Effects of Selenium on the Chlorophylls, Gas Exchange, Antioxidant Activity and Amino Acid Composition of Lettuce Grown under an Aquaponics System
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Plant Growth
2.3. Gas Exchange and Fluorescence
2.4. Chlorophylls and β-Carotene
2.5. Total Nitrogen
2.6. Antioxidant Activity (ABTS+*)
2.7. Amino Acids
2.8. Statistical Analysis
3. Results and Discussion
3.1. Plant Growth
3.2. Gas Exchange and Fluorescence
3.3. Chlorophyll Content and β-Carotene
3.4. Total Nitrogen
3.5. Antioxidant Activity (ABTS+*)
3.6. Amino Acid Content
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sánchez-Bravo, P.; Chambers, E.V.; Noguera-Artiaga, L.; Sendra, E.; Chambers, E., IV; Carbonell-Barrachina, Á.A. Consumer understanding of sustainability concept in agricultural products. Food Qual. Prefer. 2021, 89, 104136. [Google Scholar] [CrossRef]
- Darré, E.; Cadenazzi, M.; Mazzilli, S.R.; Rosas, J.F.; Picasso, V.D. Environmental impacts on water resources from summer crops in rainfed and irrigated systems. J. Environ. Manag. 2019, 232, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Stefanelli, D.; Goodwin, I.; Jones, R. Minimal nitrogen and water use in horticulture: Effects on quality and content of selected nutrients. Food Res. Int. 2010, 43, 1833–1843. [Google Scholar] [CrossRef]
- Bailey, D.S.; Ferrarezi, R.S. Valuation of vegetable crops produced in the UVI Commercial Aquaponic System. Aquac. Rep. 2017, 7, 77–82. [Google Scholar] [CrossRef]
- Preciado-Rangel, P.; García-Villela, K.M.; Fortis-Hernández, M.; Valencia, R.T.; Puente, E.O.R.; Esparza-Rivera, J.R. Nutraceutical quality of cantaloupe melon fruits produced under fertilization with organic nutrient solutions. Cienc. Investig. Agrar. 2016, 42, 475–481. [Google Scholar] [CrossRef][Green Version]
- Roosta, H.R.; Hamidpour, M. Effects of foliar application of some macro- and micro-nutrients on tomato plants in aquaponic and hydroponic systems. Sci. Hortic. 2011, 129, 396–402. [Google Scholar] [CrossRef]
- Sallenave, R. Important Water Quality Parameters in Aquaponics Systems; NM State University, Cooperative Extension Service, College of Agricultural, Consumer and Environmental Sciences: Las Cruces, NM, USA, 2016. [Google Scholar]
- Piñero, M.C.; Otálora, G.; Collado-González, J.; López-Marín, J.; Del Amor, F.M. Differential effects of aquaponic production system on melon (Cucumis melo L.) fruit quality. J. Agric. Food Chem. 2020, 68, 6511–6519. [Google Scholar] [CrossRef]
- Sattar, A.; Cheema, M.A.; Sher, A.; Ijaz, M.; Ul-Allah, S.; Nawaz, A.; Abbas, T.; Ali, Q. Physiological and biochemical attributes of bread wheat (Triticum aestivum L.) seedlings are influenced by foliar application of silicon and selenium under water deficit. Acta Physiol. Plant. 2019, 41, 146. [Google Scholar] [CrossRef]
- Guerrero, B.; Llugany, M.; Palacios, O.; Valiente, M. Dual effects of different selenium species on wheat. Plant Physiol. Biochem. 2014, 83, 300–307. [Google Scholar] [CrossRef]
- Zhang, M.; Tang, S.; Huang, X.; Zhang, F.; Pang, Y.; Huang, Q.; Yi, Q. Selenium uptake, dynamic changes in selenium content and its influence on photosynthesis and chlorophyll fluorescence in rice (Oryza sativa L.). Environ. Exp. Bot. 2014, 107, 39–45. [Google Scholar] [CrossRef]
- Yuan, L.; Zhang, R.; Ma, X.; Yang, L.; Zheng, Q.; Chen, D.; Li, M.; Fan, T.; Liu, Y.; Pan, L.; et al. Selenium accumulation, antioxidant enzyme levels, and amino acids composition in Chinese mitten crab (Eriocheir sinensis) fed selenium-biofortified corn. Nutrients 2018, 10, 318. [Google Scholar] [CrossRef] [PubMed]
- Lara, T.S.; de Lima Lessa, J.H.; de Souza, K.R.D.; Corguinha, A.P.B.; Martins, F.A.D.; Lopes, G.; Guilherme, L.R.G. Selenium biofortification of wheat grain via foliar application and its effect on plant metabolism. J. Food Compos. Anal. 2019, 81, 10–18. [Google Scholar] [CrossRef]
- Sabatino, L.; Ntatsi, G.; Iapichino, G.; D’anna, F.; De Pasqual, C. Effect of selenium enrichment and type of application on yield, functional quality and mineral composition of curly endive grown in a hydroponic system. Agronomy 2019, 9, 207. [Google Scholar] [CrossRef]
- Márquez, V.G.; Moreno, Á.M.; Mendoza, A.B.; Macías, J.M. Ionic selenium and nanoselenium as biofortifiers and stimulators of plant metabolism. Agronomy 2020, 10, 1399. [Google Scholar] [CrossRef]
- Malejane, D.N.; Tinyani, P.; Soundy, P.; Sultanbawa, Y.; Sivakumar, D. Deficit irrigation improves phenolic content and antioxidant activity in leafy lettuce varieties. Food Sci. Nutr. 2018, 6, 334–341. [Google Scholar] [CrossRef]
- Del Amor, F.M.; Gomez-Lopez, M.D. Agronomical response and water use efficiency of sweet pepper plants grown in different greenhouse substrates. Hortscience 2009, 44, 810–814. [Google Scholar] [CrossRef]
- Pinero, M.C.; Perez-Jimenez, M.; Lopez-Marin, J.; del Amor, F.M. Changes in the salinity tolerance of sweet pepper plants as affected by nitrogen form and high CO2 concentration. J. Plant Physiol. 2016, 200, 18–27. [Google Scholar] [CrossRef]
- Nagata, M.; Yamashita, I. Simple method for simultaneous determination of chlorophyll and carotenoids in tomate fruit. Nippon Shokuhin Kogyo Gakkaishi 1992, 39, 925–928. [Google Scholar] [CrossRef]
- Cano-Lamadrid, M.; Hernández, F.; Corell, M.; Burló, F.; Legua, P.; Moriana, A.; Carbonell-Barrachina, Á.A. Antioxidant capacity, fatty acids profile, and descriptive sensory analysis of table olives as affected by deficit irrigation. J. Sci. Food Agric. 2017, 97, 444–451. [Google Scholar] [CrossRef]
- Gashaw, B.; Haile, S. Effect of different rates of N and intrarow spacing on growth performance of lettuce (Lactuca sativa L.) in Gurage Zone, Wolkite University, Ethiopia. Adv. Agric. 2020, 2020, 1–6. [Google Scholar] [CrossRef]
- Schiavon, M.; Lima, L.W.; Jiang, Y.; Hawkesford, M.J. Effects of selenium on plant metabolism and implications for crops and consumers. In Selenium in Plants; Springer: Cham, Switzerland, 2017; pp. 257–275. [Google Scholar] [CrossRef]
- Luo, H.W.; He, L.X.; Du, B.; Wang, Z.M.; Zheng, A.X.; Lai, R.F.; Tang, X.R. Foliar application of selenium (Se) at heading stage induces regulation of photosynthesis, yield formation, and quality characteristics in fragrant rice. Photosynthetica 2019, 57, 1007–1014. [Google Scholar] [CrossRef]
- Stagnari, F.; Galieni, A.; Pisante, M. Shading and nitrogen management affect quality, safety and yield of greenhouse-grown leaf lettuce. Sci. Hortic. 2015, 192, 70–79. [Google Scholar] [CrossRef]
- Pérez-Jiménez, M.; Piñero, M.C.; del Amor, F.M. Heat shock, high CO2 and nitrogen fertilization effects in pepper plants submitted to elevated temperatures. Sci. Hortic. 2019, 244, 322–329. [Google Scholar] [CrossRef]
- Ouda, B.A.; Mahadeen, A.Y. Effect of fertilizers on growth, yield, yield components, quality and certain nutrient contents in broccoli (Brassica oleracea). Int. J. Agric. Biol. 2008, 10, 627–659. [Google Scholar]
- Li, S.; Bañuelos, G.; Min, J.; Shi, W. Effect of continuous application of inorganic nitrogen fertilizer on selenium concentration in vegetables grown in the Taihu Lake region of China. Plant Soil 2015, 393, 351–360. [Google Scholar] [CrossRef]
- Ríos, J.J.; Rosales, M.A.; Blasco, B.; Cervilla, L.M.; Romero, L.; Ruiz, J.M. Biofortification of Se and induction of the antioxidant capacity in lettuce plants. Sci. Hortic. 2008, 116, 248–255. [Google Scholar] [CrossRef]
- Ježek, P.; Hlušek, J.; Lošák, T.; Jůzl, M.; Elzner, P.; Kráčmar, S.; Buňka, F.; Martensson, A. Effect of foliar application of selenium on the content of selected amino acids in potato tubers (Solanum tuberosum L.). Plant Soil Environ. 2011, 57, 315–320. [Google Scholar] [CrossRef]
Irrigation | Se Concentration (µmoles L−1) | Plant Weight (g DW) | Water Content (%) | ||
---|---|---|---|---|---|
100S | 0 | 39.01 ± 0.29 | a * | 96.17 ± 0.07 | a |
4 | 40.16 ± 0.65 | a * | 96.34 ± 0.09 | a * | |
8 | 39.31 ± 0.90 | a * | 96.26 ± 0.11 | a * | |
16 | 37.36 ± 1.68 | a | 96.30 ± 0.12 | a * | |
50F/50D | 0 | 32.77 ± 0.88 | A | 95.89 ± 0.13 | A |
4 | 32.76 ± 0.19 | A | 95.86 ± 0.09 | A | |
8 | 32.86 ± 1.32 | A | 95.63 ± 0.13 | A | |
16 | 36.12 ± 1.99 | A | 95.71 ± 0.14 | A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piñero, M.C.; Otálora, G.; Collado-González, J.; López-Marín, J.; del Amor, F.M. Effects of Selenium on the Chlorophylls, Gas Exchange, Antioxidant Activity and Amino Acid Composition of Lettuce Grown under an Aquaponics System. Horticulturae 2022, 8, 30. https://doi.org/10.3390/horticulturae8010030
Piñero MC, Otálora G, Collado-González J, López-Marín J, del Amor FM. Effects of Selenium on the Chlorophylls, Gas Exchange, Antioxidant Activity and Amino Acid Composition of Lettuce Grown under an Aquaponics System. Horticulturae. 2022; 8(1):30. https://doi.org/10.3390/horticulturae8010030
Chicago/Turabian StylePiñero, María Carmen, Ginés Otálora, Jacinta Collado-González, Josefa López-Marín, and Francisco M. del Amor. 2022. "Effects of Selenium on the Chlorophylls, Gas Exchange, Antioxidant Activity and Amino Acid Composition of Lettuce Grown under an Aquaponics System" Horticulturae 8, no. 1: 30. https://doi.org/10.3390/horticulturae8010030
APA StylePiñero, M. C., Otálora, G., Collado-González, J., López-Marín, J., & del Amor, F. M. (2022). Effects of Selenium on the Chlorophylls, Gas Exchange, Antioxidant Activity and Amino Acid Composition of Lettuce Grown under an Aquaponics System. Horticulturae, 8(1), 30. https://doi.org/10.3390/horticulturae8010030