Evaluation of the Contact Toxicity and Physiological Mechanisms of Ginger (Zingiber officinale) Shoot Extract and Selected Major Constituent Compounds against Melanaphis sorghi Theobald
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insects and Plants
2.2. Extract of Z. officinale
2.3. Analysis of the Active Compounds of the Ginger Shoot Extract (GSE)
2.4. Contact Toxicity of GSE and Its Main Compounds
2.5. Aphid Growth Index Assays
2.6. Enzyme Assays
2.7. Statistical Analysis
3. Results
3.1. Major Constituent Compounds of Ginger Shoot Extract (GSE)
3.2. Aphidicidal Activity Analysis of GSE, 6-Gingerol, and Quercetin-3-O-rutinoside
3.3. Effect of GSE on the Growth Index of M. sorghi
3.4. Effects on the Enzyme Activity of M. sorghi
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maurice, H.; Bernard, C.; Evelyne, T.; Jean, C.S. Encyclop’ Aphid: A website on aphids and their natural enemies. Entomol. Gen. 2019, 40, 97–101. [Google Scholar]
- Nibouche, S.; Costet, L.; Medina, R.F.; Holt, J.R.; Sadeyen, J.; Zoogones, A.S.; Brown, P.; Blackman, R.L. Morphometric and molecular discrimination of the sugarcane aphid, Melanaphis sacchari, (Zehntner, 1897) and the sorghum aphid Melanaphis sorghi (Theobald, 1904). PLoS ONE 2021, 16, e0241881. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, S.R.; Sengottayan, S.N.; Kannan, R.; Rajamanickam, C.; Annamalai, T.; Prabhakaran, V.S.; Athirstam, P.; Edward, S.E.; Venkatraman, P. Toxicity of Alangium salvifolium Wang chemical constituents against the tobacco cutworm Spodoptera litura Fab. Pestic. Biochem. Phys. 2016, 126, 92–101. [Google Scholar]
- Senthil, N.S.; Man, Y.C.; Chae, H.P.; Hong, Y.S. Food consumption, utilization, and detoxification enzyme activity of the rice leaffolder larvae after treatment with Dysoxylum triterpenes. Pestic. Biochem. Phys. 2006, 88, 260–267. [Google Scholar] [CrossRef]
- Thanigaivel, A.; Chandrasekaran, R.; Revathi, K.; Nisha, S.; Sathish, N.S.; Kirubakaran, S.A.; Senthil, N.S. Larvicidal efficacy of Adhatoda vasica (L.) Nees against the bancroftian filariasis vector Culex quinquefasciatus Say and dengue vector Aedes aegypti L. in in vitro condition. Parasitol. Res. 2012, 110, 1993–1999. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Su, J.P.; Liu, W.W.; Guo, Y.Y. Effects of intercropping vines with tobacco and root extracts of tobacco on grape phylloxera, Daktulosphaira vitifoliae Fitch. J. Integr. Agric. 2015, 14, 1367–1375. [Google Scholar] [CrossRef]
- Zou, C.S.; Lv, C.H.; Wang, Y.J.; Cao, C.W.; Zhang, G.C. Larvicidal activity and insecticidal mechanism of Chelidonium majus on Lymantria Dispar. Pestic. Biochem. Phys. 2017, 142, 123–132. [Google Scholar] [CrossRef]
- Calvin, W.; Beuzelin, J.M.; Liburd, O.E.; Branham, M.A.; Simon, L.J. Effects of biological insecticides on the sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae), in sorghum. Crop Prot. 2020, 142, 105528. [Google Scholar] [CrossRef]
- Manjree, A.; Suresh, W.; Swaran, D.; Bhupinder, P.S.K. Insect growth inhibition, antifeedant and antifungal activity of compounds isolated/derived from Zingiber officinale Roscoe (ginger) rhizomes. Pest Manag. Sci. 2001, 57, 289–300. [Google Scholar]
- Jerome, N.; Nancy, D.E. Attraction of Ceratitis capitata (Diptera: Tephritidae) sterile males to essential oils: The importance of linalool. Environ. Entomol. 2018, 47, 1287–1292. [Google Scholar]
- Zhang, W.; Heather, J.M.; David, J.S. Repellency of ginger oil to Bemisia argentifolii (Homoptera: Aleyrodidae) on tomato. J. Econ. Entomol. 2004, 97, 1310–1318. [Google Scholar] [CrossRef] [PubMed]
- Moreira, S.I.; Alvarenga, S.M.; Souza, T.W.; Dos, S.A.; Serrão, J.E.; José, V.Z.A.; Frederico, W.C.; Cola, Z.J.; Sigueyuki, S.C. Toxicity of essential oils to Diaphania hyalinata (Lepidoptera: Crambidae) and selectivity to its parasitoid Trichospilus pupivorus (Hymenoptera: Eulophidae). J. Econ. Entomol. 2020, 113, 2399–2406. [Google Scholar] [CrossRef] [PubMed]
- Mikhaela, O.; Nora, C.; Hanna, D.; Wayne, G.; Danica, B. Insecticidal activity of plant powders against the parasitoid, Pteromalus venustus, and its host, the alfalfa leafcutting bee. Insects 2020, 11, 359. [Google Scholar]
- Faheem, A.; Naeem, I.; Syed, M.Z.; Muhammad, K.Q.; Qamar, S.; Khalid, A.K.; Hamed, A.G.; Mohammad, J.A.; Waqar, J.; Muhammad, A.; et al. Comparative insecticidal activity of different plant materials from six common plant species against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Saudi J. Biol. Sci. 2019, 26, 1804–1808. [Google Scholar]
- Ukeh, D.A.; Birkett, M.A.; Bruce, T.J.A.; Allan, E.J.; Pickett, J.A.; Luntz, A.J.M. Behavioural responses of the maize weevil, Sitophilus zeamais, to host (stored-grain) and non-host plant volatiles. Pest Manag. Sci. 2010, 66, 44–50. [Google Scholar] [CrossRef]
- Colinet, D.; Cazes, D.; Belghazi, M.; Gatti, J.; Poirié, M. Extracellular superoxide dismutase in insects: Characterization, function, and interspecific variation in parasitoid wasp venom. J. Biol. Chem. 2011, 286, 40110–40121. [Google Scholar] [CrossRef]
- Felipe, A.D.; Ana, C.P.G.; Hugo, D.P.; Renata, S.G.; Carolina, R.O.; Raquel, L.L.O.; Marta, C.; Carla, R.P.; Didac, S.; Marco, M.; et al. Identification of a selenium-dependent glutathione peroxidase in the blood-sucking insect Rhodnius prolixus. Insect Biochem. Molec. 2016, 69, 105–114. [Google Scholar]
- Guo, D.H.; Luo, J.P.; Zhou, Y.N.; Xiao, H.M.; He, K.; Yin, C.L.; Xu, J.H.; Li, F. ACE: An efficient and sensitive tool to detect insecticide resistance-associated mutations in insect acetylcholinesterase from RNA-Seq data. BMC Bioinformatics 2017, 18, 330. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.G.; Wang, S.; Dou, T.T.; Liu, S.; Li, M.Y.; Hua, R.M.; Li, S.G.; Lin, H.F. Aphicidal activity of Illicium verum fruit extracts and their effects on the acetylcholinesterase and glutathione S-transferases activities in Myzus persicae (Hemiptera: Aphididae). J. Insect Sci. 2016, 16, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Shi, Y.H.; Liao, M.; Xiao, J.J.; Li, X.X.; Zhou, L.J.; Liu, C.W.; Liu, P.; Cao, H.Q. Laboratory and field evaluation of the aphidicidal activity of moso bamboo (Phyllostachys pubescens) leaf extract and identification of the active components. Pest Manag. Sci. 2019, 75, 3167–3174. [Google Scholar] [CrossRef]
- Chen, W.; Gong, L.; Guo, Z.L.; Wang, W.S.; Zhang, H.Y.; Liu, X.Q.; Yu, S.B.; Xiong, L.Z.; Luo, J. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics. Mol. Plant 2013, 6, 1769–1780. [Google Scholar] [CrossRef] [Green Version]
- Oyagbemi, T.O.; Ashafa, A.; Adejinmi, J.O.; Oguntibeju, O.O. Preliminary investigation of acaricidal activity of leaf extract of Nicotiana tabacum on dog tick Rhipicephalus sanguineus. Vet. World 2019, 12, 1624–1629. [Google Scholar] [CrossRef] [Green Version]
- Kristen, S.W.; Jessica, L.B.; Mary, E.L.; Amanda, J.L.R. Effects of host plant phenolic acids and nutrient status on oviposition and feeding of the cabbage white butterfly, Pieris rapae. BIOS 2014, 85, 95–101. [Google Scholar]
- Grzegorz, C.; Bogumił, L.; Paweł, C.; Hubert, S.; Henryk, M.; Robert, K.; Cezary, S. Effect of phenolic acids from black currant, sour cherry and walnut on grain aphid (Sitobion Avenae F.) development. Crop Prot. 2012, 35, 71–77. [Google Scholar]
- Ma, J.Y.; Sun, L.L.; Zhao, H.Y.; Wang, Z.Y.; Zou, L.; Cao, C.W. Functional identification and characterization of GST genes in the Asian gypsy moth in response to poplar secondary metabolites. Pestic. Biochem. Phys. 2021, 176, 104860. [Google Scholar] [CrossRef] [PubMed]
- Li, M.Y.; Gao, X.; Lan, M.X.; Liao, X.B.; Su, F.W.; Fan, L.M.; Zhao, Y.H.; Hao, X.J.; Wu, G.X.; Ding, X. Inhibitory activities of flavonoids from Eupatorium adenophorum against acetylcholinesterase. Pestic. Biochem. Phys. 2020, 170, 104701. [Google Scholar] [CrossRef] [PubMed]
- Kariyat, R.R.; Gaffoor, I.; Sattar, S.; Dixon, C.W.; Frock, N.; Moen, J.; De, M.C.M.; Mescher, M.C.; Thompson, G.A.; Chopra, S. Sorghum 3-deoxyanthocyanidin flavonoids confer resistance against corn leaf aphid. J. Chem. Ecol. 2019, 45, 502–514. [Google Scholar] [CrossRef]
- Zou, C.S.; Wang, Y.J.; Zou, H.; Ding, N.; Geng, N.N.; Cao, C.W.; Zhang, G.C. Sanguinarine in Chelidonium majus induced antifeeding and larval lethality by suppressing food intake and digestive enzymes in Lymantria dispar. Pestic. Biochem. Phys. 2018, 153, 9–16. [Google Scholar] [CrossRef]
- Noor, H.M.S.; Norhidayah, A.; Rahayu, M.A.; Adilah, A.; Nur, H.I. Botanical insecticide of chili and ginger extract on Nilaparvata lugens, brown planthopper. Mat. Sci. Eng. 2020, 932, 012001. [Google Scholar]
- Keosaeng, K.; Songoen, W.; Yooboon, T.; Bullangpoti, V.; Pluempanupat, W. Insecticidal activity of isolated gingerols and shogaols from Zingiber officinale Roscoe rhizomes against Spodoptera spp. (Lepidoptera: Noctuidae). Nat. Prod. Res. 2022, 36, 1–6. [Google Scholar] [CrossRef]
- Leticie, Z.S.P.; Jonatas, L.D.; Ricardo, M.A.F.; Anna, E.M.F.M.O.; Rodrigo, A.S.C.; Silvia, M.M.F.; José, C.T.C.; Caio, P.F.; Raimundo, N.P.S.; Raquel, S.A. Nanosuspension of quercetin: Preparation, characterization and effects against Aedes aegypti larvae. Rev. Bras. Farmacogn. 2018, 28, 618–625. [Google Scholar]
- Shivali, P.; Sumit, S.; Satwinder, K.S. Inhibitory effect of chrysin on growth, development and oviposition behaviour of melon fruit fly, Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae). Phytoparasitica 2022, 50, 151–162. [Google Scholar]
- Meriam, M.; Khemais, A.; Amel, B.H.; Iteb, B.; Mouna, M.; Fatma, A.; Monia, B.H.K. Physiological, histopathological and cellular immune effects of Pergularia tomentosa extract on Locusta migratoria nymphs. J. Integr. Agric. 2019, 18, 2823–2834. [Google Scholar]
- Xin, J.J.; Yu, W.X.; Yi, X.Q.; Gao, J.P.; Gao, X.W.; Zeng, X.P. Sublethal effects of sulfoxaflor on the fitness of two species of wheat aphids, Sitobion avenae (F.) and Rhopalosiphum padi (L.). J. Integr. Agric. 2019, 18, 1613–1623. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Zhang, B.W.; Yang, J.; Zou, C.S.; Li, T.; Zhang, G.C.; Chen, G.S. Detoxification, antioxidant, and digestive enzyme activities and gene expression analysis of Lymantria dispar larvae under carvacrol. J. Asia Pac. Entomol. 2020, 24, 208–216. [Google Scholar] [CrossRef]
- Karatolos, N.; Williamson, M.S.; Denholm, I.; Gorman, K.; Constant, R.; Nauen, R. Resistance to spiromesifen in Trialeurodes vaporariorum is associated with a single amino acid replacement in its target enzyme acetylcoenzyme A carboxylase. Insect Mol. Biol. 2012, 21, 327–334. [Google Scholar] [CrossRef]
- Czerniewicz, P.; Chrzanowski, G. The effect of Santolina chamaecyparissus and Tagetes patula essential oils on biochemical markers of oxidative stress in aphids. Insects 2021, 12, 360. [Google Scholar] [CrossRef]
- Hu, Z.D.; Feng, X.; Lin, Q.S.; Chen, H.Y.; Li, Z.Y.; Yin, F.; Liang, P.; Gao, X.W. Biochemical mechanism of chlorantraniliprole resistance in the diamondback moth, Plutella xylostella Linnaeus. J. Integr. Agric. 2014, 13, 2452–2459. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, T.; Matsumoto, H.; Hayakawa, Y. Heat stress hardening of oriental armyworms is induced by a transient elevation of reactive oxygen species during sublethal stress. Arch. Insect Biochem. 2017, 96, e21421. [Google Scholar] [CrossRef]
- Carlos, L.C.; Mariano, M.V.; Jose, S.C.; Juan, R.S.; Eduardo, A. Insect growth regulatory activity of some extracts and compounds from Parthenium argentatum on fall armyworm Spodoptera frugiperda. Z. Naturforsch. C 2015, 56, 95–105. [Google Scholar]
NO | Class I a | Class II b | Proportion (%) c |
---|---|---|---|
1 | Phenolic acids | Phenolic acids | 41.5% |
2 | Flavonoids | Chalcones | 27.1% |
Sinensetin | |||
Dihydroflavone | |||
Dihydroflavonol | |||
Flavonoids | |||
Flavonols | |||
Flavonoid carbonoside | |||
Flavanols | |||
Isoflavones | |||
3 | Alkaloids | Phenolamine | 11.9% |
Quinoline alkaloids | |||
Alkaloids | |||
Plumerane | |||
4 | Quinones | Quinones | 2.0% |
5 | Terpenoids | Sesquiterpenoids | 0.9% |
Monoterpenoids | |||
Ditepenoids | |||
Triterpene | |||
Terpene | |||
6 | Lignans and Coumarins | Lignans | 0.6% |
Coumarins | |||
7 | Tannins | Tannins | 0.5% |
8 | Others | Others | 15.5% |
Xanthone |
NO. | Compounds | MF a | MW b | Proportion (%) c | CAS Rn d | |
---|---|---|---|---|---|---|
Phenolic acids | 1 | Protocatechualdehyde | C7H6O3 | 138 | 4.62 | 139-85-5 |
2 | 4-Hydroxybenzoic acid | C7H6O3 | 138 | 6.50 | 99-96-7 | |
3 | Protocatechuic acid | C7H6O4 | 154 | 3.61 | 99-50-3 | |
4 | p-Coumaroylmalic acid | C13H12O7 | 280 | 4.77 | NA | |
5 | [6]-Gingerol | C17H26O4 | 294 | 0.66 | 23513-14-6 | |
6 | [8]-Shogaol | C19H28O3 | 304 | 5.25 | 36700-45-5 | |
7 | [8]-Paradol | C19H30O3 | 306 | 4.12 | 27113-23-1 | |
8 | Feruloylmalic acid | C14H14O8 | 310 | 11.67 | NA | |
9 | [10]-Paradol | C21H34O3 | 334 | 7.17 | 36700-48-8 | |
10 | [4]-Gingerdiol | C19H28O6 | 352 | 4.30 | 863780-88-5 | |
Flavonoids | 1 | Pachypodol | C18H16O7 | 344 | 5.73 | 33708-72-4 |
2 | Ayanin | C18H16O7 | 344 | 5.62 | 572-32-7 | |
3 | Quercetin-4′-O-glucoside | C21H20O12 | 464 | 6.00 | 20229-56-5 | |
4 | Quercetin-3-O-glucoside | C21H20O12 | 464 | 8.96 | 482-35-9 | |
5 | Quercetin-7-O-glucoside | C21H20O12 | 464 | 4.97 | 491-50-9 | |
6 | Hesperetin-5-O-glucoside | C22H24O11 | 464 | 5.69 | 69651-80-5 | |
7 | Apigenin-6,8-di-C-glucoside | C27H30O15 | 594 | 4.15 | 23666-13-9 | |
8 | Quercetin-3-O-glucoside-7-O-rhamnoside | C27H30O16 | 610 | 9.62 | NA | |
9 | Quercetin-3-O-rutinoside | C33H40O20 | 756 | 12.88 | 55696-57-6 |
Treatment (mg·mL−1) | 12 h | 24 h | ||
---|---|---|---|---|
Mortality (%) a | Corrected Mortality (%) b | Mortality (%) | Corrected Mortality (%) | |
GSE | 39.15 ± 3.40 a | 35.01 ± 4.22 a | 66.14 ± 2.71 a | 56.79 ± 0.00 a |
6-gingerol | 12.28 ± 6.14 b | 0.00 ± 0.00 b | 33.00 ± 3.66 bc | 23.86 ± 2.71 c |
quercetin-3-O-rutinoside | 28.78 ± 2.21 ab | 23.86 ± 2.71 a | 45.00 ± 3.33 b | 37.22 ± 2.01 b |
CK c | 12.28 ± 6.14 b | 0.00 ± 0.00 b | 21.14 ± 2.71 c | 0.00 ± 0.00 d |
F | 7.59 | 49.19 | 37.63 | 199.784 |
df | 3, 8 | 3, 8 | 3, 8 | 3, 8 |
p | 0.01 | <0.0001 | <0.0001 | <0.0001 |
Extract Concentration (mg·mL−1) | 3 d | 7 d | Longevity (d) | Ratio | ||
---|---|---|---|---|---|---|
Litter Size | Ratio a | Litter Size | Ratio | |||
5 | 14.67 ± 0.33 b | 0.80 | 50.33 ± 2.03 b | 0.83 | 9.80 ± 0.42 b | 0.62 |
10 | 13.00 ± 0.58 b | 0.71 | 44.00 ± 1.53 b | 0.72 | 9.40 ± 0.60 b | 0.59 |
15 | 7.00 ± 0.58 c | 0.38 | 26.67 ± 1.76 c | 0.44 | 7.80 ± 1.10 b | 0.49 |
CK b | 18.33 ± 0.88 a | 1.00 | 61.00 ± 0.57 a | 1.00 | 15.93 ± 1.46 a | 1.00 |
F | 57.41 | - | 83.67 | - | 13.14 | - |
df | 3, 8 | - | 3, 8 | - | 3, 8 | - |
p | <0.0001 | - | <0.0001 | - | 0.002 | - |
Extract Concentration (mg·mL−1) | 3 d | 7 d | 3 d | 7 d | ||||
---|---|---|---|---|---|---|---|---|
Molting | Ratio a | Molting | Ratio | Mortality (%) b | Corrected Mortality (%) c | Mortality (%) | Corrected Mortality (%) | |
5 | 1.33 ± 0.33 ab | 0.57 | 25.00 ± 0.58 b | 0.65 | 12.83 ± 0.09 c | 12.83 ± 0.09 c | 31.52 ± 1.10 c | 22.43 ± 0.95 c |
10 | 1.00 ± 0.00 b | 0.43 | 12.67 ± 0.88 c | 0.33 | 22.73 ± 0.27 b | 22.73 ± 0.27 b | 41.23 ± 1.88 b | 33.60 ± 1.76 b |
15 | 0.67 ± 0.33 b | 0.29 | 6.67 ± 0.33 d | 0.17 | 46.49 ± 1.34 a | 46.49 ± 1.34 a | 67.02 ± 1.14 a | 58.02 ± 0.67 a |
CK d | 2.33 ± 0.33 a | 1.00 | 38.67 ± 0.88 a | 1.00 | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 20.92 ± 0.48 d | 0.00 ± 0.00 d |
F | 6.22 | - | 401.83 | - | 821.99 | 821.99 | 247.15 | 522.36 |
df | 3, 8 | - | 3, 8 | - | 3, 8 | 3, 8 | 3, 8 | 3, 8 |
p | 0.017 | - | <0.0001 | - | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Xi, K.; Wang, Y.; Ma, J.; Huang, X.; Liu, R.; Cai, X.; Zhu, Y.; Yin, J.; Jia, Q.; et al. Evaluation of the Contact Toxicity and Physiological Mechanisms of Ginger (Zingiber officinale) Shoot Extract and Selected Major Constituent Compounds against Melanaphis sorghi Theobald. Horticulturae 2022, 8, 944. https://doi.org/10.3390/horticulturae8100944
Liu X, Xi K, Wang Y, Ma J, Huang X, Liu R, Cai X, Zhu Y, Yin J, Jia Q, et al. Evaluation of the Contact Toxicity and Physiological Mechanisms of Ginger (Zingiber officinale) Shoot Extract and Selected Major Constituent Compounds against Melanaphis sorghi Theobald. Horticulturae. 2022; 8(10):944. https://doi.org/10.3390/horticulturae8100944
Chicago/Turabian StyleLiu, Xuli, Keyong Xi, Yanhong Wang, Jiawei Ma, Xinzheng Huang, Ran Liu, Xiaodong Cai, Yongxing Zhu, Junliang Yin, Qie Jia, and et al. 2022. "Evaluation of the Contact Toxicity and Physiological Mechanisms of Ginger (Zingiber officinale) Shoot Extract and Selected Major Constituent Compounds against Melanaphis sorghi Theobald" Horticulturae 8, no. 10: 944. https://doi.org/10.3390/horticulturae8100944
APA StyleLiu, X., Xi, K., Wang, Y., Ma, J., Huang, X., Liu, R., Cai, X., Zhu, Y., Yin, J., Jia, Q., & Liu, Y. (2022). Evaluation of the Contact Toxicity and Physiological Mechanisms of Ginger (Zingiber officinale) Shoot Extract and Selected Major Constituent Compounds against Melanaphis sorghi Theobald. Horticulturae, 8(10), 944. https://doi.org/10.3390/horticulturae8100944