glaucescens [25]; Zostera marina [50]; Actinidia [72]
94CoumarinFraxetin [7,8-Dihydroxy-6-methoxycoumarin]C10H8O5208.1675 209191; 149149147Embelia [13]; Jatropha [46]; Actinidia [72];
95HydroxycoumarinUmbelliferone hexosideC15H16O8324.2827 325307; 288; 271; 253; 241127; 118 G. linguiforme [25]
96Coumarin glycoside Fraxin (Fraxetin-8-O-glucoside)C16H18O10370.3081 371209 Rosa rugosa [44]; Actinidia [72]
97AnthocyanidinPetunidinC16H13O7+317.2702 318166; 300121 Dracocephalum [12]; A. cordifolia; C. edulis [21]
98AnthocyanidinPelargonidin-3-O-glucoside (callistephin)C21H21O10433.3854 433271153; 225171Dracocephalum [12]; Triticum aestivum [85]; Rubus ulmifolius [86]
99AnthocyanidinCyanidin-3-O-glucoside [Cyanidin 3-O-beta-D-Glucoside; Kuromarin]C21H21O11+449.3848 449287153 Dracocephalum [12]; Triticum aestivum [85]; Malpighia emarginata [87]
100AnthocyanidinCyanidin 3,5-O-diglucosideC27H31O16611.5335 611287; 449287; 241; 213; 175; 149213; 185; 172; 157; 145Rapeseed petals [18]; Muscadine pomace [88]; Berberis microphylla [89]
101AnthocyanidinPeonidin-3,5-diglucoside [Peonin; Peonidin 3-Glucoside-5-Glucoside]C28H33O16625.5520 625463; 374; 301445; 373 Triticum aestivum [85]; Muscadine pomace [88]
102AnthocyanidinCyanidin-3-O-rutinoside-5-O-glucosideC33H41O20757.6666 757287; 449; 595287; 213; 137185Camellia kucha [71]; Solanium nigrum [9]
103AnthocyanidinDelphinidin 3-O-rutinoside-5-O-glucosideC33H41O21773.5769 773303; 465; 611257; 303; 229; 165257; 229; 201; 116Berberis microphylla [89]; Solanium nigrum [90]; Iris dichotoma [91]
104AnthocyanidinMalonyl-shisoninC39H39O21+843.7144 843595; 535; 491; 287287; 259; 213; 147213; 185Perilla frutescens [20,21]
OTHERS
105BenzenediolCatechol derivativeC6H6O3126.1100 127124; 118 Embelia [13];
106Alkyl cinnamateMethyl cinnamate [Methyl 3-Phenylacrilate]C10H10O2162.1852 164144 Strawberry [92]
107Amino acidPhenylalanine [L-Phenylalanine]C9H11NO2165.1891 166147; 120 Rapeseed petals [18]; Lonicera japonica [31]; Passiflora incarnata [53]; Potato leaves [59]
108Amino acidTyrosine [(2S)-2-Amino-3-(4-Hydroxyphnyl)Propanoic acid]C9H11NO3181.1885 182165; 150113 Euphorbia hirta [65]; Vigna unguiculata [93]; Hylocereus polyrhizus [94]
109Monobasic carboxylic acidHydroxyphenyllactic acidC9H10O4182.1733181 163; 135119 Mentha [95]
110Amino acidL-Tryptophan [Tryptophan; (S)-Tryptophan]C11H12N2O2204.2252 205188144118Dracocephalum [12]; Rapeseed petals [18]; Huolisu Oral Liquid [38]; Rosa acicularis [44]
111Aminoalkylindole5-MethoxydimethyltryptamineC13H18N2O218.2948 219201159; 118 Dracocephalum [12]; Camellia kucha [71]
112Omega-5 fatty acidMyristoleic acid [Cis-9-Tetradecanoic acid]C14H26O2226.3550 227209139 Dracocephalum [12]; F. glaucescens [25]
113GermacranolideCostunolideC15H20O2232.3181 233187; 215145143Rosa davurica [44]; Weichang’an Pill [96]
114Medium-chain fatty acidHydroxy myristic acid [2S-Hydroxytetradecanoic acid; Alpha-Hydroxy Myristic acid]C14H28O3244.3703 246228; 159199; 172144F. pottsii [25]
115XanthoneMangiferitin [Norathyriol; 1,3,6,7-Tetrahydroxyxanthone]C13H8O6260.1990 261193; 135179; 124111Rhus coriaria [34]
116Aporphine alkaloidAnonaineC17H15NO2265.3065 266248; 171; 122229; 182; 116212; 182Rosa rugosa [44]; Magnolia [97]
117Ribonucleoside composite of adenine (purine)AdenosineC10H13N5O4267.2413 268136; 258 Dracocephalum [12]; Lonicera japonica [31]
118Omega 3-fatty acidStearidonic acid [6,9,12,15-Octadecatetraenoic acid; Moroctic acid]C18H28O2276.4137 277177; 247175 G. linguiforme [25]; Rhus coriaria [34]; Jatropha [46]; Salvia Miltiorrhiza [80]
119Omega 3-fatty acidLinolenic acid (Alpha-Linolenic acid; Linolenate)C18H30O2278.4296 279219; 259159 Jatropha [46]; Salvia Miltiorrhiza [80]; Pinus sylvestris [98]
120Fatty amideLinoleic acid amideC18H33NO279.4607 280262; 244244; 234; 216; 196; 172196; 168; 151Propolis [15]; Rhus coriaria [34]
121Fatty amideOleamideC18H35NO281.4766 282263; 246; 192245; 228; 217; 197; 170 Propolis [15]
122AlkaloidMesembrenolC17H23NO3289.3694 290242; 122184; 149 Dracocephalum [12]; Sceletium [29]
123Diterpenoid naphthoquinoneTanshinone IIA [Tanshinone II; Tanshinone B]C19H18O3294.3444 295277; 259; 193; 149259; 241; 199; 149241; 147Huolisu Oral Liquid [38]
124Unsaturated hydroxy fatty acidHydroxyoctadecatrienoic acidC18H30O3294.4290293 275; 235; 185; 172231; 205; 177231; 163Jatropha [46]
125Polyunsaturated fatty acidAlpha-Kamlolenic Acid [18-Hydroxy-9Z,11E,13E- Octadecatrienoic Acid]C18H30O3294.4290293 275; 231; 171231; 177231G. linguiforme; F. glaucescens; F. pottsii [25]
126Essential fatty acidHydroxyoctadecadienoic acidC18H32O3296.4449295 277; 251; 195; 171; 152233; 179; 155 A. cordifolia; F. glaucescens; F. herrerae [25]; Jatropha [46]
127Pterocarpan3-Hydroxy-9,10-dimethoxypterocarpanC17H16O5300.3059 301286; 257; 229; 177; 153163; 149145Astragali radix [36]; Huolisu Oral Liquid [38]
128DiterpenoidTanshinone IIB [(S)-6-(Hydroxymethyl)-1,6-Dimethyl-6,7,8,9-Tetrahydrophenanthro [1,2-B]Furan-10,11-Dione]C19H18O4310.3438 311283; 137119 Huolisu Oral Liquid [38]; Salvia Miltiorrhiza [80]
129 p-hydroxyphenacyl-β-D-glucopyranosideC14H18O8314.2879313 161; 213133; 161133Rhodiola crenulata [99]
130Long-chain fatty acidHydroxy eicosenoic acidC20H38O3326.5139 327295; 268; 181; 125268237; 135A. cordifolia; F. pottsii [25]
131 Fructose-phenylalanineC15H21NO7327.3297 328310; 292292; 264; 244; 216; 198; 178244; 216; 198; 171; 156Potato leaves [59]
132Oxylipins9,10-Dihydroxy-8-oxooctadec-12-enoic acid [oxo-DHODE; oxo-Dihydroxy-octadecenoic acid]C18H32O5328.4437327 229209183Dracocephalum [12]; Phyllostachys nigra [81]; Bituminaria [100]
133Oxylipins13- Trihydroxy-Octadecenoic acid [THODE]C18H34O5330.4596329 229; 293; 211; 171211; 229; 155183; 211Dracocephalum [12]; Sasa veitchii [81]; Bituminaria [100]
134Unsaturated essential fatty acidDihydroxy eicosatrienoic acidC20H34O4338.4816 339321; 177; 145145117G. linguiforme; A. cordifolia; C. edulis [25]
135DiterpenoidKomarovinone AC21H28O4344.4446 345312; 240284; 121268; 135Dracocephalum komarovi [27]
136TriterpeneDracocephalone AC20H26O5346.4174 347319; 287; 219219191Dracocephalum komarovi [27]
137Unsaturated omega-3 fatty acidTrihydroxy eicosatetraenoic acidC20H32O5352.4651 353261; 293; 243; 207243; 201; 159; 132162F. glaucescens [25]
138Tetracyclic diterpenoidKomaroviquinoneC21H28O5360.4440 361343; 302310; 269; 218; 161282Dracocephalum komarovi [27]
139TriterpeneSqualene (Trans-Squalene; Spinacene; Supraene)C30H50410.718 411393; 36; 291; 244; 198 Olive leaves [33]; squalene [101]
140SterolStigmasterol [Stigmasterin; Beta-Stigmasterol]C29H48O412.6908 413395; 301; 237; 189189 Dracocephalum [12]; A.cordifolia; F. pottsii [25]; Olive leaves [33]; Hedyotis diffusa [79]
141Anabolic steroid; Androgen; Androgen esterVebonolC30H44O3452.6686 453435; 336; 226336209Dracocephalum [12]; Rhus coriaria [34]; Hylocereus polyrhizus [94]
142Triterpenic acidBetulonic acid [Betunolic acid; Liquidambaric acid]C30H46O3454.6844 455436; 353; 313; 249393; 336; 319; 282154Rhus coriaria [34]; Rosa rugosa [44]
143Triterpenic acid1-Hydroxy-3-oxours-12-en-28-oic acidC30H46O4470.6838 471453; 425; 407; 389365; 335; 283; 205177; 121Pear [102]
144Triterpenic acidPomolic acidC30H48O4472.6997 473454; 371; 302; 144 Sanguisorba officinalis [24]; Pear [102]; Malus domestica [103]
145Triterpenic acidTormentic acid [Jacarandic acid; Tomentic acid]C30H48O5488.6991487 470; 423; 372403; 377 Sanguisorba officinalis [24]; Actinidia [72]; Pear [102]
146Monoterpene glycosideRhodioloside C [(2E,4R)-4-hydroxy-3,7-dimethyl-2,6-octadienyl β-D-glucopyranosyl(1-3)-β-D-glucopyranoside] C22H38O12494.5299493 447; 329; 285309; 285294; 187Rhodiola crenulata [99]; Rhodiola rosea [104,105,106]
147Carotenoid(all-E)-lutein 3′-O-myristateC40H54O550.8562 551533; 509; 429; 385; 355133 Rosa rugosa [30]; Carotenoids [107]
148Indole sesquiterpene alkaloidSespendoleC33H45NO4519.7147 520184; 359124 Dracocephalum [12]; Rhus coriaria [34]; Hylocereus polyrhizus [94]
149CarotenoidCryptoxanthin [Beta-cryptoxanthin]C40H56O552.872 553535; 325; 223517 Dracocephalum [12]; Sarsaparilla [28]; Carotenoids [107,108];
150CarotenoidZeaxanthin [All-Trans-Zexanthin; Anchovyxanthin]C40H56O2568.8714 569553; 534; 471; 359534; 486; 326; 262516; 473; 308; 262Sarsaparilla [28]; Carotenoids [107]; orange juice [109]
151Product of chlorophyll breakdownPheophorbide aC35H34N4O6606.6677 607547; 503; 461461; 433433Product of Chlorophylle breakdown [110]
152CycloartanolCyclopassifloic acid glucosideC37H62O12698.8810 699537375; 331; 259; 185 Passiflora incarnata [53]
153CarotenoidCarotenoidC41H59O10711.9012 712695; 605; 543; 474; 456412; 369; 200; 143 Carotenoids [32]
154Carotenoid(all-E)-beta-cryptoxanthin laurate [Beta-Cryptoxanthin-Laurate]C52H78O2735.1745 735323; 521; 277295; 163249; 173; 134Sarsaparilla [28]; Carotenoids [107]; Carica papaya [111]
155Product of chlorophyll degradationPheophytin AC55H74N4O5871.1999 593; 533533; 461461; 433Product of Chlorophylle breakdown [110]; Physalis peruviana [112]; Capsicum [113]
* Compounds, firstly identified in genus Dracocephalum.

References

  1. Zakharova, V.I.; Kuznetsova, L.V. Abstract of the Flora of Yakutia: Vascular Plants; Nauka Publishing House: Novosibirsk, Russia, 2012; p. 272. (In Russian) [Google Scholar]
  2. Danilova, N.S.V. 1: Rare and endangered species of plants and fungi. In Red Book of the Republic of Sakha (Yakutia); “Reart” Publishing House: Moscow, Russia, 2017; 412p. (In Russian) [Google Scholar]
  3. Peshkova, G.A. Dracocephalum L. Flora of Siberia; Nauka Publishing House: Novosibirsk, Russia, 1997; Volume 11, pp. 170–185. (In Russian) [Google Scholar]
  4. Egorova, P.S. To the introduction of Dracocephalum jacutense (Lamiaceae) in the Yakutsk Botanical Garden. Vestnik KrasSAU 2020, 5, 17–23. (In Russian) [Google Scholar]
  5. Budantsev, A.L.; Shavarda, A.L. Chemical composition and useful properties of Dracocephalum L. species of the USSR flora. Message 2. Plant Resour. 1987, 23, 287–295. (In Russian) [Google Scholar]
  6. Zeng, Q.; Jin, H.Z.; Qin, J.J.; Fu, J.J.; Hu, X.J.; Liu, J.H.; Yan, L.; Chen, M.; Zhang, W.D. Chemical constituents of plants from the genus Dracocephalum. Chem. Biodivers. 2010, 7, 1911–1929. [Google Scholar] [CrossRef] [PubMed]
  7. Komartin, R.S.; Stroescu, M.; Chira, N.; Stan, R.; Stoica-Guzun, A. Optimization of oil extraction from Lallemantia iberica seeds using ultrasound-assisted extraction. J. Food Meas. Charact. 2021, 15, 2010–2020. [Google Scholar] [CrossRef]
  8. Olennikov, D.N.; Chirikova, N.K.; Okhlopkova, Z.M.; Zulfugarov, I.S. Chemical Composition and Antioxidant Activity of Tánara Ótó (Dracocephalum palmatum Stephan), a Medicinal Plant Used by the North-Yakutian Nomads. Molecules 2013, 18, 14105. [Google Scholar] [CrossRef] [Green Version]
  9. Kim, J.; Kim, J.N.; Park, I.; Sivtseva, S.; Okhlopkova, Z.; Zulfugarov, I.S.; Kim, S.-W. Dracocephalum palmatum Stephan extract induces caspase- and mitochondria-dependent apoptosis via Myc inhibition in diffuse large B cell lymphoma. Oncol. Rep. 2020, 44, 2746–2756. [Google Scholar] [CrossRef]
  10. Lee, S.-E.; Okhlopkova, Z.; Lim, C.; Cho, S. Dracocephalum palmatum Stephan extract induces apoptosis in human prostate cancer cells via the caspase-8-mediated extrinsic pathway. Chin. J. Nat. Med. 2020, 18, 793–800. [Google Scholar] [CrossRef]
  11. Razgonova, M.P.; Okhlopkova, Z.M.; Golokhvast, K.S. Research of Dracocephalum palmatum S. and Dracocephalum ruyschiana L. originating from Yakutia and identification of metabolites by tandem mass spectrometry. BIO Web Conf. 2022, 43, 01010. [Google Scholar] [CrossRef]
  12. Okhlopkova, Z.M.; Razgonova, M.P.; Pikula, K.S.; Zakharenko, A.M.; Piekoszewski, W.; Manakov, Y.A.; Ercisli, S.; Golokhvast, K.S. Dracocephalum palmatum S. and Dracocephalum ruyschiana L. originating from Yakutia: A high-resolution mass spectrometric approach for the comprehensive characterization of phenolic compounds. Appl. Sci. 2022, 12, 1766. [Google Scholar] [CrossRef]
  13. Vijayan, K.P.R.; Raghu, A.V. Tentative characterization of phenolic compounds in three species of the genus Embelia by liquid chromatography coupled with mass spectrometry analysis. Spectrosc. Lett. 2019, 52, 653–670. [Google Scholar] [CrossRef]
  14. Mena, P.; Cirlini, M.; Tassotti, M.; Herrlinger, K.A.; Dall’Asta, C.; Del Rio, D. Phytochemical Profiling of Flavonoids, Phenolic Acids, Terpenoids, and Volatile Fraction of a Rosemary (Rosmarinus officinalis L.) Extract. Molecules 2016, 21, 1576. [Google Scholar] [CrossRef] [PubMed]
  15. Belmehdi, O.; Bouyahya, A.; Jekő, J.; Cziáky, Z.; Zengin, G.; Sotkó, G.; EL Baaboua, A.; Senhaji, N.S.; Abrini, J. Synergistic interaction between propolis extract, essential oils, and antibiotics against Staphylococcus epidermidis and methicillin resistant Staphylococcus aureus. Int. J. Second Metab. 2021, 8, 195–213. [Google Scholar] [CrossRef]
  16. Du, Q.-H.; Zhang, Q.-Y.; Han, T.; Jiang, Y.-P.; Peng, C.; Xin, H.-L. Dynamic changes of flavonoids in Actinidia valvata leaves at different growing stages measured by HPLC-MS/MS. Chin. J. Nat. Med. 2016, 14, 66–72. [Google Scholar] [PubMed]
  17. Le Gall, G.; DuPont, M.S.; Davis, A.L.; Collins, G.J.; Verhoeyen, M.E.; Colquhoun, I.J. Characterization and Content of Flavonoid Glycosides in Genetically Modified Tomato (Lycopersicum esculentum) Fruits. J. Agric. Food Chem. 2003, 51, 2438–2446. [Google Scholar] [CrossRef]
  18. Yin, N.-W.; Wang, S.-X.; Jia, L.-D.; Zhu, M.-C.; Yang, J.; Zhou, B.-J.; Yin, J.-M.; Lu, K.; Wang, R.; Li, J.-N.; et al. Identification and Characterization of Major Constituents in Different-Colored Rapeseed Petals by UPLC−HESI-MS/MS. J. Agric. Food Chem. 2019, 67, 11053–11065. [Google Scholar] [CrossRef]
  19. Aabideen, Z.U.; Mumtaz, M.W.; Akhtar, M.T.; Mukhtar, H.; Raza, S.A.; Touqeer, T.; Saari, N. Anti-Obesity Attributes. UHPLC-QTOF-MS/MS-Based Metabolite Profiling and Molecular Docking Insights of Taraxacum officinale. Molecules 2020, 25, 4935. [Google Scholar] [CrossRef]
  20. Yamazaki, M.; Nakajima, J.-I.; Yamanashi, M.; Sugiyama, M.; Makita, Y.; Springob, K.; Awazuhara, M.; Saito, K. Metabolomics and differential gene expression in anthocyanin chemo-varietal forms of Perilla frutescens. Phytochemistry 2003, 62, 987–995. [Google Scholar] [CrossRef]
  21. He, Y.-K.; Yao, Y.-Y.; Chang, Y.-N. Characterization of Anthocyanins in Perilla frutescens var. acuta Extract by Advanced UPLC-ESI-IT-TOF-MSn Method and Their Anticancer Bioactivity. Molecules 2015, 20, 9155–9169. [Google Scholar]
  22. Martinez-Vazquez, M.; Estrada-Reyes, R.; Martinez-Laurrabaquio, A.; Lopez-Rubalcava, C.; Heinze, G. Neuropharmacological study of Dracocephalum moldavica L. (Lamiaceae) in mice: Sedative effect and chemical analysis of an aqueous extract. J. Ethnopharmacol. 2012, 141, 908–917. [Google Scholar] [CrossRef]
  23. Li, X.; Tian, T. Phytochemical Characterization of Mentha spicata L. Under Differential Dried-Conditions and Associated Nephrotoxicity Screening of Main Compound with Organ-on-a-Chip. Front. Pharmacol. 2018, 9, 1067. [Google Scholar] [CrossRef]
  24. Kim, S.; Oh, S.; Noh, H.B.; Ji, S.; Lee, S.H.; Koo, J.M.; Choi, C.W.; Jhun, H.P. In Vitro Antioxidant and Anti-Propionibacterium acnes Activities of Cold Water, Hot Water, and Methanol Extracts, and Their Respective Ethyl Acetate Fractions, from Sanguisorba officinalis L. Roots. Molecules 2018, 23, 3001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  25. Hamed, A.R.; El-Hawary, S.S.; Ibrahim, R.M.; Abdelmohsen, U.R.; El-Halawany, A.M. Identification of Chemopreventive Components from Halophytes Belonging to Aizoaceae and Cactaceae Through LC/MS –Bioassay Guided Approach. J. Chromatogr. Sci. 2021, 59, 618–626. [Google Scholar] [CrossRef] [PubMed]
  26. Shen, Y.-C.; Hsieh, P.-W.; Kuo, Y.-H. Neolignan glucosides from Jasminum urophyllum. Phytochemistry 1998, 48, 719–723. [Google Scholar] [CrossRef]
  27. Uchiyama, N.; Kiuchi, F.; Ito, M.; Honda, G.; Takeda, Y.; Khodzhimatov, O.K.; Ashurmetov, O.A. New Icetexane and 20-Norabietane Diterpenes with Trypanocidal Activity from Dracocephalum komarovi. J. Nat. Prod. 2003, 66, 128–131. [Google Scholar] [CrossRef]
  28. Delgado-Pelayo, R.; Homero-Mendez, D. Identification and Quantitative Analysis of Carotenoids and Their Esters from Sarsaparilla (Smilax aspera L.) Berries. J. Chromatogr. A 2012, 60, 8225–8232. [Google Scholar] [CrossRef] [Green Version]
  29. Patnala, S.; Kanfer, I. Medicinal use of Sceletium: Characterization of Phytochemical Components of Sceletium Plant Species using HPLC with UV and Electrospray Ionization—Tandem Mass Spectroscopy. J. Pharm. Pharm. Sci. 2015, 18, 414–423. [Google Scholar] [CrossRef] [Green Version]
  30. Al-Yafeai, A.; Malarski, A.; Bohm, V. Characterization of carotenoids and vitamin E in R. rugosa and R. canina: Comparative analysis. Food Chem. 2018, 242, 435–442. [Google Scholar] [CrossRef]
  31. Cai, Z.; Wang, C.; Zou, L.; Liu, X.; Chen, J.; Tan, M.; Mei, Y.; Wei, L. Comparison of Multiple Bioactive Constituents in the Flower and the Caulis of Lonicera japonica Based on UFLC-QTRAP-MS/MS Combined with Multivariate Statistical Analysis. Molecules 2019, 24, 1936. [Google Scholar] [CrossRef] [Green Version]
  32. Murador, D.C.; Salafia, F.; Zoccali, M.; Martins, P.L.G.; Ferreira, A.G.; Dugo, P.; Mondello, L.; de Rosso, V.V.; Giuffrida, D. Green Extraction Approaches for Carotenoids and Esters: Characterization of Native Composition from Orange Peel. Antioxidants 2019, 8, 613. [Google Scholar] [CrossRef] [Green Version]
  33. Suarez Montenegro, Z.J.; Alvarez-Rivera, G.; Mendiola, J.A.; Ibanez, E.; Cifuentes, A. Extraction and Mass Spectrometric Characterization of Terpenes Recovered from Olive Leaves Using a New Adsorbent-Assisted Supercritical CO2 Process. Foods 2021, 10, 1301. [Google Scholar] [CrossRef]
  34. Abu-Reidah, I.M.; Ali-Shtayeh, M.S.; Jamous, R.M.; Arraes-Roman, D.; Segura-Carretero, A. HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chem. 2015, 166, 179–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  35. Huang, X.; Liu, Y.; Song, F.; Liu, Z.; Liu, S. Studies on principal components and antioxidant activity of different Radix Astragali samples using high-performance liquid chromatography/electrospray ionization multiple-stage tandem mass spectrometry. Talanta 2009, 78, 1090–1101. [Google Scholar] [CrossRef] [PubMed]
  36. Zhang, J.; Xu, X.-J.; Xu, W.; Huang, J.; Zhu, D.; Qui, X.-H. Rapid Characterization and Identification of Flavonoids in Radix Astragali by Ultra-High-Pressure Liquid Chromatography Coupled with Linear Ion Trap-Orbitrap Mass Spectrometry. J. Chromatogr. Sci. 2015, 53, 945–952. [Google Scholar] [CrossRef] [PubMed]
  37. Wang, F.; Zhao, S.; Li, F.; Zhang, B.; Qu, Y.; Sun, T.; Luo, T.; Li, D. Investigation of Antioxidant interactions between Radix Astragali and Cimicifuga foetida and Identification of Synergistic Antioxidant Compounds. PLoS ONE 2014, 9, e87221. [Google Scholar] [CrossRef]
  38. Yin, Y.; Zhang, K.; Wei, L.; Chen, D.; Chen, Q.; Jiao, M.; Li, X.; Huang, J.; Gong, Z.; Kang, N.; et al. The Molecular Mechanism of Antioxidation of Huolisu Oral Liquid Based on Serum Analysis and Network Analysis. Front. Pharmacol. 2021, 12, 710976. [Google Scholar] [CrossRef]
  39. Aita, S.E.; Capriotti, A.L.; Cavaliere, C.; Cerrato, A.; Giannelli Moneta, B.; Montone, C.M.; Piovesana, S.; Lagana, A. Andean Blueberry of the Genus Disterigma: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Phenolic Compounds. Separations 2021, 8, 58. [Google Scholar] [CrossRef]
  40. Teles, Y.C.E.; Rebello Horta, C.C.; de Fatima Agra, M.; Siheri, W.; Boyd, M.; Igoli, J.O.; Gray, A.I.; de Fatima Vanderlei de Souza, M. New Sulphated Flavonoids from Wissadula periplocifolia (L.) C. Presl. (Malvaceae). Molecules 2015, 20, 20161–20172. [Google Scholar] [CrossRef] [Green Version]
  41. Xu, L.L.; Xu, J.J.; Zhong, K.R.; Shang, Z.P.; Wang, F.; Wang, R.F.; Liu, B. Analysis of non-volatile chemical constituents of Menthae Haplocalycis herba by ultra-high performance liquid chromatography—High resolution mass spectrometry. Molecules 2017, 22, 1756. [Google Scholar] [CrossRef] [Green Version]
  42. Pandey, R.; Kumar, B. HPLC–QTOF–MS/MS-based rapid screening of phenolics and triterpenic acids in leaf extracts of Ocimum species and their interspecies variation. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 225–238. [Google Scholar] [CrossRef]
  43. Fanthoni, A.; Saepudin, E.; Cahyana, A.H.; Rahayu, D.U.C.; Haib, J. Identification of Nonvolatile Compounds in Clove (Syzygium aromaticum) from Manado. In Proceedings of the International Symposium on Current Progress in Mathematics and Sciences 2016 (ISCPMS 2016), Depok, Indonesia, 24–25 August 2016; Volume 1862, pp. 030079-1–030079-10. [Google Scholar]
  44. Razgonova, M.P.; Bazhenova, B.B.; Zabalueva, Y.Y.; Burkhanova, A.G.; Zakharenko, A.M.; Kupriyanov, A.N.; Sabitov, A.S.; Ercisli, S.; Golokhvast, K.S. Rosa davurica Pall., Rosa rugosa Thumb. and Rosa acicularis Lindl. originating from Far Eastern Russia: Screening of 146 Chemical Constituents in Tree Species of the Genus Rosa. Appl. Sci. 2022, 12, 9401. [Google Scholar] [CrossRef]
  45. Chandrasekara, A.; Shahidi, F. Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MSn. J. Funct. Foods 2011, 3, 144–158. [Google Scholar] [CrossRef]
  46. Zengin, G.; Mahomoodally, M.; Sinan, K.; Ak, G.; Etienne, O.; Sharmeen, J.; Brunetti, L.; Leone, S.; Di Simone, S.; Recinella, L.; et al. Chemical composition and biological properties of two Jatropha species: Different parts and different extraction methods. Antioxidants 2021, 10, 792. [Google Scholar] [CrossRef] [PubMed]
  47. Singh, B.; Jain, S.K. Simultaneous Quantification of Five Bioactive Flavonoids in High Altitude Plant Actinocarya tibetica by LC-ESI-MS/MS. J. AOAC Int. 2015, 98, 907–912. [Google Scholar] [CrossRef] [PubMed]
  48. Martin, M.M.; Fuguet, E.; Jiménez-Ardón, A.; Herrero-Uribe, L.; Tamayo-Castillo, G.; Torres, J. Identification of polyphenols from antiviral Chamaecrista nictitans extract using high-resolution LC–ESI–MS/MS. Anal. Bioanal. Chem. 2014, 406, 5501–5506. [Google Scholar] [CrossRef]
  49. Santos, S.A.O.; Freire, C.S.R.; Domingues, M.R.M.; Silvestre, A.J.D.; Neto, C.P. Characterization of Phenolic Components in Polar Extracts of Eucalyptus globulus Labill. Bark by High-Performance Liquid Chromatography-Mass Spectrometry. J. Agric. Food Chem. 2011, 59, 9386–9393. [Google Scholar] [CrossRef]
  50. Razgonova, M.P.; Tekutyeva, L.A.; Podvolotskaya, A.B.; Stepochkina, V.D.; Zakharenko, A.M.; Golokhvast, K.S. Zostera marina L. Supercritical CO2-Extraction and Mass Spectrometric Characterization of Chemical Constituents Recovered from Seagrass. Separations 2022, 9, 182. [Google Scholar] [CrossRef]
  51. Pan, M.; Lei, Q.; Zang, N.; Zhang, H. A Strategy Based on GC-MS/MS, UPLC-MS/MS and Virtual Molecular Docking for Analysis and Prediction of Bioactive Compounds in Eucalyptus Globulus Leaves. Int. J. Mol. Sci. 2019, 20, 3875. [Google Scholar] [CrossRef] [Green Version]
  52. El-Sayed, M.A.; Abbas, F.A.; Refaat, S.; El-Shafae, A.M.; Fikry, E. UPLC-ESI-MS/MS Profile of The Ethyl Acetate Fraction of Aerial Parts of Bougainvillea “Scarlett O’Hara” Cultivated in Egypt. Egypt. J. Chem. 2021, 64, 22. [Google Scholar] [CrossRef]
  53. Ozarowski, M.; Piasecka, A.; Paszel-Jaworska, A.; de Siqueira, A.; Chaves, D.; Romaniuk, A.; Rybczynska, M.; Gryszczynska, A.; Sawikowska, A.; Kachlicki, P.; et al. Comparison of bioactive compounds content in leaf extracts of Passiflora incarnata, P. caerulea and P. alata and in vitro cytotoxic potential on leukemia cell lines. Braz. J. Pharmacol. 2018, 28, 179–191. [Google Scholar] [CrossRef]
  54. Pandey, B.P.; Pradhan, S.P.; Adhikari, K. LC-ESI-QTOF-MS for the Profiling of the Metabolites and in Vitro Enzymes Inhibition Activity of Bryophyllum pinnatum and Oxalis corniculata Collected from Ramechhap District of Nepal. Chem. Biodivers. 2020, 17, e2000155. [Google Scholar]
  55. Spinola, V.; Pinto, J.; Castilho, P.C. Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD-ESI-MSn and screening for their antioxidant activity. Food Chem. 2015, 173, 14–30. [Google Scholar] [CrossRef] [PubMed]
  56. Enerstvedt, K.H.; Jordheim, M.; Andersen, O.M. Isolation and Identification of Flavonoids Found in Zostera marina Collected in Norwegian Coastal Waters. Am. J. Plant Sci. 2016, 7, 1163–1172. [Google Scholar] [CrossRef] [Green Version]
  57. Wojakowska, A.; Perkowski, J.; Góral, T.; Stobiecki, M. Structural characterization of flavonoid glycosides from leaves of wheat (Triticum aestivum L.) using LC/MS/MS profiling of the target compounds. J. Mass Spectrom. 2013, 48, 329–339. [Google Scholar] [CrossRef] [PubMed]
  58. Cavaliere, C.; Foglia, P.; Pastorini, E.; Samperi, R.; Laganà, A. Identification and mass spectrometric characterization of glycosylated flavonoids in Triticum durum plants by high-performance liquid chromatography with tandem mass spectrometry. Rapid Commun. Mass Spectrom. Int. J. Devoted Rapid Dissem. Up Minute Res. Mass Spectrom. 2005, 19, 3143–3158. [Google Scholar] [CrossRef] [PubMed]
  59. Rodriguez-Perez, C.; Gomez-Caravaca, A.M.; Guerra-Hernandez, E.; Cerretani, L.; Garcia-Villanova, B.; Verardo, V. Comprehensive metabolite profiling of Solanum tuberosum L. (potato) leaves T by HPLC-ESI-QTOF-MS. Molecules 2018, 112, 390–399. [Google Scholar] [CrossRef]
  60. Zapesochnaya, G.G.; Kurkin, V.A.; Shchavlinskii, A.N. Flavonoids of the above-ground part of Rhodiola rosea. II. Structure of novel glycosides of herbacetin and gossypetin. Chem. Nat. Compd. 1985, 4, 496–507. [Google Scholar]
  61. Jeong, H.J.; Ryu, Y.B.; Park, S.J. Neuraminidase inhibitory activities of flavonols isolated from Rhodiola rosea roots and their in vitro anti-influenza viral activities. Bioorganic Med. Chem. 2009, 17, 6816–6823. [Google Scholar] [CrossRef]
  62. Goufo, P.; Singh, R.K.; Cortez, I. Phytochemical A Reference List of Phenolic Compounds (Including Stilbenes) in Grapevine (Vitis vinifera L.) Roots, Woods, Canes, Stems, and Leaves. Antioxidants. 2020, 9, 398. [Google Scholar] [CrossRef]
  63. De Rosso, M.; Tonidandel, L.; Larcher, R.; Nicolini, G.; Dalla Vedova, A.; De Marchi, F.; Gardiman, M.; Giust, M.; Flamini, R. Identification of new flavonols in hybrid grapes by combined liquid chromatography-mass spectrometry approaches. Food Chem. 2014, 163, 244–251. [Google Scholar] [CrossRef]
  64. Wojakowska, A.; Piasecka, A.; Garcia-Lopez, P.M.; Zamora-Natera, F.; Krajewski, P.; Marczak, L.; Kachlicki, P.; Stobiecki, M. Structural analysis and profiling of phenolic secondary metabolites of Mexican lupine species using LC–MS techniques. Phytochemistry 2013, 92, 71–86. [Google Scholar] [CrossRef]
  65. Mekam, P.N.; Martini, S.; Nguefack, J.; Tagliazucchi, D.; Stefani, E. Phenolic compounds profile of water and ethanol extracts of Euphorbia hirta L. leaves showing antioxidant and antifungal properties. South Afr. J. Bot. 2019, 127, 319–332. [Google Scholar] [CrossRef]
  66. Negri, S.; Gambini, S.; Ceoldo, S.; Avesani, L.; Commisso, M.; Guzzo, F. Undifferentiated In Vitro Cultured Actinidia deliciosa as Cell Factory for the Production of Quercetin Glycosides. Plants 2021, 10, 2499. [Google Scholar] [CrossRef] [PubMed]
  67. Marcia Fuentes, J.A.; Lopez-Salas, L.; Borras-Linares, I.; Navarro-Alarcon, M.; Segura-Carretero, A.; Lozano-Sanchez, J. Development of an Innovative Pressurized Liquid Extraction Procedure by Response Surface Methodology to Recover Bioactive Compounds from Carao Tree Seeds. Foods 2021, 10, 398. [Google Scholar] [CrossRef] [PubMed]
  68. Sobeh, M.; Mahmoud, M.F.; Abdelfattah, M.A.O.; Cheng, H.; El-Shazly, A.M.; Wink, M. A proanthocyanidin-rich extract from Cassia abbreviata exhibits antioxidant and hepatoprotective activities in vivo. J. Ethnopharmacol. 2018, 213, 38–47. [Google Scholar] [CrossRef]
  69. Abeywickrama, G.; Debnath, S.C.; Ambigaipalan, P.; Shahidi, F. Phenolics of selected cranberry genotypes (Vaccinium macrocarpon Ait.) and their antioxidant efficacy. J. Agric. Food Chem. 2016, 64, 9342–9351. [Google Scholar] [CrossRef]
  70. Ojwang, L.O.; Yang, L.; Dykes, L.; Awika, J. Proanthocyanidin profile of cowpea (Vigna unguiculata) reveals catechin-O-glucoside as the dominant compound. Food Chem. 2013, 130, 35–43. [Google Scholar] [CrossRef]
  71. Qin, D.; Wang, Q.; Li, H.; Jiang, X.; Fang, K.; Wang, Q.; Li, B.; Pan, C.; Wu, H. Identification of key metabolites based on non-targeted metabolomics and chemometrics analyses provides insights into bitterness in Kucha (Camellia kucha (Chang et Wang) Chang). Food Res. Int. 2020, 138, 109789. [Google Scholar] [CrossRef]
  72. Chen, Y.; Cai, X.; Li, G.; He, X.; Yu, X.; Yu, X.; Xiao, Q.; Xiang, Z.; Wang, C. Chemical constituents of radix Actinidia chinensis planch by UPLC–QTOF–MS. Biomed. Chromatogr. 2021, 35, e5103. [Google Scholar] [CrossRef]
  73. De Freitas, M.A.; Silva Alves, A.I.; Andrade, J.C.; Leite-Andrade, M.C.; Lucas dos Santos, A.T.; de Oliveira, T.F.; dos Santos, F.; Silva Buonafina, M.D. Evaluation of the Antifungal Activity of the Licania Rigida Leaf Ethanolic Extract against Biofilms Formed by Candida Sp. Isolates in Acrylic Resin Discs. Antibiotics 2019, 8, 250. [Google Scholar] [CrossRef] [Green Version]
  74. Zakharenko, A.M.; Razgonova, M.P.; Pikula, K.S.; Golokhvast, K.S. Simultaneous determination of 78 compounds of Rhodiola rosea extract using supercritical CO2-extraction and HPLC-ESI-MS/MS spectrometry. HINDAWY. Biochem. Res. Int. 2021, 2021, 9957490. [Google Scholar] [CrossRef]
  75. Singh, A.; Bajpai, V.; Kumar, S.; Sharma, K.R.; Kumar, B. Profiling of Gallic and Ellagic Acid Derivatives in Different Plant Parts of Terminalia arjuna by HPLC-ESI-QTOF-MS/MS. Nat. Prod. Commun. 2016, 11, 239–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  76. Justesen, U. Negative atmospheric pressure chemical ionisation low-energy collision activation mass spectrometry for the characterisation of flavonoids in extracts of fresh herbs. J. Chromatogr. A 2000, 902, 369–379. [Google Scholar] [CrossRef] [PubMed]
  77. Bodalska, A.; Kowalczyk, A.; Włodarczyk, M.; Fecka, I. Analysis of Polyphenolic Composition of a Herbal Medicinal Product—Peppermint Tincture. Molecules 2020, 25, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  78. Xu, X.; Yang, B.; Wang, D.; Zhu, Y.; Miao, X.; Yang, W. The Chemical Composition of Brazilian Green Propolis and Its Protective Effects on Mouse Aortic Endothelial Cells against Inflammatory Injury. Molecules 2020, 25, 4612. [Google Scholar] [CrossRef] [PubMed]
  79. Chen, X.; Zhu, P.; Liu, B.; Wei, L.; Xu, Y. Simultaneous determination of fourteen compounds of Hedyotis diffusa Willd extract in rats by UHPLC-MS/MS method: Application to pharmacokinetics and tissue distribution study. J. Pharm. Biomed. Anal. 2018, 159, 490–512. [Google Scholar] [CrossRef]
  80. Jiang, R.-W.; Lau, K.-M.; Hon, P.-M.; Mak, T.C.W.; Woo, K.-S.; Fung, K.-P. Chemistry and Biological Activities of Caffeic Acid Derivatives from Salvia miltiorrhiza. Curr. Med. Chem. 2005, 12, 237–246. [Google Scholar] [CrossRef]
  81. Van Hoyweghen, L.; De Bosscher, K.; Haegeman, G.; Deforce, D.; Heyerick, A. In Vitro Inhibition of the Transcription Factor NF-kB and Cyclooxygenase by Bamboo Extracts. Phytother. Res. 2014, 28, 224–230. [Google Scholar] [CrossRef]
  82. Serrano, C.A.; Villena, G.K.; Rodriguez, E.F. Phytochemical profile and rosmarinic acid purification from two Peruvian Lepechinia Willd. species (Salviinae, Mentheae, Lamiaceae). Sci. Rep. 2021, 11, 7260. [Google Scholar] [CrossRef]
  83. Eklund, P.C.; Backman, M.J.; Kronberg, L.A.; Smeds, A.I.; Sjoholm, R.E. Identification of lignans by liquid chromatography-electrospray ionization ion-trap mass spectrometry. J. Mass Spectrom. 2008, 43, 97–107. [Google Scholar] [CrossRef]
  84. Bonzanini, F.; Bruni, R.; Palla, G.; Serlataite, N.; Caligiani, A. Identification and distribution of lignans in Punica granatum L. fruit endocarp, pulp, seeds, wood knots and commercial juices by GC–MS. Food Chem. 2009, 117, 745–749. [Google Scholar] [CrossRef]
  85. Garg, M.; Chawla, M.; Chunduri, V.; Kumar, R.; Sharma, S.; Sharma, N.K.; Kaur, N.; Kumar, A.; Mundey, J.K.; Saini, M.K.; et al. Transfer of grain colors to elite wheat cultivars and their characterization. J. Cereal Sci. 2016, 71, 138–144. [Google Scholar] [CrossRef]
  86. Da Silva, L.P.; Pereira, E.; Pires, T.C.S.P.; Alves, M.J.; Pereira, O.R.; Barros, L.; Ferreira, I.C.F.R. Rubus ulmifolius Schott fruits: A detailed study of its nutritional, chemical and bioactive properties. Food Res. Int. 2019, 119, 34–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  87. Vera de Rosso, V.; Hillebrand, S.; Cuevas Montilla, E.; Bobbio, F.O.; Winterhalter, P.; Mercadante, A.Z. Determination of anthocyanins from acerola (Malpighia emarginata DC.) and ac-ai (Euterpe oleracea Mart.) by HPLC–PDA–MS/MS. J. Food Compos. Anal. 2008, 21, 291–299. [Google Scholar] [CrossRef]
  88. Anari, Z.; Mai, C.; Sengupta, A.; Howard, L.; Brownmiller, C.; Wickramasinghe, R. Combined Osmotic and Membrane Distillation for Concentration of Anthocyanin from Muscadine Pomace. J. Food Sci. 2019, 84, 2199–2208. [Google Scholar] [CrossRef] [PubMed]
  89. Ruiz, A.; Hermosín-Gutiérrez, I.; Vergara, C.; von Baer, D.; Zapata, M.; Hitschfeld, A.; Obando, L.; Mardones, C. Anthocyanin profiles in south Patagonian wild berries by HPLC-DAD-ESI-MS/MS. Food Res. Int. 2013, 51, 706–713. [Google Scholar] [CrossRef]
  90. Chhon, S.; Jeon, J.; Kim, J.; Park, S.Y. Accumulation of Anthocyanins through Overexpression of AtPAP1 in Solanum nigrum Lin. (Black Nightshade). Biomolecules 2020, 10, 277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  91. Xu, W.; Luo, G.; Yu, F.; Jia, Q.; Zheng, Y.; Bi, X.; Lei, J. Characterization of anthocyanins in the hybrid progenies derived from Iris dichotoma and I. domestica by HPLC-DAD-ESI/MS analysis. Phytochemistry 2018, 150, 60–74. [Google Scholar] [CrossRef]
  92. Hanhineva, K.; Karenlampi, S.O.; Aharoni, A. Resent Advances in Strawberry Metabolomics. Genes Genomes Genom. 2011, 5, 65–75. [Google Scholar]
  93. Perchuk, I.; Shelenga, T.; Gurkina, M.; Miroshnichenko, E.; Burlyaeva, M. Composition of Primary and Secondary Metabolite Compounds in Seeds and Pods of Asparagus Bean (Vigna unguiculata (L.) Walp.) from China. Molecules 2020, 25, 3778. [Google Scholar] [CrossRef]
  94. Wu, Y.; Xu, J.; He, Y.; Shi, M.; Han, X.; Li, W.; Zhang, X.; Wen, X. Metabolic Profiling of Pitaya (Hylocereus polyrhizus) during Fruit Development and Maturation. Molecules 2019, 24, 1114. [Google Scholar] [CrossRef] [Green Version]
  95. Cirlini, M.; Mena, P.; Tassotti, M.; Herrlinger, K.A.; Nieman, K.M.; Dall’Asta, C.; Del Rio, D. Phenolic and volatile composition of a dry spearmint (Mentha spicata L.) extract. Molecules 2016, 21, 1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  96. Zhang, J.; Gao, W.; Liu, Z.; Zhang, Z. Identification and Simultaneous Determination of Twelve Active Components in the Methanol Extract of Traditional Medicine Weichang’an Pill by HPLC-DAD-ESI-MS/MS. Iran. J. Pharm. Res. IJPR 2013, 12, 15–25. [Google Scholar] [PubMed]
  97. Guo, K.; Tong, C.; Fu, Q.; Xu, J.; Shi, S.; Xiao, Y. Identification of minor lignans, alkaloids, and phenylpropanoid glycosides in Magnolia officinalis by HPLC-DAD-QTOF-MS/MS. J. Pharm. Biomed. Anal. 2019, 170, 153–160. [Google Scholar] [CrossRef] [PubMed]
  98. Ekeberg, D.; Flate, P.-O.; Eikenes, M.; Fongen, M.; Naess-Andresen, C.F. Qualitative and quantitative determination of extractives in heartwood of Scots pine (Pinus sylvestris L.) by gas chromatography. J. Chromatogr. A 2006, 1109, 267–272. [Google Scholar] [CrossRef]
  99. Han, F.; Li, Y.; Ma, L.; Liu, T.; Wu, Y.; Xu, R.; Song, A.; Yin, R. A rapid and sensitive UHPLC-FT-ICR MS/MS method for identification of chemical constituents in Rhodiola crenulata extract, rat plasma and rat brain after oral administration. Talanta 2016, 160, 183–193. [Google Scholar] [CrossRef]
  100. Llorent-Martinez, E.J.; Spinola, V.; Gouveia, S.; Castilho, P.C. HPLC-ESI-MSn characterization of phenolic compounds, terpenoid saponins, and other minor compounds in Bituminaria bituminosa. Ind. Crops Prod. 2015, 69, 80–90. [Google Scholar] [CrossRef]
  101. Sun, S.; Gao, Y.; Ling, X.; Lou, H. The combination effects of phenolic compounds and fluconazole on the formation of ergosterol in Candida albicans determined by high-performance liquid chromatography/tandem mass spectrometry. Anal. Biochem. 2005, 336, 39–45. [Google Scholar] [CrossRef]
  102. Sun, L.; Tao, S.; Zhang, S. Characterization and Quantification of Polyphenols and Triterpenoids in Thinned Young Fruits of Ten Pear Varieties by UPLC-Q TRAP-MS/MS. Molecules 2019, 24, 159. [Google Scholar] [CrossRef] [Green Version]
  103. Sut, S.; Zengin, G.; Maggi, F.; Malagoli, M.; Dall’Acqua, S. Triterpene Acid and Phenolics from Ancient Apples of Friuli Venezia Giulia as Nutraceutical Ingredients: LC-MS Study and In Vitro Activities. Molecules 2019, 24, 1109. [Google Scholar] [CrossRef] [Green Version]
  104. Troshchenko, A.T.; Kutikova, G.A. Rhodioloside from Rhodiola rosea and R. quadrifida I. Chem. Nat. Compd. 1967, 3, 244–249. [Google Scholar] [CrossRef]
  105. Saratikov, A.S.; A Krasnov, E.; A Chnikina, L.; Duvidson, L.M.; I Sotova, M.; Marina, T.F.; Nechoda, M.F.; A Axenova, R.; Tscherdinzeff, S.G. Rhodiolosid, a new glycoside from Rhodiola rosea and its pharmacological properties. Pharmazie 1968, 23, 392–395. [Google Scholar]
  106. Van Diermen, D.; Marston, A.; Bravo, J.; Reist, M.; Carrupt, P.A.; Hostettmann, K. Monoamine oxidase inhibition by Rhodiola rosea L. roots. J. Ethnopharmacol. 2009, 122, 397–401. [Google Scholar] [CrossRef]
  107. Mercadante, A.Z.; Rodrigues, D.B.; Petry, F.C.; Barros Mariutti, L.R. Carotenoid esters in foods—A review and practical directions on analysis and occurrence. Food Res. Int. 2017, 99, 830–850. [Google Scholar] [CrossRef] [PubMed]
  108. Zoccali, M.; Giuffrida, D.; Salafia, F.; Giofre, S.V.; Mondello, L. Carotenoids and apocarotenoids determination in intact human blood samples by online supercritical fluid extraction-supercritical fluid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal. 2018, 1032, 40–47. [Google Scholar] [CrossRef]
  109. Dugo, P.; Herrero, M.; Giuffrida, D.; Ragonese, C.; Dugo, G.; Mindello, L. Analysis of native carotenoid composition in orange juice using C30 columns in tandem. J. Sep. Sci. 2008, 31, 2151–2160. [Google Scholar] [CrossRef] [PubMed]
  110. Van Breemen, R.B.; Canjura, F.L.; Schwartz, S.J. Identification of Chlorophyll Derivatives by Mass Spectrometry. J. Agric. Food Chem. 1991, 39, 1452–1456. [Google Scholar] [CrossRef]
  111. Lara-Abia, S.; Lobo-Rodrigo, G.; Welti-Chanes, J.; Pilar Cano, M. Carotenoid and Carotenoid Ester Profile and Their Deposition in Plastids in Fruits of New Papaya (Carica papaya L.) Varieties from the Canary Islands. Foods 2021, 10, 434. [Google Scholar] [CrossRef] [PubMed]
  112. Etzbach, L.; Pfeiffer, A.; Weber, F.; Schieber, A. Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DADAPCI-MSn. Food Chem. 2018, 245, 508–517. [Google Scholar] [CrossRef]
  113. Penagos-Calvete, D.; Guauque-Medina, J.; Villegas-Torres, M.F.; Guillermo, M. Analysis of triacylglycerides, carotenoids and capsaicinoids as disposable molecules from Capsicum agroindustry. Hortic. Environ. Biotechnol. 2019, 60, 227–238. [Google Scholar] [CrossRef]
Figure 1. Collection areas for wild and introduced D. jacutense Peshkova.
Figure 1. Collection areas for wild and introduced D. jacutense Peshkova.
Horticulturae 08 01211 g001
Figure 2. (A) Flowering of D. jacutense P. in the nursery of the Botanical Garden of Yakutia; (photo taken by Egorova, July 2019); (B) Flowering of D. jacutense P. in wild grown conditions on the territory of the Kobyaysky district of Yakutia (photo taken by Rozhina, July 2022).
Figure 2. (A) Flowering of D. jacutense P. in the nursery of the Botanical Garden of Yakutia; (photo taken by Egorova, July 2019); (B) Flowering of D. jacutense P. in wild grown conditions on the territory of the Kobyaysky district of Yakutia (photo taken by Rozhina, July 2022).
Horticulturae 08 01211 g002
Figure 3. CID-spectrum of isorhamnetin from extracts of D. jacutense, m/z 315.
Figure 3. CID-spectrum of isorhamnetin from extracts of D. jacutense, m/z 315.
Horticulturae 08 01211 g003
Figure 4. CID-spectrum of kaempferol-3,7-di-O-glucoside from extracts of D. jacutense, m/z 611.
Figure 4. CID-spectrum of kaempferol-3,7-di-O-glucoside from extracts of D. jacutense, m/z 611.
Horticulturae 08 01211 g004
Figure 5. CID-spectrum of malonyl-shisonin from extracts of D. jacutense, m/z 843.
Figure 5. CID-spectrum of malonyl-shisonin from extracts of D. jacutense, m/z 843.
Horticulturae 08 01211 g005
Table 1. The distribution of polyphenol content in examples from Botanical Garden (Yakutsk) and in examples from Sangar (Kobyaysky district, Yakutia).
Table 1. The distribution of polyphenol content in examples from Botanical Garden (Yakutsk) and in examples from Sangar (Kobyaysky district, Yakutia).
Class of CompoundsIdentified CompoundsFormulaBotanical Garden of YakutskWild Specimens
1FlavoneFormononetin *C16H12O4
2FlavoneApigeninC15H10O5
3FlavoneAcacetinC16H12O5
4FlavoneCalycosinC16H12O5
5FlavoneGengkwaninC16H12O5
6FlavoneLuteolinC15H10O6
7FlavoneDiosmetinC16H12O6
8FlavoneChrysoeriol [Chryseriol] C16H12O6
9FlavoneHomoeriodictyol *C16H14O6
10FlavoneCirsimaritin *C17H14O6
11FlavoneDihydroxy-dimethoxy(iso)flavone *C17H14O6
12Flavone5,7-Dimethoxyluteolin *C17H14O6
13FlavoneMyricetin *C15H10O8
14FlavoneIsothymusinC17H14O7
15FlavoneCirsiliol *C17H14O7
16FlavoneDimethoxy-trihydroxy(iso)flavone *C17H14O7
17FlavoneNevadensinC18H16O7
18FlavoneGardenin B [Demethyltangeretin] * C19H18O7
19FlavoneDihydroxy-tetramethoxy(iso)flavone *C19H18O8
20Flavone5-Hydroxy-6,7,8,3′,4′-pentamethoxyflavone *C20H20O8
21FlavoneApigenin O-hexosideC21H20O10
22FlavoneApigenin-7-O-glucosideC21H20O10
23FlavoneAromadendrin 7-O-rhamnoside *C21H22O10
24FlavoneApigenin 7-O-glucuronideC21H18O11
25FlavoneAcacetin 7-O-glucoside [Tilianin] C22H22O10
26FlavoneLuteolin 7-O-glucoside [Cynaroside; Luteoloside] C21H20O11
27Flavone3′-methoxyacacetin 7-O-beta-D-glucuronideC22H20O12
28FlavoneAcacetin 7-O-beta-D-glucuronideC22H20O11
29Flavone6,4′-Dimethoxyisoflavone-7-O-glucoside *C23H24O10
30FlavoneDiosmetin-7-O-beta-glucosideC22H22O11
31FlavoneApigenin-O-rhamnoside *C22H22O11
32FlavoneChrysoeriol-7-O-glucuronide *C22H20O12
33FlavoneAcacetin 7-beta-O-(6”-acetyl)-glucosideC24H24O11
34IsoflavoneApigenin 7-O-beta-D-(6”-O-malonyl)-glucosideC24H22O13
35FlavoneAcacetin 7-O-beta-D-(6”-O-malonylated)-glucosideC25H24O13
36FlavoneDiosmetin-7-O-beta-D-(6”-malonyl)-glucosideC25H24O14
37FlavoneChrysoeriol O-hexoside C-hexoside *C28H32O16
38FlavoneIsovitexin 2”-O-glucoside-7-O-glucoside *C33H40O20
39FlavonolKaempferolC15H10O6
40FlavonolQuercetinC15H10O7
41FlavonolHerbacetin *C15H10O7
42FlavonolDihydroquercetin (Taxifolin; Taxifoliol)C15H12O7
43FlavonolIsorhamnetinC16H12O7
44Flavonoid3,5—Diacetyltambulin *C22H20O9
45FlavonolDihydrokaempferol-3-O-rhamnoside *C21H22O10
46FlavonolAstragalinC21H20O11
47FlavonolQuercitrin [Quercetin 3-O- rhamnoside; Quercetrin] * C21H20O11
48FlavonolKaempferol-3-O-glucuronideC21H18O12
49FlavonolTaxifolin-3-O-hexoside [Dihydroquercetin-3-O-hexoside] * C21H22O12
50FlavonolKaempferol 3-O-rutinosideC27H30O15
51FlavonolKaempferol-3,7-Di-O-glucoside *C27H30O16
52FlavonolKaempferol dihexoside rhamnoside *C33H40O20
53Flavan-3-ol(epi)Afzelechin *C15H14O5
54Flavan-3-olCatechin [D-Catechol] * C15H14O6
55Flavan-3-ol(epi)catechinC15H14O6
56Flavan-3-olGallocatechin *C15H14O7
57Flavan-3-ol(epi)Afzelechin derivative *C18H16O10
58Flavan-3-olCatechin 3-O-gallate *C22H18O10
59Flavan-3-olEpigallocatechin-3-gallateC22H18O11
60FlavanoneNaringeninC15H12O5
61FlavanoneEriodictyolC15H12O6
62IsoflavanoneFerreirin *C16H14O6
63FlavanonePruninC21H22O10
64FlavanoneEriodictyol-7-O-glucosideC21H22O11
65FlavanoneEriodictyol-7-O-glucuronide *C21H20O12
66Hydroxybenzoic acid Protocatechuic acid *C7H6O4
67Hydroxycinnamic acidp-Coumaric acidC9H8O3
68Hydroxycinnamic acidCaffeic acidC9H8O4
69Hydroxycinnamic acid3,4-Dihydroxyhydrocinnamic acid *C9H10O4
70Phenolic acid2,3,4,5-Tetrahydroxybenzoic acidC7H6O6
71Phenolic acidSalvianic acid A [Danshensu] * C9H10O5
72Phenolic acid2,3-Dihydroxy-4-Mathoxycinnamic acid *C10H10O5
73Hydroxybenzoic acidEllagic acidC14H6O8
74Phenolic acidProtocatechuic acid-O-hexoside *C13H16O9
75Phenolic acidSalvianolic acid GC18H12O7
76Phenolic acidCaffeic acid-4-O-beta-D-hexoside [Caffeoyl-O-hexoside] C15H18O9
77Phenolic acidChlorogenic acid [3-O-Caffeoylquinic acid] C16H18O9
78Phenolic acidIsochlorogenic acid *C16H18O9
79Phenolic acidRosmarinic acidC18H16O8
80 3-Prenyl-4-(dihydrocinnamoyloxy)-cinnamic acid *C23H24O4
81Phenolic acidCaffeic acid derivativeC16H18O9Na
82Phenolic acid1/3/4/5-p-Coumaroylquinic acid * + C2H2OC18H20O9
83Phenolic acid8,8′-Aryl-Diferulic acid *C20H18O8
84Phenolic acidCaffeic acid hexoside dimer *C31H40O17
85Phenolic acidDidehydrosalvianolic acid B *C36H28O16
86Phenolic acidSalvianolic acid B [Danfensuan B] * C36H30O16
87Phenylpropanoic acid Sagerinic acidC36H32O16
88Phenolic acidClerodendranoic acid H *C36H32O16
89LignanPhillygenin [Sylvatesmin; Phyllygenol; Forsythigenol] * C21H24O6
90LignanMedioresinol *C21H24O7
91NeolignanUrolignoside * + H2OC25H34O11
92DihydrochalconePhloretin *C15H14O5
93HydroxycoumarinUmbelliferone *C9H6O3
94CoumarinFraxetin *C10H8O5
95HydroxycoumarinUmbelliferone hexoside *C15H16O8
96Coumarin glycoside Fraxin (Fraxetin-8-O-glucoside)C16H18O10
97AnthocyanidinPetunidinC16H13O7+
98AnthocyanidinPelargonidin-3-O-glucoside (callistephin)C21H21O10
99AnthocyanidinCyanidin-3-O-glucosideC21H21O11+
100AnthocyanidinCyanidin 3,5-O-diglucoside *C27H31O16
101AnthocyanidinPeonidin-3,5-diglucoside *C28H33O16
102AnthocyanidinCyanidin-3-O-rutinoside-5-O-glucoside *C33H41O20
103AnthocyanidinDelphinidin 3-O-rutinoside-5-O-glucoside *C33H41O21
104AnthocyanidinMalonyl-shisonin *C39H39O21+
* Polyphenols firstly annotated in genus Dracocephalum.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Razgonova, M.P.; Okhlopkova, Z.M.; Rozhina, Z.G.; Egorova, P.S.; Ercisli, S.; Golokhvast, K.S. Comparison of Wild and Introduced Dracocephalum jacutense P.: Significant Differences of Multicomponent Composition. Horticulturae 2022, 8, 1211. https://doi.org/10.3390/horticulturae8121211

AMA Style

Razgonova MP, Okhlopkova ZM, Rozhina ZG, Egorova PS, Ercisli S, Golokhvast KS. Comparison of Wild and Introduced Dracocephalum jacutense P.: Significant Differences of Multicomponent Composition. Horticulturae. 2022; 8(12):1211. https://doi.org/10.3390/horticulturae8121211

Chicago/Turabian Style

Razgonova, Mayya P., Zhanna M. Okhlopkova, Zoya G. Rozhina, Polina S. Egorova, Sezai Ercisli, and Kirill S. Golokhvast. 2022. "Comparison of Wild and Introduced Dracocephalum jacutense P.: Significant Differences of Multicomponent Composition" Horticulturae 8, no. 12: 1211. https://doi.org/10.3390/horticulturae8121211

APA Style

Razgonova, M. P., Okhlopkova, Z. M., Rozhina, Z. G., Egorova, P. S., Ercisli, S., & Golokhvast, K. S. (2022). Comparison of Wild and Introduced Dracocephalum jacutense P.: Significant Differences of Multicomponent Composition. Horticulturae, 8(12), 1211. https://doi.org/10.3390/horticulturae8121211

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop