Volatile Compounds and Total Phenolic Content of Perilla frutescens at Microgreens and Mature Stages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Culture Conditions
2.2. Analysis of Volatile Organic Compounds
2.3. Total Phenols Determination
2.4. Antioxidant Activity Determination
2.5. Statistics
3. Results
3.1. Phenolic Content and Antioxidant Activity
3.2. Volatile Organic Compounds Emitted by the Two Varieties of Chinese Basil
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, Z.; Lester, G.E.; Luo, Y.; Wang, Q. Assessment of Vitamin and Carotenoid Concentrations of Emerging Food Products: Edible Microgreens. J. Agric. Food Chem. 2012, 60, 7644–7651. [Google Scholar] [CrossRef]
- Renna, M.; Di Gioia, F.; Leoni, B.; Mininni, C.; Santamaria, P. Culinary Assessment of Self-Produced Microgreens as Basic Ingredients in Sweet and Savory Dishes. J. Culin. Sci. Technol. 2017, 15, 126–142. [Google Scholar] [CrossRef]
- Caracciolo, F.; El-Nakhel, C.; Raimondo, M.; Kyriacou, M.C.; Cembalo, L.; De Pascale, S.; Rouphael, Y. Sensory Attributes and Consumer Acceptability of 12 Microgreens Species. Agronomy 2020, 10, 1043. [Google Scholar] [CrossRef]
- Di Gioia, F.; Reindeer, M.; Santamaria, P. Sprouts, microgreens and baby leaf vegetables. In Minimally Processed Refrigerated Fruits and Vegetables; Yildiz, F., Wiley, R.C., Eds.; Springer: Boston, MA, USA, 2017; pp. 403–432. [Google Scholar] [CrossRef]
- Ahmed, H.M. Ethnomedicinal, Phytochemical and Pharmacological Investigations of Perilla frutescens (L.) Britt. Molecules 2019, 24, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Qiu, J.F.; Ma, L.J.; Hu, Y.J.; Li, P.; Wan, J.B. Phytochemical and Phytopharmacological Review of Perilla frutescens L. (Labiatae), a Traditional Edible-Medicinal Herb in China. Food Chem. Toxicol. 2017, 108, 375–391. [Google Scholar] [CrossRef]
- Ahmed, H.M.; Tavaszi-Sarosi, S. Identification and Quantification of Essential Oil Content and Composition, Total Polyphenols and Antioxidant Capacity of Perilla frutescens (L.) Britt. Food Chem. 2019, 275, 730–738. [Google Scholar] [CrossRef] [PubMed]
- He, Y.K.; Yao, Y.Y.; Chang, Y.N. Characterization of Anthocyanins in Perilla frutescens Var. Acuta Extract by Advanced UPLC-ESI-IT-TOF-MSn Method and Their Anticancer Bioactivity. Molecules 2015, 20, 9155–9169. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kang, H.; Choi, H.; Jo, A.; Oh, D.R.; Kim, Y.; Im, S.; Lee, S.G.; Jeong, K.I.; Ryu, G.C.; et al. Aqueous Extract of Perilla frutescens Var. Acuta Relaxes the Ciliary Smooth Muscle by Increasing NO/CGMP Content In Vitro and In Vivo. Molecules 2018, 23, 1777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.; Lee, J.; Ju, J. Perilla frutescens Britton Var. Frutescens Leaves Attenuate Dextran Sulfate Sodium-Induced Acute Colitis in Mice and Lipopolysaccharide-Stimulated Angiogenic Processes in Human Umbilical Vein Endothelial Cells. Food Sci. Biotechnol. 2020, 29, 131–140. [Google Scholar] [CrossRef]
- Lee, J.E.; Kim, N.; Yeo, J.Y.; Seo, D.G.; Kim, S.; Lee, J.S.; Hwang, K.W.; Park, S.Y. Anti-Amyloidogenic Effects of Asarone Derivatives from Perilla frutescens Leaves against Beta-Amyloid Aggregation and Nitric Oxide Production. Molecules 2019, 24, 4297. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, M.; Tanabe, Y.; Hossain, S.; Matsuzaki, K.; Ohno, M.; Kato, S.; Katakura, M.; Shido, O. Intake of Alpha-Linolenic Acid-Rich Perilla frutescens Leaf Powder Decreases Home Blood Pressure and Serum Oxidized Low-Density Lipoprotein in Japanese Adults. Molecules 2020, 25, 2099. [Google Scholar] [CrossRef]
- Ji, W.W.; Li, R.P.; Li, M.; Wang, S.Y.; Zhang, X.; Niu, X.X.; Li, W.; Yan, L.; Wang, Y.; Fu, Q.; et al. Antidepressant-like effect of essential oil of Perilla frutescens in a chronic, unpredictable, mild stress-induced depression model mice. Chin. J. Nat. Med. 2014, 12, 753–759. [Google Scholar] [CrossRef]
- Rouphael, Y.; Kyriacou, M.C.; Carillo, P.; Pizzolongo, F.; Romano, R.; Sifola, M.I. Chemical Eustress Elicits Tailored Responses and Enhances the Functional Quality of Novel Food Perilla frutescens. Molecules 2019, 24, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negro, C.; Dimita, R.; Min Allah, S.; Miceli, A.; Luvisi, A.; Blando, F.; De Bellis, L.; Accogli, R. Phytochemicals and Volatiles in Developing Pelargonium ‘Endsleigh’ Flowers. Horticulturae 2021, 7, 419. [Google Scholar] [CrossRef]
- Johnson, R.D., III (Ed.) Standard Reference Database Number 101; Computational Chemistry Comparison and Benchmark Database. NIST: Gaithersburg, MD, USA, 2015. [CrossRef]
- Zhao, Y.Z.; Li, Z.G.; Tian, W.L.; Fang, X.M.; Su, S.K.; Peng, W.J. Differential Volatile Organic Compounds in Royal Jelly Associated with Different Nectar Plants. J. Integr. Agric. 2016, 15, 1157–1165. [Google Scholar] [CrossRef] [Green Version]
- Negro, C.; Aprile, A.; De Bellis, L.; Miceli, A. Nutraceutical Properties of Mulberries Grown in Southern Italy (Apulia). Antioxidants 2019, 8, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oki, T.; Kobayashi, M.; Nakamura, T.; Okuyama, A.; Masuda, M.; Shiratsuchi, H.; Suda, I. Changes in Radical-Scavenging Activity and Components of Mulberry Fruit during Maturation. J. Food Sci. 2006, 71, C18–C22. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Beauchamp, C.; Fridovich, I. Superoxide Dismutase: Improved Assays and an Assay Applicable to Acrylamide Gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Flavornet. Available online: http://flavornet.org (accessed on 25 November 2021).
- The Good Scents Company Information System. Available online: http://www.thegoodscentscompany.com (accessed on 25 November 2021).
- FooDB Resource. Available online: www.foodb.ca (accessed on 25 November 2021).
- Li, Z.; Howell, K.; Fang, Z.; Zhang, P. Sesquiterpenes in Grapes and Wines: Occurrence, Biosynthesis, Functionality, and Influence of Winemaking Processes. Compr. Rev. Food Sci. Food Saf. 2020, 19, 247–281. [Google Scholar] [CrossRef]
- Chen, Q.-C.; Zhu, Y.; Yan, H.; Chen, M.; Xie, D.-C.; Wang, M.-Q.; Ni, D.-J.; Lin, Z. Identification of Aroma Composition and Key Odorants Contributing to Aroma Characteristics of White Teas. Molecules 2020, 25, 6050. [Google Scholar] [CrossRef] [PubMed]
- Radácsi, P.; Sárosi, S.; Szomor, L.Á.; Németh-Zámbori, É. Comparison of the Production and Chemical Constituents of Five Perilla frutescens (L.) Britt. Accessions. Acta Biol. Hung. 2017, 68, 453–465. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.H.; Jhou, Y.J.; Wu, C.W.; Chang, Y. Sen. Growth, Physiological, and Antioxidant Characteristics in Green and Red Perilla frutescens Varieties as Affected by Temperature- and Water-Stressed Conditions. Sci. Hortic. 2020, 274, 109682. [Google Scholar] [CrossRef]
- Wang, Z.; Tu, Z.; Xie, X.; Cui, H.; Kong, K.W.; Zhang, L. Perilla frutescens Leaf Extract and Fractions: Polyphenol Composition, Antioxidant, Enzymes (Alpha-Glucosidase, Acetylcholinesterase, and Tyrosinase) Inhibitory, Anticancer, and Antidiabetic Activities. Foods 2021, 10, 315. [Google Scholar] [CrossRef] [PubMed]
- Jimoh, M.O.; Afolayan, A.J.; Lewu, F.B. Antioxidant and phytochemical activities of Amaranthus caudatus L. harvested from different soils at various growth stages. Sci. Rep. 2019, 9, 12965. [Google Scholar] [CrossRef]
- Maina, S.; Ryu, D.H.; Bakari, G.; Misinzo, G.; Nho, C.W.; Kim, H.-Y. Variation in Phenolic Compounds and Antioxidant Activity of Various Organs of African Cabbage (Cleome gynandra L.) Accessions at Different Growth Stages. Antioxidants 2021, 10, 1952. [Google Scholar] [CrossRef] [PubMed]
- Piluzza, G.; Bullitta, S. Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area. Pharm. Biol. 2011, 49, 240–247. [Google Scholar] [CrossRef]
- Lee, J.; Kim, D.S.; Cho, J.; Hong, S.J.; Pan, J.H.; Kim, J.K.; Shin, E.C. Perilla frutescens Britton: A Comprehensive Study on Flavor/Taste and Chemical Properties during the Roasting Process. Molecules 2019, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Erasto, P.; Viljoen, A.M. Limonene—A Review: Biosynthetic, Ecological and Pharmacological Relevance. Nat. Prod. Commun. 2008, 3, 1934578X0800300728. [Google Scholar] [CrossRef] [Green Version]
- González-Mas, M.C.; Rambla, J.L.; López-Gresa, M.P.; Amparo Blázquez, M.; Granell, A. Volatile Compounds in Citrus Essential Oils: A Comprehensive Review. Front. Plant Sci. 2019, 10, 1–18. [Google Scholar] [CrossRef]
- Ravichandran, C.; Badgujar, P.C.; Gundev, P.; Upadhyay, A. Review of Toxicological Assessment of D-Limonene, a Food and Cosmetics Additive. Food Chem. Toxicol. 2018, 120, 668–680. [Google Scholar] [CrossRef] [PubMed]
- Dudareva, N.; Pichersky, E.; Gershenzon, J. Biochemistry of Plant Volatiles. Plant Physiol. 2004, 135, 1893–1902. [Google Scholar] [CrossRef] [Green Version]
- Ameye, M.; Allmann, S.; Verwaeren, J.; Smagghe, G.; Haesaert, G.; Schuurink, R.C.; Audenaert, K. Green leaf volatile production by plants: A meta-analysis. New Phytol. 2018, 220, 666–683. [Google Scholar] [CrossRef]
- Pichersky, E.; Dudareva, N. Biology of Plant Volatiles, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Tian, J.; Zeng, X.; Zhang, S.; Wang, Y.; Zhang, P.; Lü, A.; Peng, X. Regional variation in components and antioxidant and antifungal activities of Perilla frutescens essential oils in China. Ind. Crops Prod. 2014, 59, 69–79. [Google Scholar] [CrossRef]
- Ahmed, H.M.; Al-Zubaidy, A.M.A. Exploring natural essential oil components and antibacterial activity of solvent extracts from twelve Perilla frutescens L. Genotypes. Arab. J. Chem. 2020, 13, 7390–7402. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, J.; Guo, Y. Analysis of Volatile Components of Fresh Perilla frutescens (L.) Britt. Var. Acuta (Thunb.) Kudo by Headspace Gc/Ms. J. Essent. Oil Res. 2004, 16, 435–436. [Google Scholar] [CrossRef]
- Tanaka, F.; Miyazawa, T.; Ujiie, Y. Effect of cultivation conditions on odor character and chemical profile of shiso (Perilla frutescens) flavor. In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; Available online: https://www.iuss.org/19th%20WCSS/Symposium/pdf/1391.pdf (accessed on 25 November 2021).
- Laureati, M.; Buratti, S.; Bassoli, A.; Borgonovo, G.; Pagliarini, E. Discrimination and characterisation of three cultivars of Perilla frutescens by means of sensory descriptors and electronic nose and tongue analysis. Food Res. Int. 2010, 43, 959–964. [Google Scholar] [CrossRef]
- El-Sayed, A.M. The Pherobase: Database of Pheromones and Semiochemicals. 2021. Available online: http://www.pherobase.com (accessed on 25 November 2021).
P. frutescens var. crispa | P. frutescens var. frutescens | |
---|---|---|
(mg/g DW) | (mg/g DW) | |
Microgreens stage | 15.42 ± 0.51 b | 9.94 ± 0.59 b |
4 weeks stage | 20.40 ± 0.35 a | 15.47 ± 0.15 a |
P. frutescens var. crispa | P. frutescens var. frutescens | |||||
---|---|---|---|---|---|---|
DPPH TE (µmol/g DW) | FRAP TE (µmol/g DW) | Superoxide Anion IC50 (g DW) | DPPH TE (µmol/g DW) | FRAP TE (µmol/g DW) | Superoxide Anion IC50 (g DW) | |
Microgreens stage | 0.81 ± 0.16 b | 4.12 ± 0.7 a | 9.1 ± 0.2 a | 0.62 ± 0.08 b | 3.62 ± 0.5 a | 12.2 ± 0.3 a |
4 weeks stage | 1.18 ± 0.12 a | 5.53 ± 0.8 a | 7.2 ± 0.2 b | 0.89 ± 0.08 a | 4.56 ± 0.5 a | 8.1 ± 0.2 b |
No. | R.I. | Compound Name | Peak Area % | ng/g FW | ||
---|---|---|---|---|---|---|
Microgreen Stage | 4 Weeks Stage | Microgreen Stage | 4 Weeks Stage | |||
1 | 1009 | 3-Carene | 6.02 | 3.98 | 14.26 | 5.06 |
2 | 1018 | p-Mentha-1(7),8-diene | 3.61 | 2.57 | 8.54 | 3.27 |
3 | 1021 | unknown | 0.69 | 0.65 | 1.62 | 0.82 |
4 | 1025 | unknown | 1.76 | 3.11 | 4.16 | 3.95 |
5 | 1027 | unknown | 0.66 | 1.55 | ||
6 | 1033 | D-Limonene | 51.14 | 59.63 | 121.11 | 75.82 |
7 | 1045 | unknown | 0.55 | 1.31 | ||
8 | 1143 | unknown | 13.13 | 1.82 | 31.09 | 2.31 |
9 | 1218 | unknown | 2.11 | 5.00 | ||
10 | 1258 | unknown | 0.52 | 1.62 | 1.24 | 2.06 |
11 | 1285 | α-Perilla aldehyde | 3.89 | 3.21 | 9.20 | 4.08 |
12 | 1305 | unknown | 0.81 | 1.92 | ||
13 | 1358 | unknown | 0.52 | 1.23 | ||
14 | 1385 | unknown | 0.66 | 1.56 | ||
15 | 1392 | Isocaryophyllene | 3.85 | 19.36 | 9.11 | 24.62 |
16 | 1401 | unknown | 1.25 | 1.15 | 2.97 | 1.47 |
17 | 1418 | 2-Allyl-1.4-dimethoxybenzene | 6.86 | 1.16 | 16.25 | 1.48 |
18 | 1452 | cis-Methyl isoeugenol | 1.33 | 1.74 | 3.14 | 2.21 |
19 | 1537 | unknown | 0.66 | 1.57 | ||
Total | 236.83 | 127.16 |
No. | R.I. | Compound Name | Peak Area % | ng/g FW |
---|---|---|---|---|
1 | 985 | unknown | 1.99 | 22.58 |
2 | 1102 | Perillene | 13.63 | 154.81 |
3 | 1225 | unknown | 0.84 | 9.52 |
4 | 1265 | 2-Hexanoylfuran | 56.27 | 639.10 |
5 | 1289 | unknown | 1.47 | 16.67 |
6 | 1369 | unknown | 5.99 | 68.01 |
7 | 1385 | unknown | 1.16 | 13.19 |
8 | 1410 | Methyl-eugenol | 1.98 | 22.54 |
9 | 1417 | β-Caryophyllene | 5.03 | 57.08 |
10 | 1421 | unknown | 1.56 | 17.68 |
11 | 1456 | trans-Methyl-Isoeugenol | 4.90 | 55.62 |
12 | 1491 | Farnesene | 0.97 | 11.05 |
13 | 1493 | cis-Methyl-Isoeugenol | 2.26 | 25.70 |
14 | 1531 | cis-Calamenene | 0.80 | 9.09 |
15 | 1668 | unknown | 0.59 | 6.67 |
16 | 1674 | Cadalene | 0.57 | 6.48 |
Total | 1135.80 |
Compound No. | Name | Percept: Odor/Flavor |
---|---|---|
1 | 3-Carene | Odor: lemon, resin [22] Odor Type: citrus; citrus terpenic herbal pine solvent resinous phenolic cypress medicinal woody [23] Flavor Type: citrus; citrus pine terpenic herbal resinous tropical peppery juniper wasabi [23] |
2 | p-Mentha-1(7),8-diene | Not found |
6 | D-Limonene | Odor: lemon, orange [22], mint [24] Odor Type: citrus; citrus orange fresh sweet [23] Flavor Type: citrus; sweet orange citrus terpenic [23] |
11 | α-Perilla aldehyde | Odor: spice [22] Odor Type: herbal; fresh green herbal grassy sweet minty cumin [23] Flavor Type: spicy; woody, spicy, waxy, sweet, citrus, lime and aldehydic [23] |
15 | Isocaryophyllene | Odor: wood [22] Odor Type: woody; woody spicy [23] |
17 | 2-Allyl-1,4-dimethoxybenzene | Not found, but probably similar to Methyleugenol (4-Allyl-1,2-dimethoxybenzene) |
18 | cis- Methyl isoeugenol | Odor Type: spicy; spicy clove blossom carnation woody [23] Flavor Type: spicy; spicy warm clove resinous galanga smoky woody powdery [23] |
Compound No. | Name | Percepts: Odor/Flavor |
---|---|---|
2 | Perillene | Odor: woody [23]; woody, flowery, citrus [24] |
4 | 2-Hexanoylfuran | Odor Type: fruity; sweet fruity ketonic green apricot peach [23] Flavor Type: fruity; sweet fruity green waxy beany [23] |
8 | Methyl Eugenol (4-Allyl-1,2-dimethoxybenzene) | Odor: clove, spice [22] Odor Type: spicy; sweet fresh warm spicy clove carnation cinnamon [23] Flavor Type: spicy; spicy cinnamon clove fresh peppery woody [23] |
9 | β-Caryophyllene | Odor: wood, spice [22] Odor Type: spicy; sweet woody spicy clove dry [23] Flavor Type: spicy; spicy clove woody nut skin powdery peppery [23] |
11 | trans-Methyl-Isoeugenol | Odor Type: spicy; spicy clove blossom carnation woody [23] Flavor Type: spicy; spicy clove resinous galanga smoky woody powdery [23] |
12 | Farnesene | Odor: wood citrus sweet [22] Odor Type: woody; citrus herbal lavender bergamot myrrh neroli green [23] Flavor Type: green; fresh green vegetable celery hay fatty tropical fruity [23] |
13 | cis-Methyl-Isoeugenol | Odor Type: spicy; spicy clove blossom carnation woody [23] Flavor Type: spicy; spicy clove resinous galanga smoky woody powdery [23] |
14 | cis-Calamenene | Odor: herb, spice [22,23]. Herbal, spicy and savory [25]. Fresh, minty [26] |
16 | Cadalene | Not found |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimita, R.; Min Allah, S.; Luvisi, A.; Greco, D.; De Bellis, L.; Accogli, R.; Mininni, C.; Negro, C. Volatile Compounds and Total Phenolic Content of Perilla frutescens at Microgreens and Mature Stages. Horticulturae 2022, 8, 71. https://doi.org/10.3390/horticulturae8010071
Dimita R, Min Allah S, Luvisi A, Greco D, De Bellis L, Accogli R, Mininni C, Negro C. Volatile Compounds and Total Phenolic Content of Perilla frutescens at Microgreens and Mature Stages. Horticulturae. 2022; 8(1):71. https://doi.org/10.3390/horticulturae8010071
Chicago/Turabian StyleDimita, Rosanna, Samar Min Allah, Andrea Luvisi, Davide Greco, Luigi De Bellis, Rita Accogli, Carlo Mininni, and Carmine Negro. 2022. "Volatile Compounds and Total Phenolic Content of Perilla frutescens at Microgreens and Mature Stages" Horticulturae 8, no. 1: 71. https://doi.org/10.3390/horticulturae8010071
APA StyleDimita, R., Min Allah, S., Luvisi, A., Greco, D., De Bellis, L., Accogli, R., Mininni, C., & Negro, C. (2022). Volatile Compounds and Total Phenolic Content of Perilla frutescens at Microgreens and Mature Stages. Horticulturae, 8(1), 71. https://doi.org/10.3390/horticulturae8010071