The Role of Canary Island Date Palms in Physical Amenity Provisioning for Urban Landscape Settings
Abstract
:1. Introduction
1.1. Palms in Landscaping
1.2. Canary Islands Date Palms
1.3. Shade Effects of Canary Islands Date Palms
2. Materials and Methods
2.1. Locations
2.2. Experimental Set Up
2.3. Duration
2.4. Data Cleaning and Analysis
2.5. Shade Modelling
2.6. Tree-Benefits Analysis
3. Results
3.1. Temperature
3.2. Humidity
3.3. Vapor Pressure Deficit
3.4. Shade Modelling
3.5. Tree-Benefits Analysis of Canary Islands Date Palms
4. Discussion
4.1. Provision of Shade by Canary Islands Date Palms
4.2. Conservation of Day-Time Heat by Canary Islands Date Palms
4.3. Regulation of Humidity by Canary Islands Date Palms
4.4. Tree Benefits Analysis
4.5. Suitability for Low-Income Neighbourhoods
4.6. Services to Urban Ecology
4.7. Structural Benefits for Landscaping in Urban Areas
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Chan, A.; Lau, G.N.C.; Li, Q.; Yang, Y.; Yim, S.H.L. Effects of urbanization and global climate change on regional climate in the Pearl River Delta and thermal comfort implications. Int. J. Climatol. 2019, 39, 2984–2997. [Google Scholar] [CrossRef]
- Aminipouri, M.; Rayner, D.; Lindberg, F.; Thorsson, S.; Knudby, A.J.; Zickfeld, K.; Middel, A.; Krayenhoff, E.S. Urban tree planting to maintain outdoor thermal comfort under climate change: The case of Vancouver’s local climate zones. Build. Environ. 2019, 158, 226–236. [Google Scholar] [CrossRef]
- Müller, N.; Kuttler, W.; Barlag, A.-B. Counteracting urban climate change: Adaptation measures and their effect on thermal comfort. Theor. Appl. Clim. 2014, 115, 243–257. [Google Scholar] [CrossRef] [Green Version]
- Thorsson, S.; Lindberg, F.; Björklund, J.; Holmer, B.; Rayner, D. Potential changes in outdoor thermal comfort conditions in Gothenburg, Sweden due to climate change: The influence of urban geometry. Int. J. Climatol. 2011, 31, 324–335. [Google Scholar] [CrossRef]
- Hatvani-Kovacs, G.; Belusko, M.; Skinner, N.; Pockett, J.; Boland, J. Heat stress risk and resilience in the urban environment. Sustain. Cities Soc. 2016, 26, 278–288. [Google Scholar] [CrossRef]
- Kovats, R.S.; Hajat, S. Heat stress and public health: A critical review. Annu. Rev. Public Health 2008, 29, 41–55. [Google Scholar] [CrossRef]
- Knowlton, K.; Rotkin-Ellman, M.; King, G.; Margolis, H.G.; Smith, D.; Solomon, G.; Trent, R.; English, P. The 2006 California heat wave: Impacts on hospitalizations and emergency department visits. Environ. Health Perspect. 2008, 117, 61–67. [Google Scholar] [CrossRef] [PubMed]
- De Barros, F.S.; Gonçalves, F.L.T.; Gobo, J.P.A.; Chiquetto, J.B. Analysis of the association between meteorological variables and mortality in the elderly applied to different climatic characteristics of the State of São Paulo, Brazil. Theor. Appl. Clim. 2021, 144, 327–338. [Google Scholar] [CrossRef]
- Kuchcik, M. Mortality and thermal environment (UTCI) in Poland—Long-term, multi-city study. Int. J. Biometeorol. 2020, 1–13. [Google Scholar] [CrossRef]
- Harlan, S.L.; Brazel, A.J.; Darrel Jenerette, G.; Jones, N.S.; Larsen, L.; Prashad, L.; Stefanov, W.L. In the shade of affluence: The inequitable distribution of the urban heat island. In Equity and the Environment; Emerald Group Publishing Limited: Bingley, UK, 2007; pp. 173–202. [Google Scholar]
- Zemtsov, S.; Shartova, N.; Varentsov, M.; Konstantinov, P.; Kidyaeva, V.; Shchur, A.; Timonin, S.; Grischchenko, M. Intraurban social risk and mortality patterns during extreme heat events: A case study of Moscow, 2010–2017. Health Place 2020, 66, 102429. [Google Scholar] [CrossRef]
- Brown, R.D.; Vanos, J.; Kenny, N.; Lenzholzer, S. Designing urban parks that ameliorate the effects of climate change. Landsc. Urban Plann. 2015, 138, 118–131. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Tsiros, I.X.; Hoffman, M. Passive cooling design options to ameliorate thermal comfort in urban streets of a Mediterranean climate (Athens) under hot summer conditions. Build. Environ. 2012, 57, 110–119. [Google Scholar] [CrossRef]
- Lee, H.; Mayer, H.; Chen, L. Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany. Landsc. Urban Plann. 2016, 148, 37–50. [Google Scholar] [CrossRef]
- Zaki, S.A.; Toh, H.J.; Yakub, F.; Mohd Saudi, A.S.; Ardila-Rey, J.A.; Muhammad-Sukki, F. Effects of roadside trees and road orientation on thermal environment in a tropical city. Sustainability 2020, 12, 1053. [Google Scholar] [CrossRef] [Green Version]
- Hiemstra, J.A.; Saaroni, H.; Amorim, J.H. The urban heat Island: Thermal comfort and the role of urban greening. In The Urban Forest; Springer: Berlin/Heidelberg, Germany, 2017; pp. 7–19. [Google Scholar]
- Zhang, Z.; Lv, Y.; Pan, H. Cooling and humidifying effect of plant communities in subtropical urban parks. Urban For. Urban Green. 2013, 12, 323–329. [Google Scholar] [CrossRef]
- Boudjellal, L.; Bourbia, F. An evaluation of the cooling effect efficiency of the oasis structure in a Saharan town through remotely sensed data. Int. J. Environ. Stud. 2018, 75, 309–320. [Google Scholar] [CrossRef]
- Abaas, Z.R. Impact of development on Baghdad’s urban microclimate and human thermal comfort. Alex. Eng. J. 2020, 59, 275–290. [Google Scholar] [CrossRef]
- Bouzaher, L.B.; Alkama, D. Palm trees reuses as sustainable element in the Sahara. The case of Ziban, as self-sustainable urban units. Energ. Procedia 2012, 18, 1076–1085. [Google Scholar] [CrossRef] [Green Version]
- Fahed, J.; Kinab, E.; Ginestet, S.; Adolphe, L. Impact of urban heat island mitigation measures on microclimate and pedestrian comfort in a dense urban district of Lebanon. Sustain. Cities Soc. 2020, 61, 102375. [Google Scholar] [CrossRef]
- Bencheikh, H.; Rchid, A. The effects of green spaces (Palme trees) on the microclimate in arides zones, case study: Ghardaia, Algeria. Energ. Procedia 2012, 18, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Hosek, L.-K.; Roloff, A. Species site matching: Selecting palms (Arecaceae) for urban growing spaces. Urban For. Urban Green. 2016, 20, 113–119. [Google Scholar] [CrossRef]
- McPherson, E.G.; Xiao, Q.; Johnson, N.; van Doorn, N.S.; Peper, P.J.; Albers, S. Data for: Shade factors for 149 taxa of in-leaf urban trees in the U.S.A. Mendeley Data V1 2018, 31. [Google Scholar] [CrossRef]
- Hodel, D.R. Biology of Palms and Implications for Management in the Landscape. Hortechnology 2009, 19, 676–681. [Google Scholar] [CrossRef] [Green Version]
- Watts, J.A. Picture taking in paradise: Los Angeles and the creation of regional identity, 1880–1920. Hist. Photogr. 2000, 24, 243–250. [Google Scholar] [CrossRef]
- Piana, P.; Watkins, C.; Balzaretti, R. The Palm Landscapes of the Italian Riviera. Landscapes 2019, 19, 43–65. [Google Scholar] [CrossRef]
- Casid, J.H. Sowing Empire: Landscape and Colonization; U of Minnesota Press: Minneapolis, MN, USA, 2015. [Google Scholar]
- Griggs, P. For shade, colour and in memory of sacrifice: Amenity and memorial tree planting in Queensland’s towns and cities, 1915–1955. Qld. Rev. 2015, 22, 30–48. [Google Scholar] [CrossRef]
- Emanuele, S.; Valeria, B.; Giuseppe, I.; Ezio, P.; Vittorio, F.; Salvatore, G. Urban Landscape Evolution as a Consequence of an Invasive Pest: The Case of a Small Sicilian Town. Landsc. Online 2017, 52, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Manachini, B.; Billeci, N.; Palla, F. Exotic insect pests: The impact of the Red Palm Weevil on natural and cultural heritage in Palermo (Italy). J. Cult. Herit. 2013, 14, e177–e182. [Google Scholar] [CrossRef] [Green Version]
- Noto, G.; Romano, D. Palms in the urban environment in the southern latitudes of Italy. Sci. Manag. Veg. Urban Environ. 1985, 195, 91–97. [Google Scholar] [CrossRef]
- Hodel, D.R.; Pittenger, D.R.; Downer, A.J. Palm Root Growth and Implications for Transplanting. J. Arboric. 2005, 31, 171–181. [Google Scholar]
- Hodel, D.R.; Downer, A.J.; Pittenger, D.R. Transplanting palms. HortTechnology 2009, 19, 686–689. [Google Scholar] [CrossRef] [Green Version]
- Hernández, M.; Morales, A.; Saurí, D. Ornamental plants and the production of nature (s) in the Spanish real estate boom and bust: The case of Alicante. Urban Geogr. 2014, 35, 71–85. [Google Scholar] [CrossRef] [Green Version]
- McDonald, G.V.; Schnelle, M.A.; Arnold, M.A. Palms on the Edge: Species and Strategies for Landscape Utilization. HortTechnology 2009, 19, 705–709. [Google Scholar] [CrossRef] [Green Version]
- Cismasu, C.; Crasnopolschi, A.; Culescu, M.; Tudora, I. Why we [don’t] love palm-trees? Landscape design between local identity and exoticism. Lucr. Științifice-Univ. Științe Agron. Med. Vet. Bucur. Ser. B Hortic. 2011, 55, 276–283. [Google Scholar]
- AlMohannadi, M.; Zaina, S.; Zaina, S.; Furlan, R. Integrated Approach for the Improvement of Human Comfort in the Public Realm: The Case of the Corniche, the Linear Urban Link of Doha. Am. J. Sociol. Res. 2015, 5, 89–100. [Google Scholar]
- Bull, C.J. New Conversations with an Old Landscape: Landscape Architecture in Contemporary Australia; Images Publishing: Melbourne, Australia, 2002. [Google Scholar]
- Calhoun, S. How Melbourne became the most liveable city in the world. Plan. News 2016, 42, 12. [Google Scholar]
- Jim, C.Y.; Liu, H. Species diversity of three major urban forest types in Guangzhou City, China. For. Ecol. Manag. 2001, 146, 99–114. [Google Scholar] [CrossRef]
- Crewe, K. Arizona native plants and the urban challenge. Landsc. J. 2013, 32, 215–229. [Google Scholar] [CrossRef]
- Byrne, J.; Jinjun, Y. Can urban greenspace combat climate change? Towards a subtropical cities research agenda. Aust. Plan. 2009, 46, 36–43. [Google Scholar] [CrossRef]
- Aguaron, E.; McPherson, E.G. Comparison of methods for estimating carbon dioxide storage by Sacramento’s urban forest. In Carbon Sequestration in Urban Ecosystems; Springer: Berlin/Heidelberg, Germany, 2012; pp. 43–71. [Google Scholar]
- Velasco, E.; Roth, M.; Norford, L.; Molina, L.T. Does urban vegetation enhance carbon sequestration? Landsc. Urban Plann. 2016, 148, 99–107. [Google Scholar] [CrossRef]
- Gochfeld, M. Starling roost-site selection: Preference for palm trees. Emu 1978, 78, 39–40. [Google Scholar] [CrossRef]
- Spennemann, D.H.R. Observations on the consumption and dispersal of Phoenix canariensis drupes by the Grey-headed flying fox (Pteropus poliocephalus). Europ. J. Ecol. 2018, 4, 41–49. [Google Scholar] [CrossRef]
- Rivera, D.; Obón, C.; Alcaraz, F.; Egea, T.; Carreño, E.; Laguna, E.; Santos, A.; Wildpret, W. A review of the nomenclature and typification of the Canary Islands endemic palm, Phoenix canariensis (Arecaceae). Taxon 2013, 62, 1275–1282. [Google Scholar] [CrossRef] [Green Version]
- Barrow, S.C. A monograph of Phoenix L. (Palmae: Coryphoideae). Kew Bull. 1998, 53, 513–575. [Google Scholar] [CrossRef]
- Spennemann, D.H.R. Canary Islands Palms (Phoenix canariensis) as ornamental plants. The first thirty years of the horticultural trade. Huntia 2019, 17, 79–102. [Google Scholar]
- Zona, S. The horticultural history of the Canary Island Date Palm (Phoenix canariensis). Gard. Hist. 2008, 36, 301–308. [Google Scholar] [CrossRef]
- Spennemann, D.H.R. Canary Islands Palms (Phoenix canariensis) in Australia: Introduction and early dispersal. Palms 2018, 62, 185–201. [Google Scholar]
- Spennemann, D.H.R. Geographical Distribution of Four Key Ornamental and Production Palm Species Phoenix canariensis, P. dactylifera, Washingtonia filifera and W. robusta; Institute for Land, Water and Society, Charles Sturt University: Albury, NSW, Australia, 2018. [Google Scholar]
- Pomeroy, J.; Director, B.M. Greening the urban habitat: Singapore. CTBUH J. 2012, 2012, 30–35. [Google Scholar]
- Georgi, J.N.; Dimitriou, D. The contribution of urban green spaces to the improvement of environment in cities: Case study of Chania, Greece. Build. Environ. 2010, 45, 1401–1414. [Google Scholar] [CrossRef] [Green Version]
- Shashua-Bar, L.; Potchter, O.; Bitan, A.; Boltansky, D.; Yaakov, Y. Microclimate modelling of street tree species effects within the varied urban morphology in the Mediterranean city of Tel Aviv, Israel. Int. J. Climatol. 2010, 30, 44–57. [Google Scholar] [CrossRef]
- Spennemann, D.H.R. Consumption of Canary Island Date Palm Phoenix canariensis drupes by Pied Currawongs Strepera graculina. Aust. Field Ornithol. 2020, 37, 201–211. [Google Scholar] [CrossRef]
- Spennemann, D.H.R. Phoenix Canariensis Seed Encountered in Scats and Ejecta Collected at Alma Park; Institute for Land, Water and Society, Charles Sturt University: Albury, NSW, Australia, 2018; p. 34. [Google Scholar]
- Spennemann, D.H.R. Background to the Palms at Alma Park (NSW) III: Glenalvon Homestead; Institute for Land, Water and Society, Charles Sturt University: Albury, NSW, Australia, 2020; p. 4. [Google Scholar]
- Spennemann, D.H.R.; Pike, M. Rites of Passage: Germination of regurgitated and defecated Phoenix canariensis seeds. Proc. Linn. Soc. NSW 2019, 141, 49–59. [Google Scholar]
- Allen, R.G.; Walter, I.A.; Elliott, R.L.; Howell, T.A.; Itenfisu, D.; Jensen, M.E.; Snyder, R.L. The ASCE Standardized Reference Evapotranspiration Equation; Technical Committee on Standardization of Reference Evapotranspiration, American Society of Civil Engineers: Reston, BA, USA, 2000. [Google Scholar]
- SPSS. IBM SPSS Statistics. Statistical Package for the Social Sciences, 25; International Business Machines Inc.: Armonk, NY, USA, 2017. [Google Scholar]
- IBM. GLM Repeated Measures. Available online: https://www.ibm.com/support/knowledgecenter/en/SSLVMB_24.0.0/spss/advanced/idh_glmr.html (accessed on 1 May 2020).
- Marsh, A. 3D SunPath; Andrew Marsh. 2014. Available online: http://andrewmarsh.com/apps/staging/sunpath3d.html (accessed on 1 May 2020).
- Larsen, K. Palm Tree 3D Model. 2012. Available online: https://free3d.com/3d-model/date-palm-2286.html (accessed on 1 May 2020).
- Casey Trees; Davey Tree Expert Co. National Tree Benefit Calculator. Available online: http://www.treebenefits.com/calculator/ (accessed on 1 May 2021).
- Australian Building Codes Board. Climate Zone Map Australia Wide. Available online: https://www.abcb.gov.au/Resources/Tools-Calculators/Climate-Zone-Map-Australia-Wide (accessed on 1 May 2021).
- Horne, R.; Hayles, C.; Hes, D.; Jensen, C.; Opray, L.; Wakefield, R.; Wasiluk, K. International comparison of building energy performance standards. In Report to Australian Greenhouse Office; Department of Environment and Heritage: Canberra, Australia, 2005. [Google Scholar]
- USNO. Rise, Set, and Twilight Definitions. Available online: https://aa.usno.navy.mil/faq/docs/RST_defs.php (accessed on 1 May 2020).
- Haynes, J.; McLaughlin, J.; Vasquez, L.; Hunsberger, A.G.B. Low-Maintenance Landscape Plants for South Florida; The Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida: Gainesville, FL, USA, 2019; Volume ENH 854. [Google Scholar]
- Calegari, J. Assessing Suitability of Landscape Palm Trees in the Urban Environments of Southern Arizona; University of Arizona: Phoenix, AZ, USA, 2017. [Google Scholar]
- TreeRemoval. Palm Tree Removal & Trimming/How Much Does it Cost? Available online: http://www.treeremoval.com/costs/palm-tree-removal-and-trimming-prices/#.XPjnui3FLdQ (accessed on 1 May 2020).
- Rosenfeld, E. Effects of pruning on the health of palms. J. Arboric. 2009, 35, 294. [Google Scholar]
- Broschat, T.K. Pruning Palms; Institute of Food and Agricultural Sciences, University of Florida: Gainesville, FL, USA, 2011; Volume ENH 1182. [Google Scholar]
- Downer, A.J.; Hodel, D.R.; Mochizuki, M.J. Pruning landscape palms. HortTechnology 2009, 19, 695–699. [Google Scholar]
- Hosek, L.-K.; Roloff, A. Relations between cityscape-related and palm-inherent variables and the pruning state of urban Arecaceae suggest three reasons for overpruning. Urban For. Urban Green. 2015, 14, 975–981. [Google Scholar] [CrossRef] [Green Version]
- Callaghan, A.; McCombe, G.; Harrold, A.; McMeel, C.; Mills, G.; Moore-Cherry, N.; Cullen, W. The impact of green spaces on mental health in urban settings: A scoping review. J. Ment. Health 2020, 33, 212–222. [Google Scholar]
- Wolf, K.L.; Lam, S.T.; McKeen, J.K.; Richardson, G.R.; van den Bosch, M.; Bardekjian, A.C. Urban trees and human health: A scoping review. Int. J. Environ. Res. Public Health 2020, 17, 4371. [Google Scholar]
- Nutsford, D.; Pearson, A.; Kingham, S. An ecological study investigating the association between access to urban green space and mental health. Public Health 2013, 127, 1005–1011. [Google Scholar] [PubMed]
- Kuo, F.E.; Sullivan, W.C. Environment and crime in the inner city: Does vegetation reduce crime? Environ. Behav. 2001, 33, 343–367. [Google Scholar]
- Elmendorf, W. The importance of trees and nature in community: A review of the relative literature. Arboric. Urban For. 2008, 34, 152. [Google Scholar]
- Spennemann, D.H.R. The Ornamental Planting of Palms at the Western End of Dean Street, Albury (NSW) 1929–2019; Institute for Land, Water and Society Charles Sturt University: Albury, NSW, Australia, 2019. [Google Scholar]
- Coutts, A.M.; White, E.C.; Tapper, N.J.; Beringer, J.; Livesley, S.J. Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theor. Appl. Clim. 2016, 124, 55–68. [Google Scholar] [CrossRef]
- Dalrymple, N.K.; Fisher, J.B. The relationship between the number of expanded and developing leaves in shoot apices of palms. Am. J. Bot. 1994, 81, 1576–1581. [Google Scholar] [CrossRef]
- Anderson, D.B. Relative humidity or vapor pressure deficit. Ecology 1936, 17, 277–282. [Google Scholar] [CrossRef]
- Dey, R.; Lewis, S.C.; Arblaster, J.M.; Abram, N.J. A review of past and projected changes in Australia’s rainfall. Wiley Interdiscip. Rev. Clim. Chang. 2019, 10, e577. [Google Scholar] [CrossRef]
- Wang, B.; Li Liu, D.; Macadam, I.; Alexander, L.V.; Abramowitz, G.; Yu, Q. Multi-model ensemble projections of future extreme temperature change using a statistical downscaling method in south eastern Australia. Clim. Chang. 2016, 138, 85–98. [Google Scholar] [CrossRef]
- Gerzabek, M.H.; Bajraktarevic, A.; Keiblinger, K.; Mentler, A.; Rechberger, M.; Tintner, J.; Wriessnig, K.; Gartner, M.; Valenzuela, X.S.; Troya, A. Online Early. Soil Res. 2019, 57, 467–481. [Google Scholar]
- Pandit, R.; Polyakov, M.; Tapsuwan, S.; Moran, T. The effect of street trees on property value in Perth, Western Australia. Landsc. Urban Plann. 2012, 110. [Google Scholar] [CrossRef]
- Jenerette, G.D.; Harlan, S.L.; Brazel, A.; Jones, N.; Larsen, L.; Stefanov, W.L. Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landsc. Ecol. 2007, 22, 353–365. [Google Scholar] [CrossRef]
- Schwarz, K.; Fragkias, M.; Boone, C.G.; Zhou, W.; McHale, M.; Grove, J.M.; O’Neil-Dunne, J.; McFadden, J.P.; Buckley, G.L.; Childers, D. Trees grow on money: Urban tree canopy cover and environmental justice. PLoS ONE 2015, 10, e0122051. [Google Scholar] [CrossRef] [Green Version]
- Cariñanos, P.; Calaza-Martínez, P.; O’Brien, L.; Calfapietra, C. The cost of greening: Disservices of urban trees. In The Urban Forest; Springer: Berlin/Heidelberg, Germany, 2017; pp. 79–87. [Google Scholar]
- Sakai, A.; Larcher, W. Frost Survival of Plants: Responses and Adaptation to Freezing Stress; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Larcher, W.; Winter, A. Frost susceptibility of palms: Experimental data and their interpretation. Principes 1981, 25, 143–152. [Google Scholar]
- Plugatar, Y.V.; Maksimov, A.P.; Trikoz, N.N.; Kovalev, M.; Khromov, A. PEЗУЛЬTATЫ ИHTPOДУKЦИИ ΦИHИKA KAHAPCKOГO (PHOENIX CANARIENSIS CHAB.) HA ЮЖHOM БEPEГУ KPЫMA. [Results of the introduction of the Canary Islands date Palm (Phoenix Canariensis Chab.) on the southern coast of Crimea]. BECTHИK BГУ CEPИЯ XИMИЯ БИOЛOГИЯ ΦAPMAЦИЯ [Proc. Appl. Bot. Genet. Breed.] 2018, 179, 221–229. [Google Scholar]
- Ruan, Z.; Liao, Q.; Ding, Y. Cold Resistance of introduced Phoenix canariensis in Xiamen. Chin. J. Trop. Agric. 2006, 26, 7–9. [Google Scholar]
- Jones, W.D. Effects of the 1978 freeze on native plants of Sonora, Mexico. Desert Plants 1979, 1, 33–36. [Google Scholar]
- Pittenger, D.R.; Downer, A.J.; Hodel, D.R.; Mochizuki, M. Estimating water needs of landscape palms in Mediterranean climates. HortTechnology 2009, 19, 700–704. [Google Scholar] [CrossRef] [Green Version]
- Cubino, J.P.; Subirós, J.V.; Lozano, C.B. Maintenance, modifications, and water use in private gardens of Alt Empordà, Spain. HortTechnology 2014, 24, 374–383. [Google Scholar] [CrossRef]
- May, P.B.; Livesley, S.J.; Shears, I. Managing and monitoring tree health and soil water status during extreme drought in Melbourne, Victoria. Arboric. Urban 2013, 39, 136–145. [Google Scholar]
- Adams, C.D.; Timms, F.J.; Hanlon, M. Phoenix date palm injuries: A review of injuries from the Phoenix date palm treated at the Starship Children’s Hospital. Aust. N. Z. J. Surg. 2000, 70, 355–357. [Google Scholar] [CrossRef]
- Cahill, N.; King, J.D. Palm thorn synovitis. J. Pediatr. Orthop. 1984, 4, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Cozen, L.; Fonda, M. Palm thorn injuries: Difficulty in diagnosis of late sequelae. Calif. Med. 1953, 79, 40. [Google Scholar] [PubMed]
- Ferrández-García, A.; Ferrández-Villena, M.; Ferrández-García, C.E.; García-Ortuño, T.; Ferrández-García, M.T. Potential use of Phoenix canariensis biomass in binderless particleboards at low temperature and pressure. BioResources 2017, 12, 6698–6712. [Google Scholar] [CrossRef] [Green Version]
- Martín-González, M.; González-Díaz, O.; Susial, P.; Araña, J.; Herrera-Melián, J.; Doña-Rodríguez, J.; Pérez-Peña, J. Reuse of Phoenix canariensis palm frond mulch as biosorbent and as precursor of activated carbons for the adsorption of Imazalil in aqueous phase. Chem. Eng. J. 2014, 245, 348–358. [Google Scholar] [CrossRef]
- Correia, R.; Gonçalves, M.; Nobre, C.; Mendes, B. Material valorization of arundo donax l. and Phoenix canariensis biomass as adsorbents of methylene blue dye. In Proceedings of the Wates: Solutions, Treatments and Opportunities 3rd International Conference, Viana Do Castelo, Portugal, 14–16 September 2015; pp. 112–114. [Google Scholar]
- Sajdak, M.; Velázquez-Martí, B.; López-Cortés, I. Quantitative and qualitative characteristics of biomass derived from pruning Phoenix canariensis hort. ex Chabaud. and Phoenix dactilifera L. Renew. Energy 2014, 71, 545–552. [Google Scholar] [CrossRef]
- Correia, R.; Gonçalves, M.; Nobre, C.; Mendes, B. Impact of torrefaction and low-temperature carbonization on the properties of biomass wastes from Arundo donax L. and Phoenix canariensis. Bioresour. Technol. 2017, 223, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Spennemann, D.H.R. The connective potential of vertebrate vectors responsible for the dispersal of the Canary Island date palm (Phoenix canariensis). Flora 2019, 259, 151468. [Google Scholar] [CrossRef]
- Spennemann, D.H.R. The contribution of the Canary Island date palm (Phoenix canariensis) to the winter diet of frugivores in novel ecosystems. Europ. J. Ecol. 2019, 5, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Duryea, M.L.; Kampf, E.; Littell, R.C.; Rodriguez-Pedraza, C.D. Hurricanes and the urban forest: II. Effects on tropical and subtropical tree species. Arboric. Urban For. 2007, 33, 98. [Google Scholar]
- Duryea, M.L.; Kampf, E.; Littell, R.C. Hurricanes and the urban forest: I. Effects on southeastern United States coastal plain tree species. Arboric. Urban For. 2007, 33, 83. [Google Scholar]
- Warrag, M.; AI-Wasel, A. Autoallelopathic Potential of Leaflets and Seeds on Seedling Growth of Date Palm (Phoenix dactylifera L.). J. Agric. Mar. Sci. 2000, 5, 7–10. [Google Scholar] [CrossRef] [Green Version]
- Del Moral, R.; Muller, C.H. The allelopathic effects of Eucalyptus camaldulensis. Am. Midl. Nat. 1970, 83, 254–282. [Google Scholar] [CrossRef]
- May, F.; Ash, J. An assessment of the allelopathic potential of Eucalyptus. Aust. J. Bot. 1990, 38, 245–254. [Google Scholar] [CrossRef]
- Ahmed, R.; Hoque, A.R.; Hossain, M.K. Allelopathic effects of leaf litters of Eucalyptus camaldulensis on some forest and agricultural crops. J. For. Res. 2008, 19, 19–24. [Google Scholar] [CrossRef]
Albury | Alma Park | |||||
---|---|---|---|---|---|---|
Crown vs. Control | Trunk vs. Control | Crown vs. Birch | Crown vs. Control | Trunk vs. Control | Crown vs. Eucalypt | |
Dawn | 0.000 | 0.000 | 0.000 | 0.111 | 0.084 | 0.338 |
Day | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Dusk | 0.000 | 0.989 | 0.000 | 0.226 | 0.007 | 0.283 |
Night | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Albury | Alma Park | |||||
---|---|---|---|---|---|---|
Crown vs. Control | Trunk vs. Control | Crown vs. Birch | Crown vs. Control | Trunk vs. Control | Crown vs. Eucalypt | |
Dawn | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.120 |
Day | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Dusk | 0.000 | 0.584 | 0.000 | 0.000 | 0.000 | 0.421 |
Night | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 |
Storm Water | Electricity | Gas | Air Quality | CO2 | Total | |
---|---|---|---|---|---|---|
Broken Hill | ||||||
Betula pendula | 59.8 | 70.6 | 76.2 | 98.8 | 83.5 | 76.3 |
Eucalyptus sp. | 124.4 | 108.0 | 101.0 | 107.9 | 142.6 | 112.5 |
Phoenix canariensis | 82.1 | 103.2 | 123.8 | 166.3 | 54.6 | 111.6 |
Platanus × acerifolia | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Liquidambar styraciflua | — | — | — | — | — | — |
Washingtonia sp. | 0.2 | 72.3 | 77.2 | 48.3 | 35.3 | 53.8 |
Albury | ||||||
Betula pendula | 42.0 | 61.9 | 74.8 | 47.4 | 49.2 | 54.0 |
Eucalyptus sp. | 117.6 | 84.8 | 64.5 | 90.6 | 164.6 | 94.0 |
Phoenix canariensis | 100.8 | 99.1 | 88.4 | 126.4 | 72.4 | 107.2 |
Platanus × acerifolia | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Liquidambar styraciflua | 53.6 | 121.9 | 43.9 | 57.3 | 100.6 | 86.7 |
Washingtonia sp. | 30.1 | 12.0 | 20.0 | 12.8 | 16.6 | 15.4 |
Brisbane | ||||||
Betula pendula | 69.3 | 80.9 | 87.7 | 79.1 | 107.8 | 77.7 |
Eucalyptus sp. | 65.4 | 55.8 | 46.7 | 60.3 | 62.9 | 60.2 |
Phoenix canariensis | 92.4 | 88.1 | 104.0 | 100.9 | 52.3 | 90.0 |
Platanus × acerifolia | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Liquidambar styraciflua | 62.3 | 62.4 | 65.9 | 62.0 | 82.2 | 63.9 |
Washingtonia sp. | 17.5 | 16.1 | 17.1 | 17.7 | 9.0 | 16.5 |
Adelaide/Sydney | ||||||
Betula pendula | 79.1 | 75.5 | 54.0 | 77.6 | 49.3 | 75.2 |
Eucalyptus sp. | 102.2 | 231.7 | 109.4 | 364.3 | 236.8 | 154.0 |
Phoenix canariensis | 101.0 | 48.9 | 14.7 | 87.8 | 20.7 | 80.8 |
Platanus × acerifolia | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Liquidambar styraciflua | 72.5 | 295.6 | 87.3 | 246.4 | 144.3 | 131.3 |
Washingtonia sp. | 16.2 | 30.2 | 18.5 | 54.4 | 18.9 | 22.2 |
Melbourne | ||||||
Betula pendula | 67.7 | 97.1 | 43.0 | 67.4 | 59.2 | 79.9 |
Eucalyptus sp. | 102.1 | 93.3 | 126.3 | 55.4 | 214.7 | 99.4 |
Phoenix canariensis | 83.0 | 43.3 | 19.5 | 268.3 | 22.3 | 78.5 |
Platanus × acerifolia | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Liquidambar styraciflua | 89.6 | 129.1 | 115.3 | 37.0 | 310.4 | 117.3 |
Washingtonia sp. | 11.0 | 12.4 | 17.4 | 15.8 | 13.3 | 13.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spennemann, D.H.R. The Role of Canary Island Date Palms in Physical Amenity Provisioning for Urban Landscape Settings. Horticulturae 2021, 7, 201. https://doi.org/10.3390/horticulturae7070201
Spennemann DHR. The Role of Canary Island Date Palms in Physical Amenity Provisioning for Urban Landscape Settings. Horticulturae. 2021; 7(7):201. https://doi.org/10.3390/horticulturae7070201
Chicago/Turabian StyleSpennemann, Dirk H. R. 2021. "The Role of Canary Island Date Palms in Physical Amenity Provisioning for Urban Landscape Settings" Horticulturae 7, no. 7: 201. https://doi.org/10.3390/horticulturae7070201
APA StyleSpennemann, D. H. R. (2021). The Role of Canary Island Date Palms in Physical Amenity Provisioning for Urban Landscape Settings. Horticulturae, 7(7), 201. https://doi.org/10.3390/horticulturae7070201