Cold Climate during Bud Break and Flowering and Excessive Nutrient Inputs Limit Apple Yields in Hebei Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Data Collection and Processing
2.3. Statistical Analysis
- (a)
- Scatter analysis. A series of scattering analyses were carried out on all the production constraints and actual yield of apples.
- (b)
- Determination of attainable production. The attainable yield (Yatt) refers to the highest yield obtained from the surveyed households.
- (c)
- Determination of the boundary point. The boundary point was obtained using boundary line analysis combined with the modeled relationships between yield and production factors.
- (d)
- Fitting boundary points and boundary lines.
3. Results
3.1. Apple Yield and Yield Gap
3.2. Yield-Related Climatic Factors in Apple Production
3.3. Yield-Related Soil Factors in Apple Production
3.4. Management Factors
3.4.1. Yield-Related Management Factors in Apple Production
3.4.2. Yield-Related Management Factors and Their Contributions to the Yield Gap
4. Discussion
4.1. Apple Yield Gap
4.2. Key Factors in Apple Production
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ozcatalbas, O.; Turhanogullari, Z.; Kutlar, I. The developments and situation of world apple production sector. Tarim Bilim. Derg. 2019, 2, 139–144. [Google Scholar]
- FAO (Food and Agriculture Organization). Online Statistical Database: Crop. FAOSTAT. 2017. Available online: https://www.fao.org/faostat/en/#data (accessed on 28 November 2017).
- FAO (Food and Agriculture Organization). Online Statistical Database: Crop. FAOSTAT. 2018. Available online: http://www.fao.org/faostat/en/#data (accessed on 30 December 2018).
- Wang, X.L.; Sarkar, A.; Wang, H.Y.; Zhang, F.H. Does Participation in Agricultural Value Chain Activities Influence Smallholder Fruit Grower Production Performance? A Cross-Sectional Study of Apple Farmers in Shandong, China. Horticulturae 2021, 7, 153. [Google Scholar] [CrossRef]
- Terlau, W.; Hirsch, D.; Blanke, M. Smallholder farmers as a backbone for the implementation of the Sustainable Development Goals. Sust. Dev. 2018, 27, 523–529. [Google Scholar] [CrossRef]
- Maroyi, A. Traditional homegardens and rural livelihoods in Nhema, Zimbabwe: A sustainable agroforestry system. Int. J. Sust. Dev. World 2009, 16, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ghulam, M.; Thapa, G.B. Factors affecting technical efficiency of small-scale apple farms in Balochistan Plateau, Pakistan. J. Mt. Sci. Engl. 2017, 14, 782–794. [Google Scholar]
- Mariano, L.C.; Zchonski, F.L.; Da-Silva, C.M.; Da-Silva, P.R. Genetic variability in a Brazilian apple germplasm collection with low chilling requirements. PeerJ 2019, 6, e6265. [Google Scholar] [CrossRef]
- Yuri, J.A.; Moggia, C.; Sepulveda, A.; Poblete-Echeverria, C.; Valdés-Gómez, H.; Torres, C.A. Effect of cultivar, rootstock, and growing conditions on fruit maturity and postharvest quality as part of a six-year apple trial in Chile. Sci. Hortic. 2019, 253, 70–79. [Google Scholar] [CrossRef]
- Qu, Z.J.; Zhou, G.S. Climate suitability for potential Fuji apple cultivation in China. Acta Meteorol. Sin. 2016, 74, 479–490. [Google Scholar]
- Kuang, L.X.; Nie, J.Y.; Li, Y.P.; Cheng, Y.; Shen, Y.M. Quality evaluation of ‘Fuji’ apples cultivated in different regions of China. Sci. Agric. Sin. 2020, 53, 2253–2263. [Google Scholar]
- Li, M.R.; Guo, J.P.; Xu, C.D.; Lei, Y.N.; Li, J.K. Identifying climatic factors and circulation indices related to apple yield variation in main production areas of China. Glob. Ecol. Conserv. 2018, 16, e00478. [Google Scholar] [CrossRef]
- El Yaacoubi, A.; El Jaouhari, N.; Bourioug, M.; El Youssfi, L.; Cherroud, S.; Bouabid, R.; Chaoui, M.; Abouabdillah, A. Potential vulnerability of Moroccan apple orchard to climate change–induced phenological perturbations: Effects on yields and fruit quality. Int. J. Biometeorol. 2020, 64, 377–387. [Google Scholar] [CrossRef]
- Oliveira, B.S.; Ambrosini, V.G.; Trapp, T.; Dos Santos, M.A.; Sete, P.B.; Lovato, P.E.; Loss, A.; Comin, J.J.; Lourenzi, C.R.; Couto, R.D.; et al. Nutrition, productivity and soil chemical properties in an apple orchard under weed management. Nutr. Cycl. Agroecosyst. 2016, 14, 247–258. [Google Scholar] [CrossRef]
- Wang, L.J.; Huo, X.X.; Kabir, M.S. Technical and cost efficiency of rural household apple production. China Agric. Econ. Rev. 2013, 5, 391–411. [Google Scholar] [CrossRef]
- Badiu, D.; Mitre, I., Jr.; Tripon, A.; Mitre, I.; Mitre, V. The Influence of cultivar, rootstock and culture system on growth and yield in apple. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Bull. UASVM Hortic. 2015, 72, 33–38. [Google Scholar]
- Slatnar, A.; Licznar-Malanczuk, M.; Mikulic-Petkovsek, M.; Stampar, F.; Veberic, R. Long-Term Experiment with Orchard Floor Management Systems: Influence on Apple Yield and Chemical Composition. J. Agric. Food Chem. 2014, 62, 4095–4103. [Google Scholar] [CrossRef]
- Zheng, W.; Zhao, Z.Y.; Gong, Q.L.; Zhai, B.N.; Li, Z.Y. Effects of cover crop in an apple orchard on microbial community composition, networks, and potential genes involved with degradation of crop residues in soil. Biol. Fertil. Soils 2018, 54, 743–759. [Google Scholar] [CrossRef]
- Serra, S.; Leisso, R.; Giordani, L.; Kalcsits, L.; Musacchi, S. Crop Load Influences Fruit Quality, Nutritional Balance, and Return Bloom in ‘Honeycrisp’ Apple. Hortscience 2016, 51, 236–244. [Google Scholar] [CrossRef]
- Milosevic, T.; Milosevic, N. Apple fruit quality, yield and leaf macronutrients content as affected by fertilizer treatment. J. Soil Sci. Plant Nutr. 2015, 15, 76–83. [Google Scholar]
- Tessmer, M.A.; Appezzato-Da-Gloria, B.; Antoniolli, L.R. Influence of growing sites and physicochemical features on the incidence of lenticel breakdown in ‘Gala’ and ‘Galaxy’ apples. Sci. Hortic. 2016, 205, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.L.; Yang, J.M.; Gong, Z.W. Grey correlation analysis of climate factors affecting apple yield and yield prediction in Shanxi. J. South. Agric. 2016, 47, 1146–1154. [Google Scholar]
- Zhang, D.; Wang, C.; Li, X.L.; Yang, X.S.; Zhao, L.B.; Xia, S.J. Correlation of production constraints with the yield gap of apple cropping systems in Luochuan County, China. J. Integr. Agric. 2019, 18, 1714–1725. [Google Scholar] [CrossRef]
- Xia, S.J.; Wang, C.; Zhang, D.; Yang, X.S.; He, J.Z. Analysis on the Yield Gap and Limiting Factors of Apples in Luochuan County. J. Shanxi Agric. Sci. 2018, 46, 2077–2081. [Google Scholar]
- Li, M.X.; Du, S.N.; Bai, G.S.; Fang, J.L.; Liu, J. Problems and Solutions of Apple Production in Weibei Loess Plateau. Res. Soil Water Conserv. 2010, 17, 252–257. [Google Scholar]
- Lu, S.C.; Chen, Q.; Zhang, F.S.; Jia, W.Z. Analysis of nitrogen input and soil nitrogen load in orchards of Hebei province. J. Plant Nutr. Fertil. 2008, 5, 858–865. [Google Scholar]
- Fu, H.R.; Ma, Q.X.; Ma, Z.B.; Hu, Y.Z.; Liu, F.; Chen, K.J.; Pan, W.K.; Tang, S.; Zhang, X.; Wu, L.H. Quantifying key internal and external yield-limiting factors for Chinese Pear in smallholder dominant areas. Hortscience 2021, 56, 7. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Analysis in Agricultural Chemistry; Chinese Agriculture Publishing House: Beijing, China, 2000. [Google Scholar]
- Webb, R.A. Use of the boundary line in the analysis of biological data. J. Hortic. Sci. Biotech. 1972, 47, 309–319. [Google Scholar] [CrossRef]
- Fermont, A.M.; van Asten, P.J.A.; Tittonell, P.; van Wijk, M.T.; Giller, K.E. Closing the cassava yield gap: An analysis from smallholder farms in East Africa. Field Crop Res. 2009, 112, 24–36. [Google Scholar] [CrossRef]
- Wairegi, L.W.I.; van Asten, P.J.A.; Tenywa, M.M.; Bekunda, M.A. Abiotic constraints override biotic constraints in East African highland banana systems. Field Crop Res. 2010, 117, 146–153. [Google Scholar] [CrossRef]
- Schnug, E.; Heym, J.; Achwan, F. Establishing critical values for soil and plant analysis by means of the boundary line development system (BOLIDES). Commun. Soil Sci. Plant Anal. 1996, 27, 2739–2748. [Google Scholar] [CrossRef]
- Von Liebig, J. Chemistry in Its Application to Agriculture and Physiology, 2nd ed.; Taylor and Walton: London, UK, 1840. [Google Scholar]
- Pu, J.Y.; Yao, X.Y.; Yao, X.H.; Xu, Y.P.; Wang, W.T. Impacts of climate warming on phonological period and growth of apple tree in Loess Plateau of Gansu province. Chin. J. Agrometeorol. 2008, 29, 181–186. [Google Scholar]
- Fujisawa, M.; Kobayashi, K. Climate change adaptation practices of apple growers in Nagano, Japan. Mitig. Adapt. Strat. Glob. Change 2011, 16, 865–877. [Google Scholar] [CrossRef]
- Pramanick, K.K.; Kishore, D.K.; Poonam, P.K.; Shukla, A.K.; Santosh, W.; Kumar, J.; Jindal, K.K.; Girish, S. Role of changing climate on chilling unit accumulation and yield for apple (Malus * domestica Borkh) cultivation at Shimla, Himachal Pradesh, India. Int. J. Trop. Agric. 2015, 33, 1039–1044. [Google Scholar]
- Du, S.Q.; Kang, S.Z.; Li, F.S.; Du, T.S. Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China. Agric. Water Manag. 2017, 179, 184–192. [Google Scholar] [CrossRef]
- Branco, M.S.C.; Nava, G.; Ernani, P.R. Initial growth, production, and quality of fruits of apple trees as affected by irrigation and fertirrigation. Rev. Ciênc. Agrovet. 2016, 15, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Li, M.R.; Guo, J.P.; He, J.Q.; Xu, C.D.; Li, J.K.; Mi, C.R.; Tao, S.L. Possible impact of climate change on apple yield in Northwest China. Theor. Appl. Climatol. 2020, 139, 191–203. [Google Scholar] [CrossRef] [Green Version]
- Taglienti, A.; Dell’Abate, M.T.; Ciampa, A.; Tomassoli, L.; Albanese, G.; Sironi, L.; Tiberini, A. Study on ultra-structural effects caused by Onion yellow dwarf virus infection in ‘Rossa di Tropea’ onion bulb by means of magnetic resonance imaging. Sci. Hortic. 2020, 271, 109486. [Google Scholar] [CrossRef]
- Wei, L.X.; Zhang, L.Y.; Li, Z. A preliminary study on the relationship between the apple first flowering stage and temperature. Agric. Tech. 2018, 38, 238. [Google Scholar]
- Zhang, Q.; Li, M.J.; Zhou, B.B.; Li, X.L.; Sun, J.; Zhang, J.K.; Wei, Q.P. Multivariate analysis of relationship between soil nutrient factors and fruit quality characteristic of ‘Fuji’ apple in two dominant production regions of China. Chin. J. Appl. Ecol. 2017, 28, 105–114, (in Chinese with English abstract). [Google Scholar]
- Park, J.M.; Lee, I.B.; Kwon, J.K.; Jung, H.W. Soil Chemical Properties and Nutrition Composition of Leaf of ‘Fuji’/M.26 Tree in Apple Orchard. Korean J. Hortic. Sci. 2006, 24, 347–353. [Google Scholar]
- Voroney, P.; Kessel, C.; Gardner, J.; Martin, H. Soil fertility survey of organic apple orchards in southern Ontario. Acta Hortic. 2007, 737, 79–85. [Google Scholar] [CrossRef]
- Fallahi, E.; Fallahi, B.; Neilsen, G.H.; Neilsen, D.; Peryea, F.J. Effects of mineral nutrition on fruit quality and nutritional disorders in apples. Acta Hortic. 2010, 868, 49–60. [Google Scholar] [CrossRef]
- Tagliavini, M.; Millard, P.; Quartieri, M. Storage of foliar-absorbed nitrogen and remobilization for spring growth in young nectarine (Prunus persica var. nectarina) trees. Tree Physiol. 1998, 18, 203–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, S.H. Soil Quality Characteristics of Apple Orchards in Jiaodong Area and Their Relationship with Apple Yield and Quality. Master’s Thesis, Shandong Agricultural University, Shandong, China, 2021. [Google Scholar]
- Bai, Z.H.; Li, H.G.; Yang, X.Y.; Zhou, B.K.; Shi, X.J.; Wang, B.R.; Li, D.C.; Shen, J.B.; Chen, Q.; Qin, W.; et al. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant Soil 2013, 372, 27–37. [Google Scholar] [CrossRef]
- Cao, N.; Chen, X.P.; Zhang, F.S.; Qu, D. Prediction of phosphate fertilizer demand in China based on change in soil phosphate fertility. Acta Pedol. Sin. 2007, 44, 536–543. [Google Scholar]
- Li, H.K.; Mei, L.X.; Gao, H. Effect of Grass Planting on the Microclimate of Apple Orchard in the Dryland Area of Loess Plateau. Acta Agrestia Sin. 2009, 17, 615–620. [Google Scholar]
- Rather, G.H.; Banday, F.A.; Ganai, N.A.; Baba, A.M.; Bhat, J.A.; Bisati, I.A. Combined influence of pruning regimes and fertilizer application on vegetative growth and photosynthetic efficiency of apple cv Red Delicious. Environ. Ecol. 2009, 27, 134–138. [Google Scholar]
- Wang, Q.; Liu, C.H.; Huang, D.; Dong, Q.L.; Li, P.M.; van Nocker, S.; Ma, F.W. Physiological evaluation of nitrogen use efficiency of different apple cultivars under various nitrogen and water supply conditions. J. Integr. Agric. 2020, 19, 709–720. [Google Scholar] [CrossRef]
- Wojcik, P.; Wojcik, M. Response of mature phosphorus-deficient apple trees to phosphorus fertilization and liming. J. Plant Nutr. 2007, 30, 1623–1637. [Google Scholar] [CrossRef]
- Jiang, Y.M.; Zhang, H.Y.; Zhang, F.S. Theory and Practice of Nutrient Resources Comprehensive Management of Deciduous Fruit Trees in North China, 1st ed.; China Agricultural University Press: Beijing, China, 2007; pp. 98–109. [Google Scholar]
- Wang, F.L.; Zhou, L.; Li, H.N.; Men, Y.G.; Ge, S.F.; Wei, S.C.; Jiang, Y.M. Effect of N, P ratios on the growth and absorption, distribution and utilization of 15N-urea of Fuji apple saplings. J. Plant Nutr. Fertil. 2013, 19, 1102–1108. [Google Scholar]
- Bacha, N.M.A.; Kader, A.A.; Jacobsen, H.J.; Hassan, F. Production of transgenic apple (Malus Domestica Borkh.) for improvement of fungal resistance. Acta Hortic. 2012, 961, 195–203. [Google Scholar] [CrossRef]
- Verma, S.C.; Thapa, C.D. Present status of major insect-pests and diseases of apple in Chamba district and technological interventions by Krishi Vigyan Kendra, Chamba. Acta Hortic. 2005, 696, 415–418. [Google Scholar] [CrossRef]
- Doll, U.; Mosqueira, D.; Mosqueira, J.; González, B.; Vogel, H. Pruning maqui (aristotelia chilensis (molina) stuntz) to optimize fruit production. J. Appl. Res. Med. Aromat. Plants 2016, 6, 10–14. [Google Scholar] [CrossRef]
Survey Time | Tree Age Distribution of Sampled Orchards (no.) | Total Number of Samples | ||
---|---|---|---|---|
5–10 a | 11–15 a | 16–20 a | ||
2016 | 19 | 22 | 4 | 45 |
2017 | 19 | 11 | 15 | 45 |
2018 | 17 | 7 | 21 | 45 |
2016–2018 | 55 | 40 | 40 | 135 |
Year | T-Mean (°C) | T-Max (°C) | T-Min (°C) | Rainfall (mm) | Hours of Sunshine (h) |
---|---|---|---|---|---|
2016 | 11.9 | 17.6 | 7.3 | 662.2 | 2511.4 |
2017 | 12.5 | 18.0 | 7.7 | 510.6 | 2431.9 |
2018 | 11.9 | 17.8 | 7.0 | 606.5 | 2447.7 |
Key Growth Period | Year | T-Mean (°C) | T-Max (°C) | T-Min (°C) | Rainfall (mm) | Hours of Sunshine (h) |
---|---|---|---|---|---|---|
Embryonic stage | 2016 | 6.6 | 14.0 | 0.8 | 3.8 | 259.9 |
2017 | 6.0 | 12.9 | 0.4 | 3.4 | 221.6 | |
2018 | 5.7 | 12.6 | 0.3 | 2.7 | 190.7 | |
Flowering period | 2016 | 16.9 | 24.0 | 10.9 | 39.7 | 552.2 |
2017 | 17.4 | 24.0 | 11.0 | 19.3 | 580.7 | |
2018 | 16.9 | 23.5 | 11.1 | 44.9 | 486.0 | |
Fruit expansion period | 2016 | 24.8 | 29.9 | 20.5 | 511.2 | 691.2 |
2017 | 25.2 | 30.4 | 20.8 | 392.3 | 630.5 | |
2018 | 25.8 | 30.5 | 21.9 | 536.2 | 587.3 |
Ntot (g kg−1) | Pav (mg kg−1) | Kav (mg kg−1) | pH | SOM (%) | |
---|---|---|---|---|---|
Soil nutrient | 1.1 ± 0.3 | 135.5 ± 70.3 | 194.9 ± 81.2 | 6.7 ± 0.6 | 1.4 ± 0.9 |
Factors | 2016 | 2017 | 2018 |
---|---|---|---|
Variety | Fuji | Fuji | Fuji |
Base fertilizer N (kg ha−1) | 291.0 ± 221.7 a | 261.3 ± 201.4 ab | 237.5 ± 178.1 b |
Base fertilizer P2O5 (kg ha−1) | 214.6 ± 118.9 a | 201.3 ± 115.4 ab | 187.4 ± 97.44 b |
Base fertilizer K2O (kg ha−1) | 215.9 ± 125.9 a | 188.3 ± 103.0 b | 174.7 ± 81.2 b |
Total fertilizer N (kg ha−1) | 705.7 ± 268.9 a | 516.4 ± 186.5 b | 649.4 ± 275.6 a |
Total fertilizer P2O5 (kg ha−1) | 561.0 ± 261.9 a | 437.0 ± 159.7 b | 459.1 ± 195.1 b |
Total fertilizer K2O (kg ha−1) | 698.9 ± 250.3 a | 543.2 ± 210.2 b | 580.9 ± 198.5 b |
N/P (ratio) | 1.3 ± 0.3 ab | 1.2 ± 0.3 b | 1.4 ± 0.4 a |
N/K (ratio) | 1.0 ± 0.3 ab | 1.0 ± 0.2 b | 1.1 ± 0.3 a |
P/K (ratio) | 0.9 ± 0.3 a | 0.8 ± 0.2 a | 0.8 ± 0.2 a |
Ratio of base N to topdressing (ratio) | 0.8 ± 1.3 a | 1.1 ± 1.2 a | 0.8 ± 1.2 a |
Ratio of base P2O5 to topdressing (ratio) | 0.8 ± 0.9 a | 1.0 ± 0.8 a | 0.9 ± 0.8 a |
Ratio of base K2O to topdressing (ratio) | 0.5 ± 0.4 a | 0.6 ± 0.5 a | 0.5 ± 0.4 a |
Irrigation times (no.) | 5.2 ± 1.3 b | 5.9 ± 1.7 a | 5.4 ± 1.7 b |
Number of pesticide sprays (no.) | 10.0 ± 2.2 b | 11.1 ± 1.5 a | 10.6 ± 1.1 ab |
Pruning times (no.) | 2.3 ± 1.1 b | 2.8 ± 1.0 b | 5.1 ± 1.6 a |
Diseases and insect pests (no.) | 2.2 ± 1.7 a | 0.8 ± 1.3 b | 0.9 ± 0.7 b |
Tree age (years) | 11.1 ± 4.3 b | 12.1 ± 4.3 ab | 13.1 ± 4.3 a |
Density (plant ha−1) | 609.3 ± 73.4 a | 609.3 ± 73.4 a | 609.3 ± 73.4 a |
Number of bags per tree (no.) | 259.2 ± 146.6 b | 378.9 ± 178.0 a | 276.0 ± 149.7 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Z.; Zheng, C.; Zhao, S.; Feyissa, T.; Merga, T.; Jiang, Y.; Zhang, W. Cold Climate during Bud Break and Flowering and Excessive Nutrient Inputs Limit Apple Yields in Hebei Province, China. Horticulturae 2022, 8, 1131. https://doi.org/10.3390/horticulturae8121131
Duan Z, Zheng C, Zhao S, Feyissa T, Merga T, Jiang Y, Zhang W. Cold Climate during Bud Break and Flowering and Excessive Nutrient Inputs Limit Apple Yields in Hebei Province, China. Horticulturae. 2022; 8(12):1131. https://doi.org/10.3390/horticulturae8121131
Chicago/Turabian StyleDuan, Zhiping, Chengjuan Zheng, Shuaixiang Zhao, Tesema Feyissa, Tefera Merga, Yuanmao Jiang, and Weifeng Zhang. 2022. "Cold Climate during Bud Break and Flowering and Excessive Nutrient Inputs Limit Apple Yields in Hebei Province, China" Horticulturae 8, no. 12: 1131. https://doi.org/10.3390/horticulturae8121131
APA StyleDuan, Z., Zheng, C., Zhao, S., Feyissa, T., Merga, T., Jiang, Y., & Zhang, W. (2022). Cold Climate during Bud Break and Flowering and Excessive Nutrient Inputs Limit Apple Yields in Hebei Province, China. Horticulturae, 8(12), 1131. https://doi.org/10.3390/horticulturae8121131