Effect of Drying Temperature on the Physicochemical, Functional, and Microstructural Properties of Powders from Agave angustifolia Haw and Agave rhodacantha Trel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Agave Leaf Drying
2.2. Milling
2.3. Chemical Composition
2.4. Physicochemical Analysis
2.4.1. Water Activity (Aw)
2.4.2. Colorimetric Analysis
2.5. Functional Properties
2.5.1. Water Solubility Index (WSI)
2.5.2. Water Absorption Capacity (WAC) and Oil Absorption Capacity (OAC)
2.5.3. Swelling Power (SP)
2.5.4. Emulsifying Capacity (EC)
2.6. Flow Properties
2.7. Hygroscopicity
2.8. Scanning Electron Microscopy (SEM)
2.9. Statistical Analysis
3. Results
3.1. Physicochemical Analysis and Chemical Composition
3.2. Functional Properties
3.3. Flow Properties
3.4. Hygroscopicity
3.5. Microstructural Analysis (SEM)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaouch, M.A.; Benvenuti, S. The role of fruit by-products as bioactive compounds for intestinal health. Foods 2020, 9, 1716. [Google Scholar] [CrossRef] [PubMed]
- Esther, M.E. Situación del Agave y sus residuos en Tamaulipas. Rev. Energías Renov. 2017, 1, 19–31. [Google Scholar]
- Dankel, S.J.; Loenneke, J.P.; Loprinzi, P.D. Physical Activity and Diet on Quality of Life and Mortality: The Importance of Meeting One Specific or Both Behaviors. Int. J. Cardiol. 2016, 202, 328–330. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, Q.; Wang, L.; Zha, S.; Zhang, L.; Zhao, B. Physicochemical and Functional Properties of Dietary Fiber from Maca (Lepidium meyenii Walp.) Liquor Residue. Carbohydr. Polym. 2015, 132, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Mudgil, D.; Barak, S. Composition, Properties and Health Benefits of Indigestible Carbohydrate Polymers as Dietary Fiber: A Review. Int. J. Biol. Macromol. 2013, 61, 1–6. [Google Scholar] [CrossRef]
- AACC 55-60.01: Guideline for Determination of Particle Size Distribution; AOAC: Washington, DC, USA, 2011.
- AOAC Official Methods of Analysis of AOAC International; AOAC: Gaithersburg, MD, USA, 2005.
- Chen, X.D. Food Drying Fundamentals. In Drying Technologies in Food Processing; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 1–52. [Google Scholar]
- Shuen, G.W.; Yi, L.Y.; Ying, T.S.; Von, G.C.Y.; Yusof, Y.A.B.; Phing, P.L. Effects of Drying Methods on the Physicochemical Properties and Antioxidant Capacity of Kuini Powder. Braz. J. Food Technol. 2021, 24, e2020086. [Google Scholar] [CrossRef]
- Ali, A.; Wani, T.A.; Wani, I.A.; Masoodi, F.A. Comparative Study of the Physico-Chemical Properties of Rice and Corn Starches Grown in Indian Temperate Climate. J. Saudi Soc. Agric. Sci. 2016, 15, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Ordóñez, E.; Jiménez-Escrig, A.; Rupérez, P. Dietary fibre and physicochemical properties of several edible seaweeds from the northwestern Spanish coast. Food Res. Int. 2010, 43, 2289–2294. [Google Scholar] [CrossRef]
- López-Marcos, M.C.; Bailina, C.; Viuda-Martos, M.; Pérez-Alvarez, J.A.; Fernández-López, J. Properties of Dietary Fibers from Agroindustrial Coproducts as Source for Fiber-Enriched Foods. Food Bioprocess Technol. 2015, 8, 2400–2408. [Google Scholar] [CrossRef]
- Savlak, N.; Türker, B.; Yeşilkanat, N. Effects of particle size distribution on some physical, chemical and functional properties of unripe banana flour. Food Chem. 2016, 213, 180–186. [Google Scholar] [CrossRef]
- Bian, Q.; Sittipod, S.; Garg, A.; Ambrose, R.P.K. Bulk flow properties of hard and soft wheat flours. J. Cereal Sci. 2015, 63, 88–94. [Google Scholar] [CrossRef]
- Juarez-Enriquez, E.; Olivas, G.I.; Zamudio-Flores, P.B.; Ortega-Rivas, E.; Perez-Vega, S.; Sepulveda, D.R. Effect of water content on the flowability of hygroscopic powders. J. Food Eng. 2017, 205, 12–17. [Google Scholar] [CrossRef]
- Zhu, Y.; Chu, J.; Lu, Z.; Lv, F.; Bie, X.; Zhang, C.; Zhao, H. Physicochemical and Functional Properties of Dietary Fiber from Foxtail Millet (Setaria Italic) Bran. J. Cereal Sci. 2018, 79, 456–461. [Google Scholar] [CrossRef]
- Requena, M.C.; González, C.N.A.; Barragán, L.A.P.; Correia, T.; Esquivel, J.C.C.; Herrera, R.R. Functional and Physico-Chemical Properties of Six Desert-Sources of Dietary Fiber. Food Biosci. 2016, 16, 26–31. [Google Scholar] [CrossRef]
- Mishra, M.; Kandasamy, P.; Shukla, R.N.; Kumar, A. Convective Hot-Air Drying of Green Mango: Influence of Hot Water Blanching and Chemical Pretreatments on Drying Kinetics and Physicochemical Properties of Dried Product. Int. J. Fruit Sci. 2021, 21, 732–757. [Google Scholar] [CrossRef]
- Gawałek, J.; Domian, E.; Ryniecki, A.; Bakier, S. Effects of the Spray Drying Conditions of Chokeberry (Aronia melanocarpa L.) Juice Concentrate on the Physicochemical Properties of Powders. Int. J. Food Sci. Technol. 2017, 52, 1933–1941. [Google Scholar] [CrossRef]
- Joardder, M.U.H.; Kumar, C.; Karim, M.A. Food Structure: Its Formation and Relationships with Other Properties. Crit. Rev. Food Sci. Nutr. 2017, 57, 1190–1205. [Google Scholar] [CrossRef] [Green Version]
- Quispe-Fuentes, I.; Vega-Gálvez, A.; Aranda, M.; Poblete, J.; Pasten, A.; Bilbao-Sainz, C.; Wood, D.; McHugh, T.; Delporte, C. Effects of Drying Processes on Composition, Microstructure and Health Aspects from Maqui Berries. J. Food Sci. Technol. 2020, 57, 2241–2250. [Google Scholar] [CrossRef]
- Sagar, V.R.; Suresh Kumar, P. Recent Advances in Drying and Dehydration of Fruits and Vegetables: A Review. J. Food Sci. Technol. 2010, 47, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Brito, T.B.N.; Pereira, A.P.A.; Pastore, G.M.; Moreira, R.F.A.; Ferreira, M.S.L.; Fai, A.E.C. Chemical Composition and Physicochemical Characterization for Cabbage and Pineapple By-Products Flour Valorization. LWT 2020, 124, 109028. [Google Scholar] [CrossRef]
- Jiménez-Muñóz, E.; Prieto-García, F.; Prieto-Méndez, J.; Acevedo-Sandoval, O.A.; Rodríguez-Laguna, R. Caracterización fisicoquímica de cuatro especies de agaves con potencialidad en la obtención de pulpa de celulosa para elaboración de papel. DYNA 2016, 83, 232–242. [Google Scholar] [CrossRef]
- Bouaziz, M.A.; Bchir, B.; Chalbi, H.; Sebii, H.; Karra, S.; Smaoui, S.; Attia, H.; Besbes, S. Techno-Functional Characterization and Biological Potential of Agave Americana Leaves: Impact on Yoghurt Qualities. Food Meas. 2021, 15, 309–326. [Google Scholar] [CrossRef]
- Bouaziz, M.A.; Rassaoui, R.; Besbes, S. Chemical Composition, Functional Properties, and Effect of Inulin from Tunisian Agave Americana L. Leaves on Textural Qualities of Pectin Gel. J. Chem. 2014, 2014, e758697. [Google Scholar] [CrossRef] [Green Version]
- Ma, M.; Mu, T. Effects of Extraction Methods and Particle Size Distribution on the Structural, Physicochemical, and Functional Properties of Dietary Fiber from Deoiled Cumin. Food Chem. 2016, 194, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Amezquita, L.E.; Tejada-Ortigoza, V.; Campanella, O.H.; Welti-Chanes, J. Influence of Drying Method on the Composition, Physicochemical Properties, and Prebiotic Potential of Dietary Fibre Concentrates from Fruit Peels. J. Food Qual. 2018, 2018, e9105237. [Google Scholar] [CrossRef] [Green Version]
- Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H. Dietary Fibre and Fibre-Rich by-Products of Food Processing: Characterisation, Technological Functionality and Commercial Applications: A Review. Food Chem. 2011, 124, 411–421. [Google Scholar] [CrossRef]
- Fuentes-Alventosa, J.M.; Rodríguez-Gutiérrez, G.; Jaramillo-Carmona, S.; Espejo-Calvo, J.A.; Rodríguez-Arcos, R.; Fernández-Bolaños, J.; Guillén-Bejarano, R.; Jiménez-Araujo, A. Effect of Extraction Method on Chemical Composition and Functional Characteristics of High Dietary Fibre Obtained powders from Asparagus By-Products. Food Chem. 2009, 113, 665–671. [Google Scholar] [CrossRef]
- Godswill, A.C. Proximate Composition and Functional Properties of Different Grain Flour Composites for Industrial Applications. Int. J. Food Sci. 2019, 2, 43–64. [Google Scholar] [CrossRef]
- İzli, G.; Yildiz, G.; Berk, S.E. Quality Retention in Pumpkin Powder Dried by Combined Microwave-Convective Drying. J. Food Sci. Technol. 2022, 59, 1558–1569. [Google Scholar] [CrossRef]
Parameters (g/100 g) * | AHP | ARP | ||||
---|---|---|---|---|---|---|
AH70 | AH90 | AH110 | AR70 | AR90 | AR110 | |
Moisture * | 6.5 ± 0.1 a | 6.4 ± 0.0 ab | 6.1 ± 0.1 b | 6.6 ± 0.2 a | 6.5 ± 0.1 a | 6.5 ± 0.1 a |
Aw | 0.37 ± 0.03 bc | 0.34 ± 0.02 c | 0.46 ± 0.01 a | 0.40 ± 0.00 b | 0.41 ± 0.00 b | 0.25 ± 0.00 d |
Ash * | 14.37 ± 0.31 a | 14.49 ± 0.09 a | 13.82 ± 0.85 a | 13.36 ± 0.29 a | 14.28 ± 0.43 a | 12.07 ± 0.03 b |
Fat * | 2.07 ± 0.35 c | 4.39 ± 0.13 ab | 4.45 ± 0.25 ab | 1.63 ± 0.26 c | 3.82 ± 0.33 b | 4.96 ± 0.26 a |
Proteins * | 3.46 ± 0.01 c | 3.42 ± 0.04 c | 3.38 ± 0.01 c | 8.54 ± 0.12 b | 13.08 ± 0.16 a | 12.99 ± 0.07 a |
IDF * | 37.33 ± 0.61 a | 32.20 ± 0.38 b | 25.52 ± 0.01 d | 26.29 ± 0.24 d | 26.04 ± 0.22 d | 29.79 ± 0.45 c |
SDF * | 12.17 ± 1.51 d | 21.07 ± 1.69 c | 29.79 ± 1.61 a | 19.24 ± 0.28 c | 25.86 ± 0.67 b | 22.16 ± 0.68 c |
TDF * | 49.50 ± 1.86 b | 53.27 ± 1.47 ab | 55.31 ± 1.60 a | 45.53 ± 0.07 c | 51.90 ± 0.54 b | 51.95 ± 0.52 b |
Parameters | AHP | ARP | ||||
---|---|---|---|---|---|---|
AH70 | AH90 | AH110 | AR70 | AR90 | AR110 | |
L* | 62.78 ± 1.44 a | 63.87 ± 0.46 a | 58.76 ± 1.73 b | 64.60 ± 0.37 a | 53.55 ± 0.25 c | 58.83 ± 0.42 b |
A* | −1.77 ± 0.05 c | −2.12 ± 0.04 d | −0.30 ± 0.16 b | −2.31 ± 0.06 d | 2.70 ± 0.07 a | −1.55 ± 0.05 c |
B* | 23.30 ± 0.3 c | 26.57 ± 0.29 a | 21.58 ± 0.74 d | 25.27 ± 0.07 b | 23.47 ± 0.37 c | 23.49 ± 0.10 c |
Chroma* | 23.36 ± 0.29 c | 26.65 ± 0.29 a | 21.58 ± 0.74 d | 25.37 ± 0.08 b | 23.62 ± 0.36 c | 23.54 ± 0.10 c |
°Hue | 85.64 ± 0.19 bc | 85.43 ± 0.03 c | 89.21 ± 0.39 a | 84.77 ± 0.13 d | 83.43 ± 0.27 e | 86.22 ± 0.10 b |
Parameters | AHP | ARP | ||||
---|---|---|---|---|---|---|
AH70 | AH90 | AH110 | AR70 | AR90 | AR110 | |
WSI (%) | 27.64 ± 0.48 c | 29.75 ± 0.95 b | 33.36 ± 1.16 a | 5.32 ± 0.21 d | 5.58 ± 0.29 d | 5.46 ± 0.15 d |
WAC (g H2O/g sample) | 2.64 ± 0.06 b | 3.03 ± 0.11 a | 3.17 ± 0.16 a | 2.44 ± 0.02 bc | 2.23 ± 0.11 c | 2.38 ± 0.03 bc |
OAC (g oil/g sample) | 1.58 ± 0.02 d | 2.66 ± 0.05 c | 3.05 ± 0.17 b | 3.27 ± 0.01 ab | 3.16 ± 0.11 ab | 3.41 ± 0.13 a |
SP (mL/g) | 4.34 ± 0.11 d | 4.66 ± 0.45 d | 6.04 ± 0.23 c | 7.35 ± 0.15 b | 8.30 ± 0.28 a | 8.62 ± 0.12 a |
EC (%) | 3.91 ± 0.27 c | 5.31 ± 0.16 b | 6.32 ± 0.21 a | 2.96 ± 0.32 d | 3.65 ± 0.28 cd | 4.76 ± 0.28 b |
Parameters | AHP | ARP | ||||
---|---|---|---|---|---|---|
AH70 | AH90 | AH110 | AR70 | AR90 | AR110 | |
Bulk density (g/cm3) | 0.66 ± 0.05 d | 0.60 ± 0.006 de | 0.55 ± 0.003 e | 1.05 ± 0.01 a | 0.84 ± 0.01 b | 0.75 ± 0.04 c |
Packed density (g/cm3) | 0.77 ± 0.06 d | 0.74 ± 0.005 d | 0.70 ± 0.05 d | 1.41 ± 0.03 a | 1.16 ± 0.03 b | 0.93 ± 0.07 c |
CI (%) | 15.47 ± 1.37 c | 23.39 ± 2.56 ab | 26.96 ± 1.85 a | 25.50 ± 1.50 ab | 27.23 ± 3.12 a | 19.83 ± 2.02 bc |
HR | 1.15 ± 0.01 d | 1.23 ± 0.02 cd | 1.26 ± 0.01 bc | 1.34 ± 0.02 ab | 1.37 ± 0.06 a | 1.24 ± 0.03 c |
Hygroscopicity (%) | 7.05 ± 0.09 b | 6.52 ± 0.19 cd | 6.76 ± 0.21 bc | 7.60 ± 0.12 a | 7.76 ± 0.01 a | 6. 21 ± 0.24 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Jiménez, F.E.; Barojas-Zavaleta, J.E.; Vivar-Vera, G.; Peredo-Lovillo, A.; Morales-Tapia, A.A.; Del Ángel-Zumaya, J.A.; Reyes-Reyes, M.; Alamilla-Beltrán, L.; Leyva-Daniel, D.E.; Jiménez-Guzmán, J. Effect of Drying Temperature on the Physicochemical, Functional, and Microstructural Properties of Powders from Agave angustifolia Haw and Agave rhodacantha Trel. Horticulturae 2022, 8, 1070. https://doi.org/10.3390/horticulturae8111070
González-Jiménez FE, Barojas-Zavaleta JE, Vivar-Vera G, Peredo-Lovillo A, Morales-Tapia AA, Del Ángel-Zumaya JA, Reyes-Reyes M, Alamilla-Beltrán L, Leyva-Daniel DE, Jiménez-Guzmán J. Effect of Drying Temperature on the Physicochemical, Functional, and Microstructural Properties of Powders from Agave angustifolia Haw and Agave rhodacantha Trel. Horticulturae. 2022; 8(11):1070. https://doi.org/10.3390/horticulturae8111070
Chicago/Turabian StyleGonzález-Jiménez, Francisco Erik, José Eduardo Barojas-Zavaleta, Guadalupe Vivar-Vera, Audry Peredo-Lovillo, Alfredo Alberto Morales-Tapia, Josué Antonio Del Ángel-Zumaya, Mónica Reyes-Reyes, Liliana Alamilla-Beltrán, Diana Elizabeth Leyva-Daniel, and Jaime Jiménez-Guzmán. 2022. "Effect of Drying Temperature on the Physicochemical, Functional, and Microstructural Properties of Powders from Agave angustifolia Haw and Agave rhodacantha Trel" Horticulturae 8, no. 11: 1070. https://doi.org/10.3390/horticulturae8111070
APA StyleGonzález-Jiménez, F. E., Barojas-Zavaleta, J. E., Vivar-Vera, G., Peredo-Lovillo, A., Morales-Tapia, A. A., Del Ángel-Zumaya, J. A., Reyes-Reyes, M., Alamilla-Beltrán, L., Leyva-Daniel, D. E., & Jiménez-Guzmán, J. (2022). Effect of Drying Temperature on the Physicochemical, Functional, and Microstructural Properties of Powders from Agave angustifolia Haw and Agave rhodacantha Trel. Horticulturae, 8(11), 1070. https://doi.org/10.3390/horticulturae8111070