Synergistic Improvement of Production, Economic Return and Sustainability in the Tea Industry through Ecological Pest Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Management
2.3. Data Collection and Parameter Estimates
2.4. Statistical Analysis
3. Results
3.1. Effects of Management Mode on Pest Control
3.2. Effects of Management Mode on the Soil Physicochemical Properties
3.3. Formatting of Mathematical Components
3.4. Effects of Management Mode on Economic Benefits
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Magarey, R.D.; Klammer, S.S.; Chappell, T.M.; Trexler, C.M.; Pallipparambil, G.R.; Hain, E.F. Eco-efficiency as a strategy for optimizing the sustainability of pest management. Pest Manag. Sci. 2019, 75, 3129–3134. [Google Scholar] [CrossRef]
- Ma, Y.L.; Lin, W.W.; Guo, S.S.; Xie, L.H.; He, D.C.; Cheng, Z.B. Human activity played a key role in rice stripe disease epidemics: From an empirical evaluation of over a 10-year period. Agriculture 2022, 12, 1484. [Google Scholar] [CrossRef]
- Souto, A.L.; Sylvestre, M.; Tölke, E.D.; Tavares, J.F.; Barbosa-Filho, J.M.; Cebrián-Torrejón, G. Plant-derived pesticides as an alternative to pest management and sustainable agricultural production: Prospects, applications and challenges. Molecules 2021, 26, 4835. [Google Scholar] [CrossRef]
- Messelink, G.J.; Lambion, J.; Janssen, A.; van Rijn, P.C.J. Biodiversity in and around greenhouses: Benefits and potential risks for pest management. Insects 2021, 12, 933. [Google Scholar] [CrossRef]
- Rahaman, M.M.; Islam, K.S.; Jahan, M. Rice farmers’ knowledge of the risks of pesticide use in bangladesh. J. Health Pollut. 2018, 8, 181203. [Google Scholar] [CrossRef] [Green Version]
- Ndayambaje, B.; Amuguni, H.; Coffin-Schmitt, J.; Sibo, N.; Ntawubizi, M.; VanWormer, E. Pesticide application practices and knowledge among small-scale local rice growers and communities in Rwanda: A cross-sectional study. Int. J. Environ. Res. Public Health 2019, 16, 4770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haddi, K.; Turchen, L.M.; Viteri, J.L.O.; Guedes, R.N.; Pereira, E.J.; Aguiar, R.W.; Oliveira, E.E. Rethinking biorational insecticides for pest management: Unintended effects and consequences. Pest Manag. Sci. 2020, 76, 2286–2293. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.O.; Abdelbagi, A.O.; Abdalla, A.M.; Sulieman, A.I.A.E.; Ali, H.A.M.; Hamed, G.N.A.; Hur, J.H. Insecticide residues in cotton, sorghum and fallow soil from the Nuba mountains cotton corporation of South Kordofan State, Sudan. J. Health Pollut. 2021, 11, 210608. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Manoharadas, S.; Chakdar, H.; Alrefaei, A.F.; Albeshr, M.F.; Almutairi, M.H. Biological toxicity assessment of carbamate pesticides using bacterial and plant bioassays: An in-vitro approach. Chemosphere 2021, 278, 130372. [Google Scholar] [CrossRef]
- Lykogianni, M.; Bempelou, E.; Karamaouna, F.; Aliferis, K.A. Do pesticides promote or hinder sustainability in agriculture? The challenge of sustainable use of pesticides in modern agriculture. Sci. Total. Environ. 2021, 795, 148625. [Google Scholar] [CrossRef]
- Urio, N.H.; Pinda, P.G.; Ngonzi, A.J.; Muyaga, L.L.; Msugupakulya, B.J.; Finda, M.; Matanila, G.S.; Mponzi, W.; Ngowo, H.S.; Kahamba, N.F.; et al. Effects of agricultural pesticides on the susceptibility and fitness of malaria vectors in rural south-eastern Tanzania. Parasites Vectors 2022, 15, 213. [Google Scholar] [CrossRef]
- Zheng, R.R.; Zhan, J.; Liu, L.X.; Ma, Y.L.; Wang, Z.S.; Xie, L.H.; He, D.C. Factors and minimal subsidy associated with tea farmers’ willingness to adopt ecological pest management. Sustainability 2019, 11, 6190. [Google Scholar] [CrossRef] [Green Version]
- Zhan, J.; Thrall, P.H.; Burdon, J.J. Achieving sustainable plant disease management through evolutionary principles. Trends Plant Sci. 2014, 19, 570–575. [Google Scholar] [CrossRef]
- Zhan, J.; Thrall, P.H.; Papaïx, J.; Xie, L.; Burdon, J.J. Playing on a Pathogen’s Weakness: Using evolution to guide sustainable plant disease control strategies. Annu. Rev. Phytopathol. 2015, 53, 19–43. [Google Scholar] [CrossRef]
- Renard, D.; Tilman, D. National food production stabilized by crop diversity. Nature 2019, 571, 257–260. [Google Scholar] [CrossRef]
- He, D.C.; Burdon, J.; Xie, L.H.; Zhan, J. Triple bottom-line consideration of sustainable plant disease management: From economic, sociological and ecological perspectives. J. Integr. Agric. 2021, 20, 2–12. [Google Scholar] [CrossRef]
- Tamburini, G.; Bommarco, R.; Wanger, T.C.; Kremen, C.; van der Heijden, M.; Liebman, M.; Hallin, S. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 2020, 6, 1715. [Google Scholar] [CrossRef] [PubMed]
- He, D.C.; He, M.H.; Amalin, D.; Liu, W.; Alvindia, D.J.; Zhan, J. Biological control of plant diseases: An evolutionary and eco-economic consideration. Pathogens 2021, 10, 1311. [Google Scholar] [CrossRef] [PubMed]
- He, D.C.; Zhan, J.S.; Xie, L.H. Problems, challenges and future of plant disease management: From an ecological point of view. J. Integr. Agric. 2016, 154, 60345–60352. [Google Scholar] [CrossRef]
- Yang, L.N.; Pan, Z.C.; Zhu, W.; Wu, E.J.; He, D.C.; Yuan, X.; Qin, Y.Y.; Wang, Y.; Chen, R.S.; Thrall, P.H.; et al. Enhanced agricultural sustainability through within-species diversification. Nat. Sustain. 2019, 2, 46–52. [Google Scholar] [CrossRef]
- Pecenka, J.R.; Ingwell, L.L.; Foster, R.E.; Krupke, C.H.; Kaplan, I. IPM reduces insecticide applications by 95% while maintaining or enhancing crop yields through wild pollinator conservation. Proc. Natl. Acad. Sci. USA 2021, 2, 2108429118. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.Y.; Yue, J.Q.; Yan, Y.Q.; Zhang, D.Q.; Yang, C.; Zhang, S.Y.; Li, X.D.; Shao, Y.H.; Fang, B.T.; Wang, H.F. Response of soil fungal communities in diversified rotations of wheat and different cops. Huan Jing Ke Xue 2022, 43, 3338–3347. [Google Scholar] [CrossRef] [PubMed]
- Degani, O.; Gordani, A.; Becher, P.; Chen, A.; Rabinovitz, O. Crop rotation and minimal tillage selectively affect maize growth promotion under late wilt disease stress. J. Fungi 2022, 30, 586. [Google Scholar] [CrossRef]
- Zhan, J.; Mundt, C.C.; Hoffer, M.E.; McDonald, B.A. Local adaptation and effect of host genotype on the rate of pathogen evolution: An experimental test in a plant pathosystem. J. Evol. Biol. 2002, 15, 634–647. [Google Scholar] [CrossRef]
- Marshall, B.; Newton, A.C.; Zhan, J. Quantitative evolution of aggressiveness of powdery mildew in a two cultivar barley mixture. Plant Pathol. 2009, 58, 378–388. [Google Scholar] [CrossRef]
- Sommerhalder, R.J.; McDonald, B.A.; Mascher, F.; Zhan, J. Effect of hosts on competition among clones and evidence of differential selection between pathogenic and saprophytic phases in experimental populations of the wheat pathogen. BMC Evol. Biol. 2011, 11, 188. [Google Scholar] [CrossRef] [Green Version]
- Bishnoi, S.K.; He, X.; Phuke, R.M.; Kashyap, P.L.; Alakonya, A.; Chhokar, V.; Singh, R.P.; Singh, P.K. Karnal Bunt: A re-emerging old foe of wheat. Front. Plant Sci. 2020, 11, 569057. [Google Scholar] [CrossRef]
- Elek, Z.; Růžičková, J.; Ádám, R.; Bereczki, K.; Boros, G.; Kádár, F.; Kovács-Hostyánszki, A.; Somay, L.; Szalkovszki, O.; Baldi, A. Mixed effects of ecological intensification on natural pest control providers: A short-term study for biotic homogenization in winter wheat fields. PeerJ 2020, 8, e8746. [Google Scholar] [CrossRef]
- Huss, C.P.; Holmes, K.D.; Blubaugh, C.K. Benefits and risks of intercropping for crop resilience and pest management. J. Econ. Entomol. 2022, 115, 1350–1362. [Google Scholar] [CrossRef]
- Akanmu, A.O.; Babalola, O.O.; Venturi, V.; Ayilara, M.S.; Adeleke, B.S.; Amoo, A.E.; Sobowale, A.A.; Fadiji, A.E.; Glick, B.R. Plant disease management: Leveraging on the plant-microbe-soil interface in the biorational use of organic amendments. Front. Plant Sci. 2021, 12, 2376–2385. [Google Scholar] [CrossRef]
- Liu, C.L.; Xu, M.; Liu, P.L.; Mu, S.L. Analysis on the development and cultivation path of tea industry in China. Resour. Sci. 2011, 33, 2376–2385. [Google Scholar]
- Wang, Y.P.; Pan, Z.C.; Yang, L.N.; Burdon, J.J.; Friberg, H.; Sui, Q.J.; Zhan, J. Optimizing plant disease management in agricultural ecosystems through rational in-crop diversification. Front. Plant Sci. 2021, 12, 767209. [Google Scholar] [CrossRef]
- Yang, T.B.; Liu, J.; Yuan, L.Y.; Zhang, Y.; Li, D.Q.; Agnarsson, I.; Chen, J. Molecular identification of spiders preying on empoasca vitis in a tea plantation. Sci. Rep. 2017, 7, 7784. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Sun, X.L.; Jin, S.; Zhang, Z.Q.; Bian, L.; Luo, Z.X.; Chen, Z.M. Review and prospect on the research of spider ecology in Chinese tea garden. J. Tea Sci. 2012, 32, 160–166. [Google Scholar]
- Brody, H. Tea. Nature 2019, 566, S1. [Google Scholar] [CrossRef] [Green Version]
- Lin, A.H.; Gao, S.L.; Ye, N.X. Empirical study on the influencing factors of tea farmers’ construction willingness for ecological tea garden—Taking Anxi county as a case. Tea Sci. Technol. 2014, 3, 54–60. [Google Scholar]
- Occhibove, F.; Chapman, D.S.; Mastin, A.J.; Parnell, S.; Agstner, B.; Mato-Amboage, R.; Jones, G.; Dunn, M.; Pollard, C.; Robinson, J.S.; et al. Eco-epidemiological uncertainties of emerging plant diseases: The challenge of predicting xylella fastidiosa dynamics in novel Environments. Phytopathology 2020, 110, 1740–1750. [Google Scholar] [CrossRef]
- Mao, P.S.; Zhu, Y.H.; Ou, Y.X.L. Study on the changes of insect structure in different ecological environments of tea plantation. Seric. Tea Newsl. 2021, 111, 30–32. [Google Scholar]
- Li, J.L.; Miao, A.Q.; Tang, J.C. Effects of compound intercropping on arthropod community in tea plantation. Guangdong Agric. Sci. 2010, 37, 3. [Google Scholar]
- Gao, H.R.; Huang, Z.X.; Hua, M.L.I. Comparative study on the content of tea polypheonls of sixteen kinds of China tea. Food Res. Dev. 2016, 37, 33–36. [Google Scholar]
- Zhang, J.; Wang, H.M.; Jun, Y.; Wang, L.; Zhao, B.T. HPLC determination of tea polyphenols and caffeine in green tea. Phys. Test. Chem. Anal. Part B Chem. Anal. 2012, 125, 421–425. [Google Scholar]
- Schneider, M.; Pereira, É.R.; Castilho, I.N.B.; Caraseka, E.; Welz, B.; Martensb, I.B.G. A simple sample preparation procedure for the fast screening of selenium species in soil samples using alkaline extraction and hydride-generation graphite furnace atomic absorption spectrometry. Microchem. J. 2016, 125, 50–55. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Boruvka, L.; Saberioon, M.; Asa, G.; Luboš, B.; Mohammadmehdi, S.; Radim, V. Visible, near-infrared, and mid-infrared spectroscopy applications for soil assessment with emphasis on soil organic matter content and quality: State-of-the-art and key issues. Appl. Spectrosc. 2013, 67, 1349–1362. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.S.; Li, P.; Ding, Y. Comparison with determing methods of organic matter for sludge compost in different treatments. Appl. Mech. Mater. 2012, 1802, 1070–1074. [Google Scholar] [CrossRef]
- Isaac, R.A.; Kerber, J.D.; Walsh, L.M. Atomic absorption and flame photometry: Techniques and uses in soil, plant, and water analysis. Instrum. Methods Anal. Soils Plant Tissue 2015, 9, 17–37. [Google Scholar] [CrossRef]
- Wricke, G. Uber eine methode zur erfassung der okologischen streubreite in feldversucen. Z. Pflan-Zenzuchtung J. Plant Breed. 1971, 47, 92–96. [Google Scholar]
- Damodar, R.D.; Subba, R.A.; Sammi, R.K.; Takkar, P.N. Yield sustainability and phosphorus utilization in soy-bean-wheat system on vertisols in response to integrated use of manure and fertilizer phosphorus. Field Crops Res. 1999, 62, 181–190. [Google Scholar] [CrossRef]
- Zeng, X.; Lu, H.; Campbell, D.E.; Ren, H. Integrated emergy and economic evaluation of tea production chains in Anxi, China. Ecol. Eng. 2013, 60, 354–362. [Google Scholar] [CrossRef]
- Nabajyoti, D.; Kishor, G. Economic sustainability of organic cultivation of Assam tea produced by small-scale growers. Sustain. Prod. Consum. 2021, 26, 111–125. [Google Scholar]
- Burdon, J.J.; Barrett, L.G.; Yang, L.-N.; He, D.-C.; Zhan, J. Maximizing world food production through disease control. BioScience 2019, 70, 126–128. [Google Scholar] [CrossRef]
- Shamsheerul, H.; Ismet, B. Measuring environmental, economic, and social sustainability index of tea farms in rize povince, Turkey. Environ. Dev. Sustain. 2020, 22, 2545–2567. [Google Scholar]
- Liao, Y.; Zhou, X.; Zeng, L. How does tea (Camellia sinensis) produce specialized metabolites which determine its unique quality and function: A review. Crit. Rev. Food Sci. Nutr. 2021, 62, 3751–3767. [Google Scholar] [CrossRef]
- Yan, P.; Wu, L.; Wang, D.; Fu, J.; Shen, C.; Li, X.; Zhang, L.; Zhang, L.; Fan, L.; Wenyan, H. Soil acidification in Chinese tea plantations. Sci. Total. Environ. 2020, 715, 136963. [Google Scholar] [CrossRef] [PubMed]
- Gurr, G.M.; Wratten, S.D.; Landis, D.A.; You, M. Habitat management to suppress pest populations: Progress and prospects. Annu. Rev. Èntomol. 2017, 62, 91–109. [Google Scholar] [CrossRef] [PubMed]
- Chibeba, A.M.; Kyei-Boahen, S.; Guimarães, M.D.F.; Nogueira, M.A.; Hungria, M. Towards sustainable yield improvement: Field inoculation of soybean with Bradyrhizobium and co-inoculation with Azospirillum in Mozambique. Arch. Microbiol. 2020, 9, 2579–2590. [Google Scholar] [CrossRef] [PubMed]
- Chibeba, A.M.; Guimarães, M.D.F.; Brito, O.R.; Nogueira, M.A.; Araujo, R.S.; Hungria, M. Co-Inoculation of soybean with Bradyrhizobium and Azospirillum promotes early nodulation. Am. J. Plant Sci. 2015, 6, 1641–1649. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.Y.; Shi, R.Y.; Hong, Z.N.; Jiang, J.; He, X.; Xu, R.K.; Qian, W. Characteristics of crop straw-decayed products and their ameliorating effects on an acidic Ultisol. Arch. Agron. Soil Sci. 2020, 67, 1708–1721. [Google Scholar] [CrossRef]
- Ghosh, A.; Majumder, S.; Sarkar, S.; Bhattacharya, M. Insights into physicochemical assessment of shade tree litter biomass in tea plantations of Terai region. Int. J. Sustain. Agric. Res. 2022, 9, 46–54. [Google Scholar] [CrossRef]
- Zhang, F.S. Research on Integrated Management Technology of Nutrient Resources to Coordinate Crop High Yield and Environmental Protection; China Agricultural University Press: Beijing, China, 2008; Volume 1, p. 2. [Google Scholar]
- Wang, J.Y.; Pete, S.; Kristell, H.; Zou, J.W. Direct N2O emissions from global tea plantations and mitigation potential by climate-smart practices. Resour. Conserv. Recycl. 2022, 185, 106501. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Y.; Zhou, B.; Tang, H.; Chen, Y.; Qiao, X.; Tang, J. Habitat management as a safe and effective approach for improving yield and quality of tea (Camellia sinensis) leaves. Sci. Rep. 2019, 9, 433. [Google Scholar] [CrossRef]
- Berta, C.L.; Riccardo, B.; Moreno, B.J.M.; Sans, F.X.; Pujade, V.J.; Rundlöf, M.; Smith, H.G. Aphids and their natural enemies are differently affected by habitat features at local and landscape scales. Biol. Control. 2012, 63, 222–229. [Google Scholar] [CrossRef]
- Hataia, L.D.; Sen, C. An economic analysis of agricultural sustainability in Orissa. Agric. Econ. Res. Rev. 2008, 21, 273–282. [Google Scholar] [CrossRef]
- Sharma, D.; Shardendu, S. Assessing farm-level agricultural sustainability over a 60-year period in rural eastern India. Environmentalist 2011, 31, 325–337. [Google Scholar] [CrossRef]
- Weiner, J.; Du, Y.L.; Zhao, Y.M.; Li, F.M. Allometry and yield stability of cereals. Front. Plant Sci. 2021, 12, 681490. [Google Scholar] [CrossRef]
- Yang, X.; Leng, Y.; Zhou, Z.; Shang, H.; Ni, K.; Ma, L.; Yi, X.; Cai, Y.; Ji, L.; Ruan, J.; et al. Ecological management model for the improvement of soil fertility through the regulation of rare microbial taxa in tea (Camellia sinensis L.) plantation soils. J. Environ. Manag. 2022, 15, 114595. [Google Scholar] [CrossRef]
- Wyckhuys, K.A.G.; Lu, Y.; Zhou, W.; Cock, M.J.W.; Naranjo, S.E.; Fereti, A.; Williams, F.E.; Furlong, M.J. Ecological pest control fortifies agricultural growth in Asia–Pacific economies. Nat. Ecol. Evol. 2020, 4, 1522–1530. [Google Scholar] [CrossRef]
- Islam, S.; Bell, R.W.; Miah, M.A.M.; Alam, M.J. Unbalanced fertilizer use in the Eastern Gangetic Plain: The influence of government recommendations, fertilizer type, farm size and cropping patterns. PLoS ONE 2022, 17, e0272146. [Google Scholar] [CrossRef]
- Oelmann, Y.; Lange, M.; Leimer, S.; Roscher, C.; Aburto, F.; Alt, F.; Bange, N.; Berner, D.; Boch, S.; Boeddinghaus, R.S.; et al. Above and belowground biodiversity jointly tighten the pcycle in agricultural grasslands. Nat. Commun. 2021, 12, 4431. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Wu, J.X.; Qin, D.Z.; Liu, X.C.; Lu, Z.C.; Lv, L.Z.; Pan, Z.L.; Chen, H.; Li, G.W. Gene expression profiles of heat shock proteins 70 and 90 from Empoasca onukii (Hemiptera: Cicadellidae) in response to temperature stress. J. Insect Sci. 2015, 15, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.L.; Yuan, P.; Pozsgai, G.; Chen, P.; Zhu, H.; You, M.S. The impact of cover crops on the predatory mite Anystis baccarum (Acari, Anystidae) and the leafhopper pest Empoasca onukii (Hemiptera, Cicadellidae) in a tea plantation. Pest Manag. Sci. 2019, 75, 3371–3380. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, L.; Wang, W.J.; Wu, M.; Xie, W.; Wu, L.; You, Z. Soil fertility analysis of tie-guanyin tea garden at Anxi county. Chin. Agric. Sci. Bull. 2010, 26, 160–166. [Google Scholar]
- Tatsumi, C.; Taniguchi, T.; Du, S.; Yamanaka, N.; Tateno, R. Soil nitrogen cycling is determined by the competition between mycorrhiza and ammonia-oxidizing prokaryotes. Ecology 2020, 101, e02963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Querejeta, J.I.; Schlaeppi, K.; López-García, Á.; Ondoño, S.; Prieto, I.; van der Heijden, M.; Del Mar Alguacil, M. Lower relative abundance of ectomycorrhizal fungi under a warmer and drier climate is linked to enhanced soil organic matter decomposition. New Phytol. 2021, 232, 1399–1413. [Google Scholar] [CrossRef] [PubMed]
Mode | Spider | Leafhopper | The Relative Abundance of Spiders to Leafhoppers % |
---|---|---|---|
TCM | 21 ± 14 a | 119 ± 83 a | 21.13 ± 16.29 b |
TEM | 30 ± 11 b | 88 ± 75 b | 33.91 ± 19.83 a |
P | 0.000 | 0.011 | 0.000 |
Mode | pH Value | SOM % | N mg/kg | P mg/kg | K mg/kg |
---|---|---|---|---|---|
TCM | 4.45 ± 0.13 b | 2.71 ± 0.44 a | 101.81 ± 15.18 a | 26.69 ± 17.47 a | 102.79 ± 31.72 b |
TEM | 4.90 ± 0.39 a | 2.62 ± 0.69 a | 96.32 ± 9.78 b | 28.76 ± 19.44 a | 121.63 ± 37.83 a |
P | 0.000 | 0.368 | 0.017 | 0.541 | 0.004 |
Mode | Fresh Weight (g/dm2) | Dry Weigh (g/dm2) | Specific Gravity (%) | Yield (Kg/ha) | Wi2 | SYI |
---|---|---|---|---|---|---|
TCM | 38.89 ± 15.06 b | 10.66 ± 3.71 b | 28.03 ± 4.13 a | 787.81 ± 6.67 b | 953.66 ± 206.11 a | 0.32 ± 0.07 b |
TEM | 45.03 ± 14.96 a | 12.17 ± 4.11 a | 27.80 ± 5.19 a | 616.50 ± 19.45 a | 688.98 ± 353.11 a | 0.38 ± 0.04 a |
P | 0.007 | 0.010 | 0.740 | 0.000 | 0.070 | 0.043 |
Mode | Tea Polyphenols Content% | Caffeine Content % | Amino Acid Content % |
---|---|---|---|
TCM | 14.98 ± 3.64 a | 3.58 ± 0.54 a | 1.72 ± 1.03 b |
TEM | 15.21 ± 8.59 a | 3.75 ± 0.57 a | 2.50 ± 1.22 a |
P | 0.817 | 0.065 | 0.000 |
Mode | Cost USD/ha | Revenue USD/ha | Profit USD/ha | Profit Margin | Income Volatility Index | Willingness to Manage Tea Plantation |
---|---|---|---|---|---|---|
TCM | 7836 ± 248 a | 13,905 ± 115 b | 6064 ± 260 b | 0.78 ± 0.06 b | 0.2593 ± 0.44 a | 0.1852 ± 0.39 b |
TEM | 6549 ± 729 b | 14,485 ± 449 a | 8045 ± 796 a | 1.27 ± 0.23 a | 1.6296 ± 0.56 a | 0.9444 ± 0.23 a |
P | 0.000 | 0.000 | 0.000 | 0.000 | 0.140 | 0.024 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, R.; Ma, Y.; Liu, L.; Jiang, B.; Ke, R.; Guo, S.; He, D.; Zhan, J. Synergistic Improvement of Production, Economic Return and Sustainability in the Tea Industry through Ecological Pest Management. Horticulturae 2022, 8, 1155. https://doi.org/10.3390/horticulturae8121155
Zheng R, Ma Y, Liu L, Jiang B, Ke R, Guo S, He D, Zhan J. Synergistic Improvement of Production, Economic Return and Sustainability in the Tea Industry through Ecological Pest Management. Horticulturae. 2022; 8(12):1155. https://doi.org/10.3390/horticulturae8121155
Chicago/Turabian StyleZheng, Rongrong, Yanli Ma, Luxing Liu, Beiying Jiang, Runmei Ke, Sisi Guo, Dunchun He, and Jiasui Zhan. 2022. "Synergistic Improvement of Production, Economic Return and Sustainability in the Tea Industry through Ecological Pest Management" Horticulturae 8, no. 12: 1155. https://doi.org/10.3390/horticulturae8121155
APA StyleZheng, R., Ma, Y., Liu, L., Jiang, B., Ke, R., Guo, S., He, D., & Zhan, J. (2022). Synergistic Improvement of Production, Economic Return and Sustainability in the Tea Industry through Ecological Pest Management. Horticulturae, 8(12), 1155. https://doi.org/10.3390/horticulturae8121155