Machine Learning Deciphers Genotype and Ammonium as Key Factors for the Micropropagation of Bryophyllum sp. Medicinal Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and In Vitro Culture Conditions
2.2. Experimental Design and Data Acquisition
2.3. Modeling Tools
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García-Pérez, P.; Lozano-Milo, E.; Landin, M.; Gallego, P.P. From ethnomedicine to plant biotechnology and machine learning: The valorization of the medicinal plant Bryophyllum sp. Pharmaceuticals 2020, 13, 444. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Milo, E.; García-Pérez, P.; Gallego, P.P. Narrative review of production of antioxidants and anticancer compounds from Bryophyllum spp. (Kalanchoe) using plant cell tissue culture. Longhua Chin. Med. 2020, 3, 18. [Google Scholar] [CrossRef]
- García-Pérez, P.; Barreal, M.E.; Rojo-De Dios, L.; Cameselle-Teijeiro, J.F.; Gallego, P.P. Bioactive Natural Products from the Genus Kalanchoe as Cancer Chemopreventive Agents: A review. In Studies in Natural Products Chemistry; Rahman, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 61, pp. 49–84. ISBN 9780444641830. [Google Scholar]
- Arteta, T.A.; Hameg, R.; Landin, M.; Gallego, P.P.; Barreal, M.E. Artificial neural networks elucidated the essential role of mineral nutrients versus vitamins and plant growth regulators in achieving healthy micropropagated plants. Plants 2022, 11, 1284. [Google Scholar] [CrossRef]
- García-Pérez, P.; Ayuso, M.; Lozano-Milo, E.; Pereira, C.; Dias, M.I.; Ivanov, M.; Calhelha, R.C.; Soković, M.; Ferreira, I.C.F.R.; Barros, L.; et al. Phenolic profiling and in vitro bioactivities of three medicinal Bryophyllum plants. Ind. Crops Prod. 2021, 162, 113241. [Google Scholar] [CrossRef]
- Nezami-Alanagh, E.; Garoosi, G.A.; Landín, M.; Gallego, P.P. Combining DOE with neurofuzzy logic for healthy mineral nutrition of pistachio rootstocks in vitro culture. Front. Plant Sci. 2018, 871, 1474. [Google Scholar] [CrossRef] [PubMed]
- Hameg, R.; Arteta, T.A.; Landin, M.; Gallego, P.P.; Barreal, M.E. Modeling and optimizing culture medium mineral composition for in vitro propagation of Actinidia arguta. Front. Plant Sci. 2020, 11, 554905. [Google Scholar] [CrossRef]
- Nezami-Alanagh, E.; Garoosi, G.A.; Landín, M.; Gallego, P.P. Computer-based tools provide new insight into the key factors that cause physiological disorders of pistachio rootstocks cultured in vitro. Sci. Rep. 2019, 9, 9740. [Google Scholar] [CrossRef] [Green Version]
- Ayuso, M.; Ramil-Rego, P.; Landin, M.; Gallego, P.P.; Barreal, M.E. Computer-assisted recovery of threatened plants: Keys for breaking seed dormancy of Eryngium Viviparum. Front. Plant Sci. 2017, 8, 2092. [Google Scholar] [CrossRef] [Green Version]
- García-Pérez, P.; Lozano-Milo, E.; Landín, M.; Gallego, P.P. Machine learning technology reveals the concealed interactions of phytohormones on medicinal plant in vitro organogenesis. Biomolecules 2020, 10, 746. [Google Scholar] [CrossRef]
- García-Pérez, P.; Lozano-Milo, E.; Landín, M.; Gallego, P.P. Combining medicinal plant in vitro culture with machine learning technologies for maximizing the production of phenolic compounds. Antioxidants 2020, 9, 210. [Google Scholar] [CrossRef]
- García-Pérez, P.; Zhang, L.; Miras-Moreno, B.; Lozano-Milo, E.; Landin, M.; Lucini, L.; Gallego, P.P. The combination of untargeted metabolomics and machine learning predicts the biosynthesis of phenolic compounds in Bryophyllum medicinal plants (genus Kalanchoe). Plants 2021, 10, 2430. [Google Scholar] [CrossRef] [PubMed]
- García-Pérez, P.; Lozano-Milo, E.; Zhang, L.; Miras-Moreno, B.; Landin, M.; Lucini, L.; Gallego, P.P. Neurofuzzy logic predicts a fine-tuning metabolic reprogramming on elicited Bryophyllum PCSCs guided by salicylic acid. Front. Plant Sci. 2022, 13, 991557. [Google Scholar] [CrossRef] [PubMed]
- Gago, J.; Martínez-Núñez, L.; Landín, M.; Gallego, P.P. Artificial neural networks as an alternative to the traditional statistical methodology in plant research. J. Plant Physiol. 2010, 167, 23–27. [Google Scholar] [CrossRef]
- García-Pérez, P.; Losada-Barreiro, S.; Gallego, P.P.; Bravo-Díaz, C. Adsorption of gallic acid, propyl gallate and polyphenols from Bryophyllum extracts on activated carbon. Sci. Rep. 2019, 9, 14830. [Google Scholar] [CrossRef] [Green Version]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Niedz, R.P.; Evens, T.J. A solution to the problem of ion. Nat. Methods 2006, 3, 34945. [Google Scholar] [CrossRef]
- Colbourn, E.; Rowe, R. Encyclopaedia of Pharmaceutical Technology; Marcel Dekker: New York, NY, USA, 2005. [Google Scholar]
- Landin, M.; Rowe, R.C. Artificial Neural Networks Technology to Model, Understand, and Optimize Drug Formulations. In Formulation Tools for Pharmaceutical Development; Woodhead Publishing Limited: Cambridge, UK, 2013; pp. 7–37. ISBN 9781907568992. [Google Scholar]
- Shao, Q.; Rowe, R.C.; York, P. Investigation of an artificial intelligence technology-model trees. novel applications for an immediate release tablet formulation database. Eur. J. Pharm. Sci. 2007, 31, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Kavli, T.; Weyer, E. ASMOD (Adaptive Spline Modelling of Observation Data): Some Theoretical and Experimental Results. In Proceedings of the IEE Colloquium on Advances in Neural Networks for Control and Systems, Berlin, Germany, 25–27 May 1994; pp. 3/1–3/7. [Google Scholar]
- Nezami-Alanagh, E.; Garoosi, G.A.; Maleki, S.; Landín, M.; Gallego, P.P. Predicting optimal in vitro culture medium for Pistacia vera micropropagation using neural networks models. Plant Cell. Tissue Organ Cult. 2017, 129, 19–33. [Google Scholar] [CrossRef]
- Vapnik, V. Principles of risk minimization for learning theory. Adv. Neural Inf. Process. Syst. 1992, 4, 831–838. [Google Scholar]
- Gallego, P.P.; Gago, J.; Landín, M. Artificial Neural Networks Technology to Model and Predict Plant Biology Process. In Methodological Advances and Biomedical Applications; Suzuki, K., Ed.; IntechOpen: Rijeka, Croatia, 2011. [Google Scholar]
- Malpas, K.R.; Jones, M.A. Natural variation of circadian rhythms in Kalanchoe species. Haseltonia 2016, 22, 35–42. [Google Scholar] [CrossRef]
- Yang, X.; Hu, R.; Yin, H.; Jenkins, J.; Shu, S.; Tang, H.; Liu, D.; Weighill, D.A.; Cheol Yim, W.; Ha, J.; et al. The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism. Nat. Commun. 2017, 8, 1899. [Google Scholar] [CrossRef] [PubMed]
- Weckx, S.; Inzé, D.; Maene, L. Tissue culture of oil palm: Finding the balance between mass propagation and somaclonal variation. Front. Plant Sci. 2019, 10, 722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Pérez, P.; Losada-Barreiro, S.; Gallego, P.P.; Bravo-Díaz, C. Cyclodextrin-elicited Bryophyllum suspension cultured cells: Enhancement of the production of bioactive compounds. Int. J. Mol. Sci. 2019, 20, 5180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Pérez, P.; Losada-Barreiro, S.; Bravo-Díaz, C.; Gallego, P.P. Exploring the use of Bryophyllum as natural source of bioactive compounds with antioxidant activity to prevent lipid oxidation of fish oil-in-water emulsions. Plants 2020, 9, 1012. [Google Scholar] [CrossRef]
- Chernetskyy, M.A. The role of morpho-anatomical traits of the leaves in the taxonomy of Kalanchoideae Berg. subfamily (Crassulaceae DC.). Mod. Phytomorphology 2012, 1, 15–18. [Google Scholar]
- Chernetskyy, M.; Woźniak, A.; Skalska-Kamińska, A.; Żuraw, B.; Blicharska, E.; Rejdak, R.; Donica, H.; Weryszko-Chmielewska, E. Structure of leaves and phenolic acids in Kalanchoë daigremontiana Raym.-Hamet & H. Perrier. Acta Sci. Pol. Hortorum Cultus 2018, 17, 137–155. [Google Scholar] [CrossRef]
- Gorelick, R. Why vegetative propagation of leaf cuttings is possible in succulent and semi-succulent plants. Haseltonia 2015, 20, 51–57. [Google Scholar] [CrossRef]
- Guerra-García, A.; Barrales-Alcalá, D.; Argueta-Guzmán, M.; Cruz, A.; Mandujano, M.C.; Arévalo-Ramírez, J.A.; Milligan, B.G.; Golubov, J. Biomass allocation, plantlet survival and chemical control of the invasive chandelier plant (Kalanchoe delagoensis) (Crassulaceae). Invasive Plant Sci. Manag. 2018, 11, 33–39. [Google Scholar] [CrossRef]
- Garcês, H.M.P.; Champagne, C.E.M.; Townsley, B.T.; Park, S.; Malhó, R.; Pedroso, M.C.; Harada, J.J.; Sinha, N.R. Evolution of asexual reproduction in leaves of the genus Kalanchoë. Proc. Natl. Acad. Sci. USA 2007, 104, 15578–15583. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zhu, C.; Zeng, H.M. Key KdSOC1 Gene expression profiles during plantlet morphogenesis under hormone, photoperiod, and drought treatments. Genet. Mol. Res. 2016, 15, 1–14. [Google Scholar] [CrossRef]
- Guo, J.; Liu, H.; He, Y.; Cui, X.; Du, X.; Zhu, J. Origination of asexual plantlets in three species of Crassulaceae. Protoplasma 2015, 252, 591–603. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, S.; Sawhney, S. Correlation of epiphyllous bud differentiation with foliar senescence in crassulacean succulent Kalanchoe pinnata as revealed by thidiazuron and ethrel application. J. Plant Physiol. 2006, 163, 717–722. [Google Scholar] [CrossRef] [PubMed]
- George, E.F.; Hall, M.A.; Klerk, G.J. Adventitious Regeneration. In Plant Propagation by Tissue Culture, 3rd ed.; George, E.F., Hall, M.A., De Klerk, G.J., Eds.; Springer: Basingstoke, UK, 2008; Volume 1, pp. 355–401. ISBN 9781402050053. [Google Scholar]
- Nezami-Alanagh, E.; Garoosi, G.; Haddad, R.; Maleki, S.; Landín, M.; Gallego, P.P. Design of tissue culture media for efficient Prunus rootstock micropropagation using artificial intelligence models. Plant Cell. Tissue Organ Cult. 2014, 117, 349–359. [Google Scholar] [CrossRef]
- Groll, J.; Mycock, D.J.; Gray, V.M. Effect of medium salt concentration on differentiation and maturation of somatic embryos of Cassava (Manihot esculenta Crantz). Ann. Bot. 2002, 89, 645–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, P.N.; Cushman, J.C. Exploring the relationship between crassulacean acid metabolism (CAM) and mineral nutrition with a special focus on nitrogen. Int. J. Mol. Sci. 2019, 20, 4363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado-Baquerizo, M.; Maestre, F.T.; Gallardo, A.; Bowker, M.A.; Wallenstein, M.D.; Quero, J.L.; Ochoa, V.; Gozalo, B.; García-Gómez, M.; Soliveres, S.; et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 2013, 502, 672–676. [Google Scholar] [CrossRef]
- Pereira, P.N.; Smith, J.A.C.; Mercier, H. Nitrate enhancement of CAM activity in two Kalanchoë species is associated with increased vacuolar proton transport capacity. Physiol. Plant. 2017, 160, 361–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luttge, U.; Pfeifer, T.; Fischer-Schliebs, E.; Ratajczak, R. The role of vacuolar malate-transport capacity in crassulacean acid metabolism and nitrate nutrition. Higher malate-transport capacity in ice plant after crassulacean acid metabolism-induction and in tobacco under nitrate nutrition. Plant Physiol. 2000, 124, 1335–1347. [Google Scholar] [CrossRef] [Green Version]
- Britto, D.T.; Siddiqi, M.Y.; Glass, A.D.M.; Kronzucker, H.J. Futile transmembrane NH4+ cycling: A cellular hypothesis to explain ammonium toxicity in plants. Proc. Natl. Acad. Sci. USA 2001, 98, 4255–4258. [Google Scholar] [CrossRef] [Green Version]
- Herrera, I.; Ferrer-Paris, J.R.; Benzo, D.; Flores, S.; García, B.; Nassar, J.M. An invasive succulent plant (Kalanchoe daigremontiana) influences soil carbon and nitrogen mineralization in a neotropical semiarid zone. Pedosphere 2018, 28, 632–643. [Google Scholar] [CrossRef]
- Phillips, G.C.; Garda, M. Plant tissue culture media and practices: An overview. Vitr. Cell. Dev. Biol.-Plant 2019, 55, 242–257. [Google Scholar] [CrossRef]
Inputs | Outputs | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treat. | Genot. | Subc. | NO3− | NH4+ | K+ | Cl− | Ca2+ | Mg2+ | HPO42− | SO42− | SL (cm) | RL (cm) | PN | LN | FW (g) |
1 | BH | ONE | 39.4 | 20.6 | 20.0 | 5.99 | 2.99 | 1.50 | 1.25 | 1.76 | 7.1 ± 0.4 ab | 5.4 ± 0.2 bcde | 28.8 ± 4.9 abc | 12.7 ± 0.5 cde | 2.3 ± 0.2 abc |
2 | BH | TWO | 39.4 | 20.6 | 20.0 | 5.99 | 2.99 | 1.50 | 1.25 | 1.76 | 7.1 ± 0.3 ab | 5.2 ± 0.2 bcde | 27.5 ± 2.1 bc | 13.3 ± 0.3 cde | 2.7 ± 0.1 a |
3 | BH | THREE | 39.4 | 20.6 | 20.0 | 5.99 | 2.99 | 1.50 | 1.25 | 1.76 | 4.6 ± 0.2 defgh | 3.3 ± 0.3 de | 15.3 ± 1.7 cd | 10.3 ± 0.2 efgh | 1.8 ± 0.1 bcdef |
4 | BH | FOUR | 39.4 | 20.6 | 20.0 | 5.99 | 2.99 | 1.50 | 1.25 | 1.76 | 5.4 ± 0.4 cdefg | 4.2 ± 0.4 cde | 13.5 ± 2.3 de | 10.5 ± 0.4 efg | 2.0 ± 0.2 abcd |
5 | BH | ONE | 19.7 | 10.3 | 10.0 | 2.99 | 1.50 | 0.75 | 0.62 | 1.01 | 6.9 ± 0.4 abc | 4.6 ± 0.3 cde | 38.4 ± 3.8 ab | 12.7 ± 0.3 cde | 2.1 ± 0.2 abcde |
6 | BH | TWO | 19.7 | 10.3 | 10.0 | 2.99 | 1.50 | 0.75 | 0.62 | 1.01 | 8.0 ± 0.4 a | 5.4 ± 0.5 bcde | 42.4 ± 3.8 a | 13.6 ± 0.6 cde | 2.5 ± 0.2 ab |
7 | BH | THREE | 19.7 | 10.3 | 10.0 | 2.99 | 1.50 | 0.75 | 0.62 | 1.01 | 5.8 ± 0.2 bcde | 5.3 ± 0.3 bcde | 33.2 ± 1.7 ab | 12.0 ± 0.3 cdef | 2.1 ±0.1 abcde |
8 | BH | FOUR | 19.7 | 10.3 | 10.0 | 2.99 | 1.50 | 0.75 | 0.62 | 1.01 | 5.9 ± 0.3 bcde | 5.9 ± 0.3 bcde | 32.1 ± 3.5 ab | 11.8 ± 0.2 def | 2.4 ± 0.2 abc |
9 | BD | ONE | 39.4 | 20.6 | 20.0 | 5.99 | 2.99 | 1.50 | 1.25 | 1.76 | 3.4 ± 0.2 h | 4.2 ± 0.3 cde | 8.7 ± 1.6 de | 7.3 ± 0.3 gh | 0.9 ± 0.1 h |
10 | BD | TWO | 39.4 | 20.6 | 20.0 | 5.99 | 2.99 | 1.50 | 1.25 | 1.76 | 3.6 ± 0.2 h | 5.0 ± 0.4 cde | 10.1 ± 1.0 de | 7.7 ± 0.2 gh | 1.0 ± 0.1 gh |
11 | BD | THREE | 39.4 | 20.6 | 20.0 | 5.99 | 2.99 | 1.50 | 1.25 | 1.76 | 3.3 ± 0.2 h | 6.4 ± 0.5 bc | 7.2 ± 1.2 de | 7.2 ± 0.3 gh | 1.0 ± 0.1 gh |
12 | BD | FOUR | 39.4 | 20.6 | 20.0 | 5.99 | 2.99 | 1.50 | 1.25 | 1.76 | 3.2 ± 0.1 h | 5.9 ± 0.5 bcd | 7.1 ± 1.0 de | 7.3 ± 0.4 gh | 1.0 ± 0.1 gh |
13 | BD | ONE | 19.7 | 10.3 | 10.0 | 2.99 | 1.50 | 0.75 | 0.62 | 1.01 | 3.9 ± 0.2 fgh | 9.2 ± 0.7 a | 32.5 ± 3.3 ab | 7.3 ± 0.3 gh | 1.3 ± 0.1 efgh |
14 | BD | TWO | 19.7 | 10.3 | 10.0 | 2.99 | 1.50 | 0.75 | 0.62 | 1.01 | 4.0 ± 0.2 fgh | 6.1 ± 0.8 bc | 25.7 ± 3.1 bcd | 6.8 ± 0.3 h | 1.1 ± 0.1 gh |
15 | BD | THREE | 19.7 | 10.3 | 10.0 | 2.99 | 1.50 | 0.75 | 0.62 | 1.01 | 3.1 ± 0.3 h | 8.2 ± 1.0 ab | 33.3 ± 4.5 ab | 7.3 ± 0.4 gh | 1.1 ± 0.1 fgh |
16 | BD | FOUR | 19.7 | 10.3 | 10.0 | 2.99 | 1.50 | 0.75 | 0.62 | 1.01 | 3.6 ± 0.2 gh | 9.6 ± 0.4 a | 30.6 ± 2.1 ab | 8.0 ± 0.0 fgh | 1.3 ± 0.1 defgh |
17 | BT | ONE | 39.4 | 20.6 | 20.0 | 5.99 | 2.99 | 1.50 | 1.25 | 1.76 | 6.8 ± 0.6 abc | 5.4 ± 0.7 bcde | 1.8 ± 1.1 de | 19.5 ± 1.6 ab | 1.6 ± 0.2 cdefgh |
18 | BT | TWO | 39.4 | 20.6 | 20.0 | 5.99 | 2.99 | 1.50 | 1.25 | 1.76 | 6.6 ± 0.4 abc | 5.9 ± 0.7 bcd | 2.1 ± 0.6 de | 21.0 ± 1.2 a | 1.7 ± 0.2 cdefg |
19 | BT | THREE | 39.4 | 20.6 | 20.0 | 5.99 | 2.99 | 1.50 | 1.25 | 1.76 | 3.8 ± 0.1 gh | 3.0 ± 0.3 e | 0.4 ± 0.3 e | 14.8 ± 0.5 cd | 0.9 ± 0.1 h |
20 | BT | FOUR | 39.4 | 20.6 | 20.0 | 5.99 | 2.99 | 1.50 | 1.25 | 1.76 | 4.2 ± 0.2 efgh | 4.7 ± 0.3 cde | 0.9 ± 0.5 de | 16.0 ± 0.5 bc | 1.0 ± 0.1 gh |
21 | BT | ONE | 19.7 | 10.3 | 10.0 | 2.99 | 1.50 | 0.75 | 0.62 | 1.01 | 5.3 ± 0.2 cdefg | 5.5 ± 0.3 bcde | 6.7 ± 1.6 de | 20.8 ± 0.7 a | 1.4 ± 0.1 defgh |
22 | BT | TWO | 19.7 | 10.3 | 10.0 | 2.99 | 1.50 | 0.75 | 0.62 | 1.01 | 5.6 ± 0.2 bcde | 5.0 ± 0.3 bcde | 9.8 ± 1.9 de | 22.3 ± 0.7 a | 1.3 ± 0.1 defgh |
23 | BT | THREE | 19.7 | 10.3 | 10.0 | 2.99 | 1.50 | 0.75 | 0.62 | 1.01 | 5.5 ± 0.2 bcdef | 6.2 ± 0.4 bc | 9.7 ± 1.8 de | 20.7 ± 0.7 a | 1.2 ± 0.1 fgh |
24 | BT | FOUR | 19.7 | 10.3 | 10.0 | 2.99 | 1.50 | 0.75 | 0.62 | 1.01 | 6.2 ± 0.3 bcd | 6.2 ± 1.2 bc | 14.4 ± 1.5 de | 21.5 ± 0.9 a | 1.4 ± 0.1 defgh |
Outputs | Submodel | Train Set R2 (%) | F Ratio | df1, df2 | f Critical (p < 0.05) | Significant Inputs |
---|---|---|---|---|---|---|
SL | 1 | 82.77 | 13.61 | 6, 23 | 2.53 | Genotype |
2 | Subculture | |||||
RL | - | 65.81 | 5.45 | 6, 23 | 2.53 | - |
PN | 1 | 92.27 | 33.81 | 6, 23 | 2.53 | Genotype × NH4+ |
LN | 1 | 92.52 | 58.71 | 4, 23 | 2.80 | Genotype |
2 | NH4+ | |||||
FW | 1 | 83.39 | 33.46 | 3, 23 | 3.03 | Genotype |
Rules | Subculture | Genotype | NH4+ | SL (cm) | PN | LN | FW (g) | MD | ||
---|---|---|---|---|---|---|---|---|---|---|
1 | IF | BH | THEN | High | 0.98 | |||||
2 | BD | Low | 1.00 | |||||||
3 | BT | High | 0.63 | |||||||
4 | ONE | High | 0.54 | |||||||
5 | TWO | High | 0.64 | |||||||
6 | THREE | Low | 0.95 | |||||||
7 | FOUR | Low | 0.79 | |||||||
8 | IF | BH | Low | THEN | High | 0.86 | ||||
9 | BH | High | Low | 0.50 | ||||||
10 | BD | Low | High | 0.72 | ||||||
11 | BD | High | Low | 0.81 | ||||||
12 | BT | Low | Low | 0.78 | ||||||
13 | BT | High | Low | 0.98 | ||||||
14 | IF | BH | THEN | Low | 0.80 | |||||
15 | BD | Low | 1.00 | |||||||
16 | BT | High | 1.00 | |||||||
17 | Low | High | 0.57 | |||||||
18 | High | Low | 0.61 | |||||||
19 | IF | BH | THEN | High | 0.76 | |||||
20 | BD | Low | 0.89 | |||||||
21 | BT | Low | 0.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozano-Milo, E.; Landin, M.; Gallego, P.P.; García-Pérez, P. Machine Learning Deciphers Genotype and Ammonium as Key Factors for the Micropropagation of Bryophyllum sp. Medicinal Plants. Horticulturae 2022, 8, 987. https://doi.org/10.3390/horticulturae8110987
Lozano-Milo E, Landin M, Gallego PP, García-Pérez P. Machine Learning Deciphers Genotype and Ammonium as Key Factors for the Micropropagation of Bryophyllum sp. Medicinal Plants. Horticulturae. 2022; 8(11):987. https://doi.org/10.3390/horticulturae8110987
Chicago/Turabian StyleLozano-Milo, Eva, Mariana Landin, Pedro Pablo Gallego, and Pascual García-Pérez. 2022. "Machine Learning Deciphers Genotype and Ammonium as Key Factors for the Micropropagation of Bryophyllum sp. Medicinal Plants" Horticulturae 8, no. 11: 987. https://doi.org/10.3390/horticulturae8110987
APA StyleLozano-Milo, E., Landin, M., Gallego, P. P., & García-Pérez, P. (2022). Machine Learning Deciphers Genotype and Ammonium as Key Factors for the Micropropagation of Bryophyllum sp. Medicinal Plants. Horticulturae, 8(11), 987. https://doi.org/10.3390/horticulturae8110987