Corn Cob-Derived Biochar Improves the Growth of Saline-Irrigated Quinoa in Different Orders of Egyptian Soils
Abstract
:1. Introduction
2. Material and Methods
2.1. Biochar Production and Characterization
2.2. Pot Experiment
2.3. Plant and Soil Analysis
2.4. Statistical Analysis of the Obtained Results
3. Results
3.1. Soil Chemical Characteristics
3.2. Nutrient Availability and Uptake
3.3. Plant Growth Parameters and Some Photosynthetic Pigments
3.4. Nitrogen, Phosphorus, and Potassium Use Efficiencies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- ICARDA. International Center for Agricultural Research in the Dry Areas Water and agriculture in Egypt. In Proceedings of the Technical Paper Based on the Egypt Australia-ICARDA Work Shop on On-Farm Water Use Efficiency, Cairo, Egypt, 26–29 June 2011. [Google Scholar]
- Govers, G.; Merckx, R.; Van Wesemael, B.; Van Oost, K. Soil conservation in the 21st century: Why we need smart agricultural intensification. Soil 2017, 3, 45–59. [Google Scholar] [CrossRef] [Green Version]
- Alfarrah, N.; Walraevens, K. Groundwater Overexploitation and Seawater Intrusion in Coastal Areas of Arid and Semi-Arid Regions. Water 2018, 10, 143. [Google Scholar] [CrossRef] [Green Version]
- Wrb IWG. World Reference Base for Soil Resources 2014. International Soil classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2014; Volume 106. [Google Scholar]
- Yost, J.L.; Hartemink, A.E. Soil organic carbon in sandy soils: A review. Adv. Agron. 2019, 217, 217–310. [Google Scholar] [CrossRef]
- El-Desoky, M.A.; Abd ElRazek, M.; Ibrahim, M.S.; Hdad, H.M. Irrigation management of saline ground water for quinoa grown on a sandy calcareous soil. In Proceedings of the Eleventh International Water Technology Conference, IWTC11 2007, Sharm El-Sheikh, Egypt, 15–18 March 2007. [Google Scholar]
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW)—Managing Systems at Risk; Food and Agriculture Organization of the United Nations: Rome, Italy; Earthscan: London, UK, 2011; Available online: http://www.fao.org/docrep/017/i1688e/i1688e.pdf (accessed on 28 December 2016).
- Khalifa, N.; Yousef, L. A Short Report on Changes of Quality Indicators for a Sandy Textured Soil after Treatment with Biochar Produced from Fronds of Date Palm. Energy Procedia 2015, 74, 960–965. [Google Scholar] [CrossRef] [Green Version]
- Furtad, B.U.; Nagy, I.; Asp, T.; Tyburski, J.; Skorupa, M.; Gołębiewski, M.; Hulisz, P.; Hrynkiewicz, K. Transcriptome profiling and environmental linkage to salinity across Salicornia europaea vegetation. BMC Plant Biol. 2019, 19, 427. [Google Scholar] [CrossRef] [PubMed]
- Angeli, V.; Silva, M.P.; Crispim Massuela, D.; Khan, M.W.; Hamar, A.; Khajehei, F.; Graeff-Hönninger, S.; Piatti, C. Quinoa (Chenopodium quinoa Willd.): An Overview of the Potentials of the “Golden Grain” and Socio-Economic and Environmental Aspects of Its Cultivation and Marketization. Foods 2020, 9, 216. [Google Scholar] [CrossRef] [Green Version]
- Hinojosa, L.; González, J.A.; Barrios-Masias, F.H.; Fuentes, F.; Murphy, K.M. Quinoa Abiotic Stress Responses: A Review. Plants 2018, 7, 106. [Google Scholar] [CrossRef] [Green Version]
- Tenic, E.; Ghogareh, R.; Dhingra, A. Biochar—A Panacea for Agriculture or Just Carbon? Preprints. Horticulturae 2020, 6, 37. [Google Scholar] [CrossRef]
- El-Naggar, A.; Lee, S.S.; Rinklebe, J.; Farooq, M.; Song, H.; Sarmah, A.K.; Ok, Y.S. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 2019, 337, 536–554. [Google Scholar] [CrossRef]
- Alotaibi, K.D.; Schoenau, J.J. Addition of Biochar to a Sandy Desert Soil: Effect on Crop Growth, Water Retention and Selected Properties. Agronomy 2019, 9, 327. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.; Zimmerman, A.R. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures. Geoderma 2013, 193, 122–130. [Google Scholar] [CrossRef]
- Akhtar, S.S.; Andersen, M.N.; Liu, F. Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agric. Water Manag. 2015, 158, 61–68. [Google Scholar] [CrossRef]
- Somerville, P.D.; Farrell, C.; May, P.B.; Livesley, S.J. Biochar and compost equally improve urban soil physical and biological properties and tree growth, with no added benefit in combination. Sci. Total Environ. 2020, 706, 135736. [Google Scholar] [CrossRef]
- Spokas, K.A.; Cantrell, K.B.; Novak, J.M.; Archer, D.W.; Ippolito, J.A.; Collins, H.P.; Boateng, A.A.; Lima, A.A.; Lamb, M.C.; McAloon, A.J.; et al. Biochar: A Synthesis of Its Agronomic Impact beyond Carbon Sequestration. J. Environ. Qual. 2012, 41, 973–989. [Google Scholar] [CrossRef]
- El-Naggar, A.H.; Usman, A.R.; Al-Omran, A.; Ok, Y.S.; Ahmad, M.; Al-Wabel, M.I. Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar. Chemosphere 2015, 138, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Rawat, J.; Saxena, J.; Sanwal, P. Biochar: A Sustainable Approach for Improving Plant Growth and Soil Properties. In Biochar—An Imperative Amendment for Soil and the Environment; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Dahlawi, S.S.; Naeem, A.; Rengel, Z.; Ravi, N. Biochar application for the remediation of salt-affected soils: Challenges and opportunities. Sci. Total Environ. 2018, 625, 320–335. [Google Scholar] [CrossRef]
- Ding, Z.; Zhou, Z.; Lin, X.; Zhao, F.; Wang, B.; Lin, F.; Ge, Y.; Eissa, M.A. Biochar impacts on NH3-volatilization kinetics and growth of sweet basil (Ocimum basilicum L.) under saline conditions. Ind. Crop Prod. 2020, 157, 11290. [Google Scholar] [CrossRef]
- Matthiessen, M.K.; Larney, F.J.; Selinger, L.B.; Olson, A.F. Influence of Loss-on-Ignition Temperature and Heating Time on Ash Content of Compost and Manure. Commun. Soil Sci. Plant Anal. 2005, 36, 2561–2573. [Google Scholar] [CrossRef]
- Burt, R. Soil Survey Laboratory Methods Manual; Soil Survey Investigations Report, No. 42, Version 4.0; Natural Resources Conservation Service, United States Department of Agriculture: Washington, DC, USA, 2004.
- Parkinson, J.A.; Allen, S.E. A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological materials. Commun. Soil Sci. Plant Anal. 1975, 6, 1–11. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 11th ed.; USDA-Natural Resources Conservation Services: Washington, DC, USA, 2016.
- Page, A.L. Methods of Soil analysis: Chemical and Microbiological Properties, 2nd ed.; American Society of Agronomy Inc. Soil Science Society of America Journal: Madison, WI, USA, 1982. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1987; Volume 148, pp. 350–382. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA; New Delhi, India, 1973. [Google Scholar]
- Hesse, P.R. A Textbook of Soil Chemical Analysis; CBS Publishers & Distributors: Delhi, India, 1998. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. Circular 939; United States Department of Agriculture: Washington, DC, USA, 1954.
- Zornoza, R.; Moreno-Barriga, F.; Acosta, J.R.; Muñoz, M.A.; Faz, A. Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments. Chemosphere 2016, 144, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Jiang, B.; Shen, J.; Zhu, X.; Yi, W.; Li, Y.; Wu, J. Contrasting effects of straw and straw-derived biochar applications on soil carbon accumulation and nitrogen use efficiency in double-rice cropping systems. Agric. Ecosyst. Environ. 2021, 311, 107286. [Google Scholar] [CrossRef]
- Randolph, P.; Bansode, R.R.; Hassan, O.A.; Rehrah, D.; Ravella, R.; Reddy, M.; Watts, D.W.; Novak, J.M.; Ahmedna, M. Effect of biochars produced from solid organic municipal waste on soil quality parameters. J. Environ. Manag. 2017, 192, 271–280. [Google Scholar] [CrossRef]
- Rekaby, S.A.; Awad, M.Y.; Hegab, S.A.; Eissa, M.A. Effect of some organic amendments on quinoa plants under saline condition. J. Plant Nutr. 2020, 43, 1840–1851. [Google Scholar] [CrossRef]
- Awad, M.; Liu, Z.; Skalicky, M.; Dessoky, E.S.; Brestic, M.; Mbarki, S.; Rastogi, A.; EL Sabagh, A. Fractionation of Heavy Metals in Multi-Contaminated Soil Treated with Biochar Using the Sequential Extraction Procedure. Biomolecules 2021, 11, 448. [Google Scholar] [CrossRef]
- Awad, M.; Moustafa-Farag, M.; Wei, L.; Huang, Q.; Liu, Z. Effect of garden waste biochar on the bioavailability of heavy metals and growth of Brassica juncea (L.) in a multi-contaminated soil. Arab. J. Geosci. 2020, 13, 439. [Google Scholar] [CrossRef]
- Xu, N.; Tan, G.; Wang, H.; Gai, X. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur. J. Soil Biol. 2016, 74, 1–8. [Google Scholar] [CrossRef]
- Sheng, Y.; Zhu, L. Biochar alters microbial community and carbon sequestration potential across different soil pH. Sci. Total. Environ. 2018, 622, 1391–1399. [Google Scholar] [CrossRef]
- Joseph, U.E.; Toluwase, A.O.; Kehinde, E.O.; Omasan, E.; Tolulope, A.Y.; George, O.O.; Zhao, C.; Hongyan, W. Effect of biochar on soil structure and storage of soil organic carbon and nitrogen in the aggregate fractions of an Albic soil. Arch. Agron. Soil Sci. 2019, 66, 1–12. [Google Scholar] [CrossRef]
- Shepherd, J.G.; Buss, W.; Sohi, S.P.; Heal, K.V. Bioavailability of phosphorus, other nutrients and potentially toxic elements from marginal biomass-derived biochar assessed in quinoa (Hordeum vulgare) growth experiments. Sci. Total Environ. 2017, 584, 448–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Maize yield and nutrition during 4 years after biochar application to a Colombia savanna oxisol. Plant Soil 2010, 333, 117–128. [Google Scholar] [CrossRef]
- Sial, T.A.; Lan, Z.; Khan, M.N.; Zhao, Y.; Kumbhar, F.; Liu, J.; Zhang, A.; Hill, R.L.; Lahori, A.H.; Memon, M. Evaluation of orange peel waste and its biochar on greenhouse gas emissions and soil biochemical properties within a loess soil. Waste Manag. 2019, 87, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Suddick, E.C.; Six, J. An estimation of annual nitrous oxide emissions and soil quality following the amendment of high temperature walnut shell biochar and compost to a small scale vegetable crop rotation. Sci. Total Environ. 2013, 465, 298–307. [Google Scholar] [CrossRef]
- Gwenzi, W.; Chaukura, N.; Mukome, F.N.; Machado, S.; Nyamasoka, B. Biochar production and applications in sub-Saharan Africa: Opportunities, constraints, risks and uncertainties. J. Environ. Manag. 2015, 150, 250–261. [Google Scholar] [CrossRef]
- Rogovska, N.; Laird, D.A.; Rathke, S.J.; Karlen, D.L. Biochar impact on Midwestern Mollisols and maize nutrient availability. Geoderma 2014, 230-231, 340–347. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.Y.; Xu, Z. Biochar: Nutrient properties and their enhancement. In Biochar for Environmental Management: Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 67–84. [Google Scholar]
- Adekayode, F.; Olojugba, M. The utilization of wood ash as manure to reduce the use of mineral fertilizer for improved performance of maize (Zea mays L.) as measured in the chlorophyll content and grain yield. J. Soil Sci. Environ. Manag. 2010, 1, 40–45. [Google Scholar]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 2016, 36, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Ding, Z.; Ali, E.F.; Kheir, A.M.S.; Eissa, M.A.; Ibrahim, O.H. Biochar and compost enhance soil quality and growth of roselle (Hibiscus sabdariffa L.) under saline conditions. Sci. Rep. 2021, 11, 8739. [Google Scholar] [CrossRef]
- Haider, G.; Steffens, D.; Moser, G.; Müller, C.; Kammann, C.I. Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agric. Ecosyst. Environ. 2017, 237, 80–94. [Google Scholar] [CrossRef]
- Abou-Zaid, E.A.; Eissa, M.A. Thompson Seedless Grapevines Growth and Quality as Affected by Glutamic Acid, Vitamin B, and Algae. J. Soil Sci. Plant Nutr. 2019, 19, 725–733. [Google Scholar] [CrossRef]
- Ali, A.M.; Awad, M.Y.M.; Hegab, S.A.; Gawad, A.M.A.E.; Eissa, M.A. Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato. J. Plant Nutr. 2021, 44, 411–420. [Google Scholar] [CrossRef]
- Eissa, M.A. Effect of Compost and Biochar on Heavy Metals Phytostabilization by the Halophytic Plant Old Man Saltbush [Atriplex Nummularia Lindl]. Soil Sediment Contam. Int. J. 2019, 28, 135–147. [Google Scholar] [CrossRef]
- Eissa, M.A.; Abeed, A.H. Growth and biochemical changes in quail bush (Atriplex lentiformis (Torr.) S.Wats) under Cd stress. Environ. Sci. Pollut. Res. 2019, 26, 628–635. [Google Scholar] [CrossRef]
- Al-Sayed, H.; Hegab, S.A.; Youssef, M.; Khalafalla, M.; Almaroai, Y.A.; Ding, Z.; Eissa, M.A. Evaluation of quality and growth of roselle (Hibiscus sabdariffa L.) as affected by bio-fertilizers. J. Plant Nutr. 2020, 43, 1025–1035. [Google Scholar] [CrossRef]
- Hajihashemi, S.; Skalicky, M.; Brestic, M.; Pavla, V. Cross-talk between nitric oxide, hydrogen peroxide and calcium in salt-stressed Chenopodium quinoa Willd. At seed germination stage. Plant Physiol. Biochem. 2020, 154, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Noulas, C.; Tziouvalekas, M.; Vlachostergios, D.; Baxevanos, D.; Karyotis, T.; Iliadis, C. Adaptation, agronomic potential, and current perspectives of quinoa under mediterranean conditions: Case studies from the lowlands of central Greece. Commun. Soil Sci. Plant Anal. 2017, 48, 2612–2629. [Google Scholar]
- Gu, M.F.; Li, N.; Shao, T.Y.; Long, X.H.; Brestič, M.; Shao, H.B.; Li, J.B. Accumulation capacity of ions in cabbage (Brassica oleracea L.) supplied with sea water. Plant Soil Environ. 2016, 62, 314–320. [Google Scholar]
- Fghire, R.; Anaya, F.; Ali, O.I.; Benlhabib, O.; Ragab, R.; Wahbi, S. Physiological and photosynthetic response of quinoa to drought stress. Chil. J. Agric. Res. 2015, 75, 174–183. [Google Scholar] [CrossRef] [Green Version]
- Yan, K.; Shao, H.; Shao, C.; Chen, P.; Zhao, S.; Brestic, M.; Chen, X. Physiological adaptive mechanisms of plants grown in saline soil and implications for sustainable saline agriculture in coastal zone. Acta Physiol. Plant. 2013, 35, 2867–2878. [Google Scholar] [CrossRef]
- Eissa, M.A.; Roshdy, N.M.K.A. Nitrogen fertilization: Effect on Cd-phytoextraction by the halophytic plant quail bush [Atriplex lentiformis (Torr.) S. Wats]. S. Afr. J. Bot. 2018, 115, 126–131. [Google Scholar] [CrossRef]
- Eissa, M.A.; Ahmed, E.M. Nitrogen and Phosphorus Fertilization for some Atriplex Plants Grown on Metal-contaminated Soils. Soil Sediment Contam. Int. J. 2016, 25, 431–442. [Google Scholar] [CrossRef]
- Tian, C.; Zhou, X.; Ding, Z.; Liu, Q.; Xie, G.; Peng, J.; Rong, X.; Zhang, Y.; Yang, Y.; Eissa, M.A. Controlled-release N fertilizer to mitigate ammonia volatilization from double-cropping rice. Nutr. Cycl. Agroecosyst. 2021, 119, 123–137. [Google Scholar] [CrossRef]
- Eissa, M.A.; Nasralla, N.N.; Gomah, N.H.; Osman, D.M.; El-Derwy, Y.M. Evaluation of natural fertilizer extracted from expired dairy products as a soil amendment. J. Soil Sci. Plant Nutr. 2018, 18, 694–704. [Google Scholar] [CrossRef] [Green Version]
- Eissa, M.A.; Almaroai, Y.A. Phytoremediation Capacity of Some Forage Plants Grown on a Metals-Contaminated Soil. Soil Sediment Contam. Int. J. 2019, 28, 569–581. [Google Scholar] [CrossRef]
- Ali, E.F.; Al-Yasi, H.M.; Kheir, A.M.; Eissa, M.A. Effect of Biochar on CO2 Sequestration and Productivity of Pearl Millet Plants Grown in Saline Sodic Soils. J. Soil Sci. Plant Nutr. 2021, 21, 897–907. [Google Scholar] [CrossRef]
- Alharbi, S.; Majrashi, A.; Ghoneim, A.M.; Ali, E.F.; Modahish, A.S.; Hassan, F.A.; Eissa, M.A. A New Method to Recycle Dairy Waste for the Nutrition of Wheat Plants. Agronomy 2021, 11, 840. [Google Scholar] [CrossRef]
- Abeed, A.H.; Eissa, M.A.; Abdel-Wahab, D.A. Effect of Exogenously Applied Jasmonic Acid and Kinetin on Drought Tolerance of Wheat Cultivars Based on Morpho-Physiological Evaluation. J. Soil Sci. Plant Nutr. 2021, 21, 131–144. [Google Scholar] [CrossRef]
pH (1:5) | EC (1:5) (dS m−1) | O. M (g kg−1) | C/N Ratio | Total (g kg−1) | ||
N | P | K | ||||
11.38 | 5.5 | 930 | 26 | 18 | 3.2 | 29 |
Month | Tmax | Tmin | Relative Humidity (%) | Solar Radiation (MJ/m2/Day) | Wind Speed (km h−1) | ETo (mm) |
---|---|---|---|---|---|---|
November | 27.8 | 14.2 | 60 | 28.0 | 4.0 | 2.6 |
December | 23.7 | 12.3 | 55 | 25.0 | 3.5 | 2.4 |
January | 18.6 | 7.2 | 50 | 26.0 | 2.2 | 2.0 |
February | 21.4 | 8.9 | 45 | 24.0 | 2.7 | 1.5 |
Poperty | Unit | Entisols | Aridisols |
---|---|---|---|
Sand | (g/kg) | 255 | 901 |
Silt | (g/kg) | 389 | 70 |
Clay | (g/kg) | 356 | 29 |
Texture | --- | Clay loam | Sandy |
CaCO3 | (g/kg) | 22 | 259 |
pH (1: 2.5) | --- | 8.20 | 7.78 |
ECe | (dS/m) | 0.98 | 0.33 |
Organic matter | (g/kg) | 12.81 | 5.69 |
Available N | (mg/kg) | 83 | 27 |
Available P | (mg/kg) | 9.0 | 5.4 |
Available K | (mg/kg) | 420 | 32.0 |
Treatments | pH (1:2.5) | EC (1:2.5) (dS m−1) | SOM (g kg−1) | |||
---|---|---|---|---|---|---|
Entisols | Aridisols | Entisols | Aridisols | Entisols | Aridisols | |
Control | 7.32 ± 0.9 b | 7.88 ± 0.2 b | 3.46 ± 0.8 b | 2.36 ± 0.7 b | 12.59 ± 0.43 b | 6.44 ± 0.58 b |
BC1 | 7.44 ± 0.7 ab | 8.03 ± 0.1 ab | 3.54 ± 0.6 b | 2.71 ± 0.6 ab | 14.59 ± 0.62 a | 8.11 ± 0.62 a |
BC3 | 7.61 ± 0.4 a | 8.17 ± 0.3 a | 3.71 ± 0.7 a | 3.26 ± 0.8 a | 15.53 ± 0.51 a | 9.29 ± 0.72 a |
F test | * | * | ** |
Treatments | Available (mg kg−1) | |||||
---|---|---|---|---|---|---|
N | P | K | ||||
Entisols | Aridisols | Entisols | Aridisols | Entisols | Aridisols | |
Control | 33.65 ± 1.9 c | 24.40 ± 1.5 b | 11.5 ± 0.7 a | 6.5 ± 0.5 a | 404 ± 13 c | 381 ± 12 c |
BC1 | 42.25 ± 3.7 b | 41.65 ± 1.3 a | 10.6 ± 0.9 a | 5.5 ± 0.3 a | 478 ± 15 b | 433 ± 11b |
BC3 | 46.42 ± 2.5 a | 27.49 ± 2.3 b | 9.5 ± 0.8 a | 4.8 ± 0.2 a | 623 ± 12 a | 712 ± 12 a |
F test | ** | ** | ** | |||
Treatment | Uptake (mg pot−1) | |||||
N | P | K | ||||
Entisols | Aridisols | Entisols | Aridisols | Entisols | Aridisols | |
Control | 209 ± 10 c | 84 ± 7 c | 10.5 ± 0.9 c | 3.6 ± 0.3 c | 45.5 ± 15 c | 36.3 ± 10 c |
BC1 | 235 ± 15 b | 95 ± 8 ab | 12.3 ± 0.5 b | 5.1 ± 0.7 b | 73.7 ± 9 b | 42.7 ± 15 b |
BC3 | 333 ± 13 a | 108 ± 12 a | 15.9 ± 0.4a | 6.7 ± 0.3 a | 105.5 ± 10 a | 59.0 ± 12 a |
F test | ** | ** | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rekaby, S.A.; Awad, M.; Majrashi, A.; Ali, E.F.; Eissa, M.A. Corn Cob-Derived Biochar Improves the Growth of Saline-Irrigated Quinoa in Different Orders of Egyptian Soils. Horticulturae 2021, 7, 221. https://doi.org/10.3390/horticulturae7080221
Rekaby SA, Awad M, Majrashi A, Ali EF, Eissa MA. Corn Cob-Derived Biochar Improves the Growth of Saline-Irrigated Quinoa in Different Orders of Egyptian Soils. Horticulturae. 2021; 7(8):221. https://doi.org/10.3390/horticulturae7080221
Chicago/Turabian StyleRekaby, Saudi A., Mahrous Awad, Ali Majrashi, Esmat F. Ali, and Mamdouh A. Eissa. 2021. "Corn Cob-Derived Biochar Improves the Growth of Saline-Irrigated Quinoa in Different Orders of Egyptian Soils" Horticulturae 7, no. 8: 221. https://doi.org/10.3390/horticulturae7080221
APA StyleRekaby, S. A., Awad, M., Majrashi, A., Ali, E. F., & Eissa, M. A. (2021). Corn Cob-Derived Biochar Improves the Growth of Saline-Irrigated Quinoa in Different Orders of Egyptian Soils. Horticulturae, 7(8), 221. https://doi.org/10.3390/horticulturae7080221