Indirect Selection for Seed Yield in Sacha-Inchi (Plukenetia volubilis) in Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Seedling Production and Planting
2.4. Data Collection
2.5. Data Analysis
3. Results and Discussion
3.1. Genetic Parameters and Correlations
3.2. Selection Gains in Sacha-Inchi Progenies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gillespie, L.J. A Synopsis of Neotropical Plukenetia (Euphorbiaceae) Including Two New Species. Syst. Bot. 1993, 18, 575–592. [Google Scholar] [CrossRef]
- Rodriguez, A.; Corazon-Guivin, M.; Cachique, D.; Mejía, K.; Del Castillo, D.; Jean-François, R.; García-Dávila, C. Differentiation morphological and by Inter simple sequence repeats (ISSR) of species of genus Plukenetia (Euphorbiaceae) from Peruvian Amazon: Suggestion for a new species. Rev. Peru. Biol. 2010, 17, 325–330. [Google Scholar]
- Vasek, J.; Čepkova, H.P.; Viehmannova, I.; Ocelak, M.; Huansi, C.D.; Vejl, P. Dealing with AFLP genotyping errors to reveal genetic structure in Plukenetia volubilis (Euphorbiaceae) in the Peruvian Amazon. PLoS ONE 2017, 12, e0184259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Castillo, A.M.R.; Gonzalez-Aspajo, G.; Sanchez-Marquez, M.F.; Kodahl, N. Ethnobotanical Knowledge in the Peruvian Amazon of the Neglected and Underutilized Crop Sacha Inchi (Plukenetia volubilis L.). Econ. Bot. 2019, 73, 281–287. [Google Scholar] [CrossRef]
- Rodrigues, P.H.V.; Bordignon, S.R.; Ambrosano, G.M.B. Horticultural performance of in vitro propagated plants of sacha inchi. Cienc. Rural 2014, 44, 1050–1053. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Jiao, D.Y.; Geng, Y.J.; Cai, C.T.; Cai, Z.Q. Planting density and fertilisation independently affect seed and oil yields in Plukenetia volubilis L. plants. J. Hortic. Sci. Biotechnol. 2014, 89, 201–207. [Google Scholar] [CrossRef]
- Chirinos, R.; Zuloeta, G.; Pedreschi, R.; Mignolet, E.; Larondelle, Y.; Campos, D. Sacha inchi (Plukenetia volubilis): A seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity. Food Chem. 2013, 141, 1732–1739. [Google Scholar] [CrossRef]
- Hamaker, B.R.; Valles, C.; Gilman, R.; Hardmeier, R.M.; Clark, D.; Garcia, H.H.; Gonzales, A.E.; Kohlstad, I.; Castro, M.; Valdivia, R.; et al. Amino Acid and Fatty Acid Profiles of the Inca Peanut (Plukenetia volubilis). Cereal Chem. 1992, 69, 461–463. [Google Scholar]
- Kodahl, N. Sacha inchi (Plukenetia volubilis L.) from lost crop of the Incas to part of the solution to global challenges? Planta 2020, 251, 80. [Google Scholar] [CrossRef]
- Valente, M.S.F.; Lopes, M.T.G.; Chaves, M.F.C.; Pantoja, C.M.; Sousa, G.F.M.; Chagas, E.A. Molecular genetic diversity and mating system in sacha inchi progenies. Pesqui. Agropecu. Trop. 2017, 47, 480–487. [Google Scholar] [CrossRef] [Green Version]
- Valente, M.S.F.; Chaves, F.C.M.; Lopes, M.T.G.; OKA, J.M.; Rodrigues, R.A.F. Crop yield, genetic parameter estimation and selection of sacha inchi in central Amazon. Pesqui. Agropecu. Trop. 2017, 47, 226–236. [Google Scholar] [CrossRef] [Green Version]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics. In Harlow Essex UK Longmans Green; Pearson: Essex, UK, 1996; Volume 3. [Google Scholar]
- Cruz, C.D.; Regazzi, A.J.; Carneiro, P.C.S. Modelos Biométricos Aplicados AO Melhoramento Genético, 1st ed.; UFV: Viçosa, Brazil, 2012; ISBN 9788572694339. [Google Scholar]
- Cornelius, J.P.; Clement, C.R.; Weber, J.C.; Sotelo-Montes, C.; Van Leeuwen, J.; Ugarte-Guerra, L.J.; Ricse-Tembladera, A.; Arévalo-López, L. The trade-off between genetic gain and conservation in a participatory improvement programme: The case of peach palm (Bactris gasipaes (Kunth)). For. Trees Livelihoods 2006, 16, 17–34. [Google Scholar] [CrossRef]
- Van Leeuwen, J.; Lleras-Pérez, E.; Clement, C.R. Field genebanks may impede instead of promote crop development: Lessons of failed genebanks of “promising” Brazilian palms. Agrociencia 2005, 9, 61–66. [Google Scholar]
- Alves, S.R.M.; Lopes, R.; Meneses, C.; Valente, M.S.F.; Martins, C.C.; Ramos, S.F.; Oliveira, I.; de Jesus Pinto Fraxe, T.; Costa, L.; Lopes, M.T.G. Morpho-Agronomic Characterization, Sample Size, and Plot Size for the Evaluation of Capsicum chinense Genotypes. Horticulturae 2022, 8, 785. [Google Scholar] [CrossRef]
- Moreira, A.; Fagueria, N.K. Potential of Brazilian Amazon Soils for Food and Fiber Production. Dyn. Soil Dyn. Plant 2008, 2, 82–88. [Google Scholar]
- Fisch, G.; Marenco, J.A.; Nobre, C.A. The climate of Amazonia—A review. Acta Amaz. 1999, 28, 101–126. [Google Scholar] [CrossRef]
- Cruz, C.D. GENES—A Software Package for Analysis in Experimental Statistics and Quantitative Genetics. Acta Scientiarum. Agron. 2013, 35, 271–276. [Google Scholar]
- Cruz, C.D.; Regazzi, A.J.; Carneiro, P.C.S. Modelos Biométricos Aplicados AO Melhoramento Genético, 3rd ed.; UFV: Viçosa, Brazil, 2014; p. 668. [Google Scholar]
- Pimentel-Gomes, F. Curso de Estatística Experimental, 15th ed.; FEALQ: Piracicaba, Brazil, 2009; p. 451. [Google Scholar]
- Cardinal-McTeague, W.M.; Wurdack, K.J.; Sigel, E.M.; Gillespie, L.J. Seed size evolution and biogeography of Plukenetia (Euphorbiaceae), a pantropical genus with traditionally cultivated oilseed species. BMC Evol. Biol. 2019, 19, 29. [Google Scholar] [CrossRef]
- Zareei, E.; Karami, F.; Aryal, R.; Saed-Moucheshi, A. Genotypic by phenotypic interaction affects the heritability and relationship among quantity and quality traits of strawberry (Fragaria × Ananassa). N. Zeal. J. Crop Hortic. Sci. 2022, 1, 1–20. [Google Scholar] [CrossRef]
- Resende, M.D.V.; Duarte, J.B. Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesqui. Agropecu. Trop. 2007, 37, 182–194. [Google Scholar]
- Nascimento, M.F.; do Rêgo, E.R.; do Nascimento, N.F.F.; da Silva Leite, P.S.; Finger, F.L.; Bruckner, C.H.; do Rêgo, M.M. Heritability of morpho-agronomic traits in ornamental pepper. Crop. Breed. Appl. Biotechnol. 2019, 19, 253–261. [Google Scholar] [CrossRef]
- Mai, T.T.P.; Hardner, C.M.; Alam, M.M.; Henry, R.J.; Topp, B.L. Phenotypic Characterisation for Growth and Nut Characteristics Revealed the Extent of Genetic Diversity in Wild Macadamia Germplasm. Agriculture 2021, 11, 680. [Google Scholar] [CrossRef]
- Moreira, P.C.; de Rezende, J.C.A.; Porto, A.C.D.M.; Nadaleti, D.H.S.; Gonçalves, F.M.A.; Carvalho, G.R.; Botelho, C.E. Progeny Selection to Develop a Sustainable Arabica Coffee Cultivar. Agronomy 2022, 12, 1144. [Google Scholar] [CrossRef]
- Freitas, R.G.; Dias, L.A.S.; Cardoso, P.M.R.; Evaristo, A.B.; Silva, M.F.; Araújo, N.M. Diversity and genetic parameter estimates for yield and its components in Jatropha curcas L. Genet. Mol. Res. 2016, 15, e15017540. [Google Scholar] [CrossRef] [PubMed]
- Li, C.C. Path Analysis—A Primer; The Boxwood Press: Pacific Grove, CA, USA, 1975. [Google Scholar]
- Umamaheswari, D.; Paramathma, M.; Manivannan, N. Association analysis between oil yield and its component characters in Jatropha. Electron. J. Plant Breed. 2009, 1, 78–81. [Google Scholar]
- Yang, C.; Lu, W.; Wen, Q.; Xu, Z.; Long, W. Germplasm characteristics of Plukenetia volubilis var. Brazilian and its productive performance after introduction into Yuanjiang Dry-Hot Valley of Yunnan, China. Bot. Res. 2015, 4, 85–96. [Google Scholar]
- Wang, S.; Zhu, F.; Kakuda, Y. Sacha inchi (Plukenetia volubilis L.): Nutritional composition, biological activity, and uses. Food Chem. 2018, 265, 316–328. [Google Scholar] [CrossRef]
- Lima, B.T.M.; Takahashi, N.S.; Tabata, Y.A.; Hattori, R.S.; Ribeiro, G.D.; Moreira, R.G. Balanced omega-3 and -6 vegetable oil of Amazonian sacha inchi act as LC-PUFA precursors in rainbow trout juveniles: Effects on growth and fatty acid biosynthesis. Aquaculture 2019, 509, 236–245. [Google Scholar] [CrossRef]
- Yang, L.Y.; Chen, P.; Guo, L.J.; Zhou, Y.; Wang, G.F.; DU, Q.J.; Huang, J.S. First report of vine wilt disease caused by Fusarium solani on sacha inchi (Plukenetia volubilis) in China. Plant Dis. 2017, 101, 1675. [Google Scholar] [CrossRef]
- Chai, X.; Yang, Z.; Fu, Q.; Pan, Z.; Tang, M.; Li, C.; Xu, F. First report of root and basal stem rot in sacha inchi (Plukenetia volubilis) caused by Fusarium oxysporum in China. Plant Dis. 2018, 102, 242. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, J.; Li, J. First Report of Colletotrichum siamense causing stem tip dieback of sacha inchi (Plukenetia volubilis) in China. Plant Dis. 2020, 104, 2726. [Google Scholar] [CrossRef]
- Solsol, H.R.; Mesen, M. Efecto del ácido indolbutírico y tipo de estaquilla en el enraizamiento de sacha inchi (plukenetia volubilis L.). Agron. Costarricense 2010, 34, 259–267. [Google Scholar]
- Diel, M.N.; Olivoto, T.; Krysczun, D.K.; Giacomini, B.S.; Lúcio, A.D.; Zamban, D.T.; Pinheiro, M.V.M.; Schmidt, D. Relationship between morpho-agronomic traits in tomato hybrids. Rev. Colomb. Cienc. Hortic. 2019, 13, 64–70. [Google Scholar] [CrossRef]
- Chavarría-Perez, L.M.; Giordani, W.; Dias, K.O.G.; Costa, Z.P.; Ribeiro, C.A.M.; Benedetti, A.R.; Cauz-Santos, L.A.; Pereira, G.S.; Rosa, J.R.B.F.; Garcia, A.A.F.; et al. Improving yield and fruit quality traits in sweet passion fruit: Evidence for genotype by environment interaction and selection of promising genotypes. PLoS ONE 2020, 15, e0232818. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, B.B.A.P.; Mendes, D.S.; Mendes, R.B.; Pimenta, S.; Pereira, M.C.T.; Azevedo, A.M.; Nietsche, S. Selection in half-sib progenies of Annona squamosa L.: An important step in the development of new cultivars. Sci. Hortic. 2022, 302, 111173. [Google Scholar] [CrossRef]
- Yang, L.; Gao, C.; Xie, J.; Qiu, J.; Deng, Q.; Zhou, Y.; Liao, D.; Deng, C. Fruit economic characteristics and yields of 40 superior Camellia oleifera Abel plants in the low-hot valley area of Guizhou Province, China. Sci. Rep. 2022, 12, 7068. [Google Scholar] [CrossRef]
Progenies | Source Location | Geographic Coordinates |
---|---|---|
Novo Horizonte | Benjamin Constant, AM, Brazil | 4° 22′ 45.5″ S, 70° 00′ 28.6″ W |
Cuzco | Benjamin Constant, AM, Brazil | 4° 23′ 03.6″ S, 70° 00′ 38.4″ W |
Aucaloma | Benjamin Constant, AM, Brazil | 4° 22′ 45.5″ S, 70° 00′ 28.6″ W |
São Pedro | Benjamin Constant, AM, Brazil | 4° 24′ 03.3″ S, 70° 01′ 06.8″ W |
Shanao | Benjamin Constant, AM, Brazil | 4° 22′ 45.5″ S, 70° 00′ 28.6″ W |
Ponto Renato | Benjamin Constant, AM, Brazil | 4° 23′ 15.3″ S, 70° 01′ 00.3″ W |
Dos de Mayo | Benjamin Constant, AM, Brazil | 4° 30′ 03.7″ S, 69° 56′ 04.9″ W |
João Guerra | Benjamin Constant, AM, Brazil | 4° 24′ 46.4″ S, 70° 03′ 14.0″ W |
AM7 | Careiro, AM, Brazil | 3° 31′ 45.0″ S 59° 49′ 07.9″ W |
AM13 | Careiro, AM, Brazil | 3° 50′ 16.9″ S, 60° 22′ 35.3″ W |
AM17 | Careiro, AM, Brazil | 3° 50′ 16.9″ S, 60° 22′ 35.3″ W |
AM21 | Careiro, AM, Brazil | 3° 50′ 16.9″ S, 60° 22′ 35.3″ W |
SV | DF | TNF | TWF | TNS | TWS | MWF | NSF | MWS | TWS:TWF | SH (Day) |
---|---|---|---|---|---|---|---|---|---|---|
Mean square | ||||||||||
Blocks | 2 | 64,650 | 2,878,281 | 957,099 | 978,517 | 0.360 | 0.001 | 0.002 | 0.003 | 1220 |
Progenies | 11 | 5592 * | 163,740 * | 78,157 * | 67,321 * | 1.246 * | 0.035 * | 0.014 * | 0.004 * | 1105 ns |
Error | 22 | 820 | 29,220 | 11,380 | 11,984 | 0.177 | 0.011 | 0.002 | 0.00 | 520 |
Mean | 132 | 905 | 509 | 510 | 7.13 | 3.87 | 1.01 | 0.55 | 212 | |
CVe (%) | 22 | 19 | 21 | 22 | 6 | 3 | 5 | 4 | 11 | |
Genetic parameters | ||||||||||
σ2 g | 1591 | 44,840 | 22,259 | 18,443 | 0.357 | 0.008 | 0.004 | 0.001 | 198 | |
σ2 f | 1864 | 54,580 | 26,052 | 22,440 | 0.415 | 0.012 | 0.005 | 0.001 | 371 | |
h2 (%) | 85 | 82 | 85 | 82 | 86 | 67 | 83 | 90 | 53 | |
CVg (%) | 30 | 23 | 29 | 27 | 8 | 2 | 6 | 6 | 7 | |
CVg/CVe | 1.39 | 1.24 | 1.4 | 1.24 | 1.42 | 0.85 | 1.27 | 1.71 | 0.62 |
TNF | TWF | TNS | TWS | MWF | NSF | MWS | TWS:TWF | SH (Day) | |
---|---|---|---|---|---|---|---|---|---|
TNF | 0.97 ** | 0.99 ** | 0.97 ** | −0.75 ** | −0.22 | −0.24 | 0.73 ** | −0.19 | |
TWF | 0.96 ** | 0.97 ** | 0.99 ** | −0.54 | −0.22 | −0.02 | 0.68 * | −0.33 | |
TNS | 0.99 ** | 0.96 ** | 0.97 ** | −0.73 ** | −0.16 | −0.25 | 0.73 ** | −0.18 | |
TWS | 0.97 ** | 0.98 ** | 0.97 ** | −0.64 * | −0.28 | 0.00 | 0.81 ** | −0.32 | |
MWF | −0.70 * | −0.49 | −0.68 * | −0.57 * | 0.25 | 0.54 | −0.73 ** | −0.11 | |
NSF | −0.19 | −0.16 | −0.12 | −0.19 | 0.26 | −0.37 | −0.30 | 0.08 | |
MWS | −0.23 | 0.03 | −0.24 | 0.00 | 0.59 * | −0.22 | 0.10 | −0.44 | |
TWS:TWF | 0.67 * | 0.61 * | 0.67 * | 0.73 ** | −0.68 * | −0.14 | −0.11 | −0.22 | |
SH (day) | −0.12 | −0.2 | −0.12 | −0.19 | −0.01 | 0.01 | −0.21 | −0.21 |
Fruit and Seed Traits | Effect and Correlation Coefficient | Standardized Coefficients |
---|---|---|
Total number of fruits per plant | Direct effect on total weight (g) of seeds per plant | 0.046 |
Indirect effect using total weight (g) of fruits per plant | 0.711 | |
Indirect effect using total number of seeds per plant | 0.222 | |
Indirect effect using mean weight (g) of fruits | 0.006 | |
Total (correlation coefficient) | 0.985 | |
Total weight (g) of fruits per plant | Direct effect on total weight (g) of seeds per plant | 0.725 |
Indirect effect using total number of fruits per plant | 0.045 | |
Indirect effect using total number of seeds per plant | 0.218 | |
Indirect effect using total weight (g) of fruits per plant | 0.005 | |
Total (correlation coefficient) | 0.994 | |
Total number of seeds per plant | Direct effect on total weight (g) of seeds per plant | 0.222 |
Indirect effect using total number of fruits per plant | 0.046 | |
Indirect effect using total number of seeds per plant | 0.714 | |
Indirect effect using mean weight (g) of fruits | 0.006 | |
Total (correlation coefficient) | 0.988 | |
Mean weight (g) of fruits | Direct effect on total weight (g) of seeds per plant | −0.011 |
Indirect effect using total number of fruits per plant | −0.025 | |
Indirect effect using total weight (g) of fruits per plant | −0.286 | |
Indirect effect using total number of seeds per plant | −0.116 | |
Total (correlation coefficient) | −0.438 | |
Determination coefficient | 0.995 |
Traits Selected | Answers in Traits | Xo | Xs | h2% | SG | SG % | Progenies Selected |
---|---|---|---|---|---|---|---|
TNF | TNF | 132 | 171 | 85 | 34 | 25 | 1; 2; 4; 6; 7 |
TWF | 905 | 1122 | 82 | 179 | 20 | ||
TNS | 509 | 654 | 85 | 124 | 24 | ||
TWS | 510 | 653 | 82 | 118 | 23 | ||
MWF | 7.129 | 6.824 | 86 | −0.262 | −4 | ||
NST | 0.553 | 0.576 | 90 | 0.020 | 4 | ||
TWF | TNF | 132 | 171 | 85 | 34 | 25 | 1; 2; 4; 6; 7 |
TWF | 905 | 1122 | 82 | 179 | 20 | ||
TNS | 509 | 654 | 85 | 124 | 24 | ||
TWS | 510 | 653 | 82 | 118 | 23 | ||
MWF | 7.129 | 6.824 | 86 | −0.262 | −4 | ||
NST | 0.553 | 0.576 | 90 | 0.020 | 4 | ||
TNF | TNF | 132 | 171 | 85 | 34 | 25 | 1; 2; 4; 6; 7 |
TWF | 905 | 1122 | 82 | 179 | 20 | ||
TNS | 509 | 654 | 85 | 124 | 24 | ||
TWS | 510 | 653 | 82 | 118 | 23 | ||
MWF | 7.129 | 6.824 | 86 | −0.262 | −4 | ||
NST | 0.553 | 0.576 | 90 | 0.020 | 4 | ||
TWS | TNF | 132 | 171 | 85 | 34 | 25 | 1; 2; 4; 6; 7 |
TWF | 905 | 1122 | 82 | 179 | 20 | ||
TNS | 509 | 654 | 85 | 124 | 24 | ||
TWS | 510 | 653 | 82 | 118 | 23 | ||
MWF | 7.129 | 6.824 | 86 | −0.262 | −4 | ||
NST | 0.553 | 0.576 | 90 | 0.020 | 4 | ||
MWF | TNF | 132 | 102 | 85 | −25 | −19 | 2; 3; 8; 9;10 |
TWF | 905 | 772 | 82 | −109 | −12 | ||
TNS | 509 | 401 | 85 | −92 | −18 | ||
TWS | 510 | 415 | 82 | −78 | −15 | ||
MWF | 7.129 | 7.695 | 86 | 0.485 | 7 | ||
NST | 0.553 | 0.526 | 90 | −0.025 | −4 | ||
NST | TNF | 132 | 158 | 85 | 23 | 17 | 1; 4; 7; 11; 12 |
TWF | 905 | 1017 | 82 | 92 | 10 | ||
TNS | 509 | 607 | 85 | 84 | 16 | ||
TWS | 510 | 600 | 82 | 74 | 14 | ||
MWF | 7.129 | 6.647 | 86 | −0.414 | −6 | ||
NST | 0.553 | 0.585 | 90 | 0.029 | 5 |
Traits Selected | Answers in Traits | Selection Intensity | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25% (3 Progenies) | 33% (4 Progenies) | 42% (5 Progenies) | ||||||||||||
h2% | Xo | Xs | GS | GS% | Xo | Xs | SG | SG% | Xo | Xs | SG | SG% | ||
TNF | TNF | 85 | 132 | 190 | 49 | 37 | 132 | 181 | 42 | 32 | 132 | 171 | 34 | 25 |
TWF | 82 | 905 | 1184 | 230 | 25 | 905 | 1153 | 204 | 23 | 905 | 1122 | 179 | 20 | |
TWS | 82 | 510 | 685 | 144 | 28 | 510 | 678 | 138 | 27 | 510 | 653 | 118 | 23 | |
MWF | 86 | 7.13 | 6.38 | −0.64 | −9 | 7.13 | 6.52 | −0.53 | −7 | 7.13 | 6.82 | −0.26 | −4 | |
PS | 1; 4; 6 | 1; 4; 6; 7 | 1; 2; 4; 6; 7 | |||||||||||
TWF | TNF | 85 | 132 | 190 | 49 | 37 | 132 | 181 | 42 | 32 | 132 | 171 | 34 | 25 |
TWF | 82 | 905 | 1184 | 230 | 25 | 905 | 1153 | 204 | 23 | 905 | 1122 | 179 | 20 | |
TWS | 82 | 510 | 685 | 144 | 28 | 510 | 678 | 138 | 27 | 510 | 653 | 118 | 23 | |
MWF | 86 | 7.13 | 6.38 | −0.64 | −9 | 7.13 | 6.52 | −0.53 | −7 | 7.13 | 6.82 | −0.26 | −4 | |
PS | 1; 4; 6 | 1; 4; 6; 7 | 1; 2; 4; 6; 7 | |||||||||||
TWS | TNF | 85 | 132 | 185 | 46 | 35 | 132 | 181 | 42 | 32 | 132 | 171 | 34 | 25 |
TWF | 82 | 905 | 1154 | 204 | 23 | 905 | 1153 | 204 | 23 | 905 | 1122 | 179 | 20 | |
TWS | 82 | 510 | 690 | 148 | 29 | 510 | 678 | 138 | 27 | 510 | 653 | 118 | 23 | |
MWF | 86 | 7.13 | 6.41 | −0.61 | −9 | 7.13 | 6.52 | −0.53 | −7 | 7.13 | 6.82 | −0.26 | −4 | |
PS | 1; 4; 6 | 1; 4; 6; 7 | 1; 2; 4; 6; 7 | |||||||||||
MWF | TNF | 85 | 132 | 103 | −25 | −19 | 132 | 108 | −20 | −15 | 132 | 102 | −25 | −19 |
TWF | 82 | 905 | 796 | −90 | −10 | 905 | 823 | −67 | −7 | 905 | 772 | −109 | −12 | |
TWS | 82 | 510 | 421 | −73 | −14 | 510 | 444 | −54 | −11 | 510 | 415 | −78 | −15 | |
MWF | 86 | 7.13 | 7.95 | 0.70 | 10 | 7.13 | 7.79 | 0.57 | 8 | 7.13 | 7.69 | 0.49 | 7 | |
PS | 2; 8; 10 | 2; 3; 8; 10 | 2; 3; 8; 9; 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado, J.P.M.; Chaves, F.C.M.; Lopes, R.; Meneses, C.; Valente, M.S.F.; Rodrigues, F.A.; Pasqual, M.; Ramos, S.F.; de Aguiar, A.V.; Lopes, M.T.G. Indirect Selection for Seed Yield in Sacha-Inchi (Plukenetia volubilis) in Brazil. Horticulturae 2022, 8, 988. https://doi.org/10.3390/horticulturae8110988
Delgado JPM, Chaves FCM, Lopes R, Meneses C, Valente MSF, Rodrigues FA, Pasqual M, Ramos SF, de Aguiar AV, Lopes MTG. Indirect Selection for Seed Yield in Sacha-Inchi (Plukenetia volubilis) in Brazil. Horticulturae. 2022; 8(11):988. https://doi.org/10.3390/horticulturae8110988
Chicago/Turabian StyleDelgado, Jhon Paul Mathews, Francisco Célio Maia Chaves, Ricardo Lopes, Carlos Meneses, Magno Sávio Ferreira Valente, Filipe Almendagna Rodrigues, Moacir Pasqual, Santiago Ferreyra Ramos, Ananda Virginia de Aguiar, and Maria Teresa Gomes Lopes. 2022. "Indirect Selection for Seed Yield in Sacha-Inchi (Plukenetia volubilis) in Brazil" Horticulturae 8, no. 11: 988. https://doi.org/10.3390/horticulturae8110988
APA StyleDelgado, J. P. M., Chaves, F. C. M., Lopes, R., Meneses, C., Valente, M. S. F., Rodrigues, F. A., Pasqual, M., Ramos, S. F., de Aguiar, A. V., & Lopes, M. T. G. (2022). Indirect Selection for Seed Yield in Sacha-Inchi (Plukenetia volubilis) in Brazil. Horticulturae, 8(11), 988. https://doi.org/10.3390/horticulturae8110988