Spatial Variability of Production and Quality in Table Grapes ‘Flame Seedless’ Growing on a Flat Terrain and Slope Site
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Plant Material
2.2. Soil and Climate Conditions
2.3. Yield, Yield Components and Vine Vigor Parameters
2.4. Berry Quality Parameters
2.5. Statistical Analysis
2.6. Principal Component Analysis
3. Results
3.1. Variability of Production and Quality of Table Grapes
3.2. Spatial Dependence Characterization of Production and Quality of Table Grapes
3.3. Multivariate Analysis of the Measured Variables by Plot
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- SAG Catastro Vitícola Nacional. Available online: http://www.sag.cl/ambitos-de-accion/catastro-viticola-nacional/1490/publicaciones (accessed on 30 November 2020).
- Ibacache, A.; Albornoz, F.; Zurita-Silva, A. Yield responses in Flame seedless, Thompson seedless and Red Globe table grape cultivars are differentially modified by rootstocks under semi arid conditions. Sci. Hortic. 2016, 204, 25–32. [Google Scholar] [CrossRef]
- Ibacache, A.; Sierra, C. Influence of rootstocks on nitrogen, phosphorus and potassium content in petioles of four table grape varieties. Chil. J. Agric. Res. 2009, 69, 503–508. [Google Scholar] [CrossRef] [Green Version]
- Trought, M.C.T.; Bramley, R.G.V. Vineyard variability in Marlborough, New Zealand: Characterising spatial and temporal changes in fruit composition and juice quality in the vineyard. Aust. J. Grape Wine Res. 2011, 17, 79–89. [Google Scholar] [CrossRef]
- Ortega-Blu, R.; Molina-Roco, M. Evaluation of vegetation indices and apparent soil electrical conductivity for site-specific vineyard management in Chile. Precis. Agric. 2016, 17, 434–450. [Google Scholar] [CrossRef]
- Tisseyre, B.; Mazzoni, C.; Fonta, H. Whithin-field temporal stability of some parameters in viticulture: Potential Toward a Site Specific Management. OENO One 2008, 42, 27–39. [Google Scholar] [CrossRef]
- Acevedo-Opazo, C.; Valdés-Gómez, H.; Taylor, J.A.; Avalo, A.; Verdugo-Vásquez, N.; Araya, M.; Jara-Rojas, F.; Tisseyre, B. Assessment of an empirical spatial prediction model of vine water status for irrigation management in a grapevine field. Agric. Water Manag. 2013, 124, 58–68. [Google Scholar] [CrossRef]
- Verdugo-Vásquez, N.; Acevedo-Opazo, C.; Valdés-Gómez, H.; Araya-Alman, M.; Ingram, B.; García de Cortázar-Atauri, I.; Tisseyre, B. Spatial variability of phenology in two irrigated grapevine cultivar growing under semi-arid conditions. Precis. Agric. 2016, 17, 218–245. [Google Scholar] [CrossRef]
- Fourment, M.; Ferrer, M.; González-Neves, G.; Barbeau, G.; Bonnardot, V.; Quénol, H. Tannat grape composition responses to spatial variability of temperature in an Uruguay’s coastal wine region. Int. J. Biometeorol. 2017, 61, 1617–1628. [Google Scholar] [CrossRef] [PubMed]
- Bramley, R.G.V. Understanding variability in winegrape production systems 2. Within vineyard variation in quality over several vintages. Aust. J. Grape Wine Res. 2005, 11, 33–42. [Google Scholar] [CrossRef]
- Baluja, J.; Tardaguila, J.; Ayestaran, B.; Diago, M.P. Spatial variability of grape composition in a Tempranillo (Vitis vinifera L.) vineyard over a 3-year survey. Precis. Agric. 2013, 14, 40–58. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.A.; Tisseyre, B.; Bramley, R.G.V.; Reid, A. A comparison of the spatial variability of vineyard yield in European and Australian production systems. In Proceedings of the 5th European Conference on Precision Agriculture, Uppsala, Sweden, 9–12 June 2005; pp. 907–915. [Google Scholar]
- Araya-Alman, M.; Leroux, C.; Acevedo-Opazo, C.; Guillaume, S.; Valdés-Gómez, H.; Verdugo-Vásquez, N.; Pañitrur-De la Fuente, C.; Tisseyre, B. A new localized sampling method to improve grape yield estimation of the current season using yield historical data. Precis. Agric. 2019, 20, 445–459. [Google Scholar] [CrossRef]
- Bramley, R.G.V.; Siebert, T.E.; Herderich, M.J.; Krstic, M.P. Patterns of within-vineyard spatial variation in the ‘pepper’ compound rotundone are temporally stable from year to year. Aust. J. Grape Wine Res. 2017, 23, 42–47. [Google Scholar] [CrossRef]
- King, P.D.; Smart, R.E.; McClellan, D.J. Within-vineyard variability in vine vegetative growth, yield, and fruit and wine composition of Cabernet Sauvignon in Hawke’ s Bay, New Zealand. Aust. J. Grape Wine Res. 2014, 20, 234–246. [Google Scholar] [CrossRef]
- Dokoozlian, N.K.; Hirschfelt, D.J. The influence of cluster thinning at various stages of fruit development on Flame Seedless table grapes. Am. J. Enol. Vitic. 1995, 46, 429–436. [Google Scholar]
- Lynn, C.D.; Jensen, F.L. Thinning effects of bloomtime gibberellin sprays on Thompson Seedless table grapes. Am. J. Enol. Vitic. 1966, 17, 283–289. [Google Scholar]
- Jayasena, V.; Cameron, I. °Brix/acid ratio as a predictor of consumer acceptability of Crimson Seedless table grapes. J. Food Qual. 2008, 31, 736–750. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Zheng, W.; Martínez de Toda, F. Strategies in vineyard establishment to face global warming in viticulture: A mini review. J. Sci. Food Agric. 2020, 101, 1261–1269. [Google Scholar] [CrossRef]
- Dahal, K.C.; Bhattarai, S.P.; Midmore, D.J.; Oag, D.R.; Walsh, K.B. Temporal yield variability in subtropical table grape production. Sci. Hortic. 2019, 246, 951–956. [Google Scholar] [CrossRef]
- Anastasiou, E.; Tsiropoulos, Z.; Balafoutis, T.; Fountas, S.; Templalexis, C.; Lentzou, D.; Xanthopoulos, G. Spatiotemporal stability of management zones in a table grapes vineyard in Greece. Adv. Anim. Biosci. 2017, 8, 510–514. [Google Scholar] [CrossRef]
- Balbontín, C.; Campos, I.; Odi-Lara, M.; Ibacache, A.; Calera, A. Irrigation performance assessment in table grape using the reflectance-based crop coefficient. Remote Sens. 2017, 9, 1276. [Google Scholar] [CrossRef] [Green Version]
- Verdugo-Vásquez, N.; Gutiérrez-Gamboa, G.; Villalobos-Soublett, E.; Zurita-Silva, A. Effects of rootstocks on blade nutritional content of two minority grapevine varieties cultivated under hyper-arid conditions in Northern Chile. Agronomy 2021, 11, 327. [Google Scholar] [CrossRef]
- Verdugo-Vásquez, N.; Gutiérrez-Gamboa, G.; Díaz-Gálvez, I.; Ibacache, A.; Zurita-Silva, A. Modifications induced by rootstocks on yield, vigor and nutritional status on Vitis vinifera Cv Syrah under hyper-arid conditions in northern Chile. Agronomy 2021, 11, 979. [Google Scholar] [CrossRef]
- OIV. International Code of Oenological Practices; International Organization of Vine and Wine: France, Paris, 2020. [Google Scholar]
- Muñoz-Robredo, P.; Robledo, P.; Manríquez, D.; Molina, R.; Defilippi, B.G. Characterization of sugars and organic acids in comermercial varieties of table grape. Chil. J. Agric. Res. 2011, 71, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Oliver, M.A. Geostatistical Applications for Precision Agriculture; Springer: Dordrecht, The Netherlands, 2010; ISBN 9789048191321. [Google Scholar]
- Kerry, R.; Oliver, M.A. Comparing sampling needs for variograms of soil properties computed by the method of moments and residual maximum likelihood. Geoderma 2007, 140, 383–396. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Moorman, T.B.; Parkin, T.B.; Karlen, D.L.; Novak, J.M.; Turco, R.F.; Konopka, A.E. Field-scale variability of soil properties in central iowa soils. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Wu, C.; Wu, J.; Luo, Y.; Zhang, L.; DeGloria, S.D. Spatial prediction of soil organic matter content using cokriging with remotely sensed data. Soil Sci. Soc. Am. J. 2009, 73, 1202–1208. [Google Scholar] [CrossRef]
- Verdugo-Vásquez, N.; Acevedo-Opazo, C.; Valdés-Gómez, H.; Ingram, B.; De Cortázar-Atauri, I.G.; Tisseyre, B. Temporal stability of within-field variability of total soluble solids of grapevine under semi-arid conditions: A first step towards a spatial model. OENO One 2018, 52, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Acevedo-Opazo, C.; Tisseyre, B.; Guillaume, S.; Ojeda, H. The potential of high spatial resolution information to define within-vineyard zones related to vine water status. Precis. Agric. 2008, 9, 285–302. [Google Scholar] [CrossRef] [Green Version]
- Fuentes-Peñailillo, F.; Acevedo-Opazo, C.; Ortega-Farías, S.; Rivera, M.; Verdugo-Vásquez, N. Spatialized system to monitor vine flowering: Towards a methodology based on a low-cost wireless sensor network. Comput. Electron. Agric. 2021, 187, 106233. [Google Scholar] [CrossRef]
- Verdugo-Vásquez, N.; Acevedo-Opazo, C.; Valdés-Gómez, H.; Ingram, B.; Garcia de Cortázar-Atauri, I.; Tisseyre, B. Towards an empirical model to estimate the spatial variability of grapevine phenology at the within field scale. Precis. Agric. 2019, 21, 107–130. [Google Scholar] [CrossRef]
Plot | Slope (%) | Surface (ha) | Rootstock | Year of Planting | Trellis System | Planting Distance (m) |
---|---|---|---|---|---|---|
Slope | 23 | 0.95 | Harmony | 2015 | Overhead | 3 × 2 |
Flat | 3 | 0.98 |
Plot | Statistic | Number of Clusters | Yield (kg vine−1) | Cluster Weight (kg) | Berry Weight (g) |
---|---|---|---|---|---|
Slope | Mean | 15.0 a | 6.0 a | 0.40 a | 4.65 a |
Standard deviation | 3.4 | 2.0 | 0.07 | 0.38 | |
CV (%) | 22.9 | 33.6 | 16.95 | 8.11 | |
Flat | Mean | 17.1 b | 9.3 b | 0.55 b | 4.88 b |
Standard deviation | 2.7 | 1.2 | 0.08 | 0.21 | |
CV (%) | 15.8 | 12.8 | 14.3 | 4.27 | |
Significance | * | ** | ** | * |
Plot | Statistic | TSS (°Brix) | Titratable Acidity (%) | pH | Maturity Index | Caliber (mm) |
---|---|---|---|---|---|---|
Slope | Mean | 19.23 | 0.63 a | 3.67 b | 30.65 b | 20.5 a |
Standard deviation | 0.97 | 0.03 | 0.10 | 2.76 | 0.61 | |
CV (%) | 5.0 | 5.04 | 2.69 | 9.01 | 2.96 | |
Flat | Mean | 19.02 | 0.72 b | 3.49 a | 26.57 a | 21.2 b |
Standard deviation | 0.51 | 0.03 | 0.10 | 1.72 | 0.38 | |
CV (%) | 2.66 | 4.85 | 3.00 | 6.47 | 1.79 | |
Significance | ns | ** | ** | ** | ** |
Plot | Statistic | Trunk Circumference (cm) | Pruning Weight (kg vine−1) |
---|---|---|---|
Slope | Mean | 12.25 | 5.74 b |
Standard deviation | 1.31 | 1.70 | |
CV (%) | 10.72 | 29.46 | |
Flat | Mean | 11.79 | 4.22 a |
Standard deviation | 1.19 | 1.24 | |
CV (%) | 10.10 | 29.66 | |
Significance | ns | ** |
Cambardella Index | ||||
---|---|---|---|---|
Slope | Flat | |||
Measured Variable | Value (%) | Spatial Dependence | Value (%) | Spatial Dependence |
Number of clusters | 100 | Weak | 20.5 | Strong |
Yield | 1.7 | Strong | 49.9 | Moderate |
Cluster weight | 0.2 | Strong | 17.1 | Strong |
Total soluble solids | 0.1 | Strong | 27.7 | Moderate |
Titratable acidity | 7.4 | Strong | 19.6 | Strong |
pH | 100 | Weak | 33.2 | Moderate |
Berry weight | 10.4 | Strong | 0.24 | Strong |
Caliber | 0.26 | Strong | 10.9 | Strong |
Maturity index | 0.11 | Strong | 50 | Moderate |
Trunk circumference | 23.1 | Strong | 35.5 | Moderate |
Pruning weight | 19.8 | Strong | 40.1 | Moderate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verdugo-Vásquez, N.; Villalobos-Soublett, E.; Gutiérrez-Gamboa, G.; Araya-Alman, M. Spatial Variability of Production and Quality in Table Grapes ‘Flame Seedless’ Growing on a Flat Terrain and Slope Site. Horticulturae 2021, 7, 254. https://doi.org/10.3390/horticulturae7080254
Verdugo-Vásquez N, Villalobos-Soublett E, Gutiérrez-Gamboa G, Araya-Alman M. Spatial Variability of Production and Quality in Table Grapes ‘Flame Seedless’ Growing on a Flat Terrain and Slope Site. Horticulturae. 2021; 7(8):254. https://doi.org/10.3390/horticulturae7080254
Chicago/Turabian StyleVerdugo-Vásquez, Nicolás, Emilio Villalobos-Soublett, Gastón Gutiérrez-Gamboa, and Miguel Araya-Alman. 2021. "Spatial Variability of Production and Quality in Table Grapes ‘Flame Seedless’ Growing on a Flat Terrain and Slope Site" Horticulturae 7, no. 8: 254. https://doi.org/10.3390/horticulturae7080254
APA StyleVerdugo-Vásquez, N., Villalobos-Soublett, E., Gutiérrez-Gamboa, G., & Araya-Alman, M. (2021). Spatial Variability of Production and Quality in Table Grapes ‘Flame Seedless’ Growing on a Flat Terrain and Slope Site. Horticulturae, 7(8), 254. https://doi.org/10.3390/horticulturae7080254