Chemical Composition, Antioxidant, and α-Glucosidase-Inhibiting Activity of Aqueous and Hydroethanolic Extracts of Traditional Antidiabetics from Croatian Ethnomedicine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Chemicals, and Apparatus
2.2. Determination of Metal Content in Plant Material
2.3. Preparation of the Extracts
2.4. Spectrophotometric Determination of Phenolic Compounds
2.5. HPLC Analysis of Phenolic Constituents
2.6. ABTS and DPPH Radical Scavenging Activity
2.7. Fe2+ Chelating Activity
2.8. β-Carotene-Linoleic Acid Assay
2.9. Total Antioxidant Activity
2.10. Reducing Power
2.11. Ferric Reducing Antioxidant Power
2.12. Determination of α-Glucosidase Inhibiting Activity
2.13. Statistical Analysis
3. Results
3.1. Plant Included in the Study
3.2. Content of Metals in Selected Plants
3.3. Phenolic Content of the Extracts
3.4. Antioxidant Activity of the Extracts
3.5. α-Glucosidase-Inhibitory Activity of the Extracts
3.6. The Relationship between the Investigated Variables
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Esposito, K.; Ciotola, M.; Maiorino, M.I.; Giugliano, D. Lifestyle Approach for Type 2 Diabetes and Metabolic Syndrome. Curr. Atheroscler. Rep. 2008, 10, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Luc, K.; Schramm-Luc, A.; Guzik, T.J.; Mikolajczyk, T.P. Oxidative Stress and Inflammatory Markers in Prediabetes and Diabetes. J. Physiol. Pharmacol. 2019, 70, 809–824. [Google Scholar] [CrossRef]
- Kapoor, R.; Kakkar, P. Protective Role of Morin, a Flavonoid, against High Glucose Induced Oxidative Stress Mediated Apoptosis in Primary Rat Hepatocytes. PLoS ONE 2012, 7, e41663. [Google Scholar] [CrossRef] [Green Version]
- Fiorentino, T.V.; Prioletta, A.; Zuo, P.; Folli, F. Hyperglycemia-Induced Oxidative Stress and Its Role in Diabetes Mellitus Related Cardiovascular Diseases. Curr. Pharm. Des. 2013, 19, 5695–5703. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; et al. An Overview of Plant Phenolic Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes. Molecules 2016, 21, 1374. [Google Scholar] [CrossRef] [PubMed]
- Truba, J.; Stanisławska, I.; Walasek, M.; Wieczorkowska, W.; Woliński, K.; Buchholz, T.; Melzig, M.F.; Czerwińska, M.E. Inhibition of Digestive Enzymes and Antioxidant Activity of Extracts from Fruits of Cornus alba, Cornus sanguinea Subsp. Hungarica and Cornus florida—A Comparative Study. Plants 2020, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Zovko Končić, M.; Bljajić, K. Chapter 42—Traditional Herbal Products Used for the Management of Diabetes in Croatia: Linking Traditional Use with α-Glucosidase-Inhibitory Activity. In Bioactive Food as Dietary Interventions for Diabetes, 2nd ed.; Watson, R.R., Preedy, V.R., Eds.; Academic Press: Oxford, UK, 2019; pp. 647–664. ISBN 978-0-12-813822-9. [Google Scholar]
- Helmstädter, A. Beans and Diabetes: Phaseolus Vulgaris Preparations as Antihyperglycemic Agents. J. Med. Food 2010, 13, 251–254. [Google Scholar] [CrossRef]
- Wen, Y.; He, L.; Peng, R.; Lin, Y.; Zhao, L.; Li, X.; Ye, L.; Yang, J. A Novel Strategy to Evaluate the Quality of Herbal Products Based on the Chemical Profiling, Efficacy Evaluation and Pharmacokinetics. J. Pharm. Biomed. Anal. 2018, 161, 326–335. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, M.S.; Shah, S.B.; Rasheed, T.; Iqbal, H.M.N. Diabetic Complications and Insight into Antidiabetic Potentialities of Ethno- Medicinal Plants: A Review. Recent Pat. Inflamm Allergy Drug Discov. 2018, 12, 7–23. [Google Scholar] [CrossRef]
- Dghaim, R.; Al Khatib, S.; Rasool, H.; Ali Khan, M. Determination of Heavy Metals Concentration in Traditional Herbs Commonly Consumed in the United Arab Emirates. J. Environ. Public Health 2015, 2015, e973878. [Google Scholar] [CrossRef] [Green Version]
- Lewicki, S.; Zdanowski, R.; Krzyżowska, M.; Lewicka, A.; Dębski, B.; Niemcewicz, M.; Goniewicz, M. The Role of Chromium III in the Organism and Its Possible Use in Diabetes and Obesity Treatment. Ann. Agric. Environ. Med. 2014, 21, 331–335. [Google Scholar] [CrossRef] [PubMed]
- European Pharmacopoeia, 8th ed.; Council of Europe: Strasbourg, France, 2013.
- Abbasi, A.M.; Khan, M.A.; Khan, N.; Shah, M.H. Ethnobotanical Survey of Medicinally Important Wild Edible Fruits Species Used by Tribal Communities of Lesser Himalayas-Pakistan. J. Ethnopharmacol. 2013, 148, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, pp. 152–178. ISBN 978-0-12-182200-2. [Google Scholar]
- Kumazawa, S.; Hamasaka, T.; Nakayama, T. Antioxidant Activity of Propolis of Various Geographic Origins. Food Chem. 2004, 84, 329–339. [Google Scholar] [CrossRef]
- Nicolle, C.; Carnat, A.; Fraisse, D.; Lamaison, J.-L.; Rock, E.; Michel, H.; Amouroux, P.; Rémésy, C. Characterisation and Variation of Antioxidant Micronutrients in Lettuce (Lactuca sativa Folium). J. Sci. Food Agric. 2004, 84, 2061–2069. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Končić, M.Z.; Barbarić, M.; Perković, I.; Zorc, B. Antiradical, Chelating and Antioxidant Activities of Hydroxamic Acids and Hydroxyureas. Molecules 2011, 16, 6232–6242. [Google Scholar] [CrossRef] [Green Version]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Bljajić, K.; Petlevski, R.; Vujić, L.; Čačić, A.; Šoštarić, N.; Jablan, J.; Saraiva de Carvalho, I.; Zovko Končić, M. Chemical Composition, Antioxidant and α-Glucosidase-Inhibiting Activities of the Aqueous and Hydroethanolic Extracts of Vaccinium myrtillus Leaves. Molecules 2017, 22, 703. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, A.K.; Swapna, M.; Ayesha, S.B.; Zehra, A.; Agawane, S.B.; Madhusudana, K. Identification of Proglycemic and Antihyperglycemic Activity in Antioxidant Rich Fraction of Some Common Food Grains. Int. Food Res. J. 2011, 18, 915–923. [Google Scholar]
- Phimarn, W.; Wichaiyo, K.; Silpsavikul, K.; Sungthong, B.; Saramunee, K. A Meta-Analysis of Efficacy of Morus alba Linn. to Improve Blood Glucose and Lipid Profile. Eur. J. Nutr. 2017, 56, 1509–1521. [Google Scholar] [CrossRef]
- Evans, J.L.; Bahng, M. Non-pharmaceutical intervention options for type 2 diabetes: Diets and Dietary Supplements (Botanicals, Antioxidants, and Minerals). In Endotext; De Groot, L.J., Chrousos, G., Dungan, K., Feingold, K.R., Grossman, A., Hershman, J.M., Koch, C., Korbonits, M., McLachlan, R., New, M., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Siddiqui, K.; Bawazeer, N.; Joy, S.S. Variation in Macro and Trace Elements in Progression of Type 2 Diabetes. Sci. World J. 2014, 2014, 461591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salamon, I.; Labun, P.; Petruska, P. Occurrence of Heavy Metals, Radioactivity, and Pesticide Residues in Raw Materials of Elderberry and Other Herbs and Fruits in Slovak Republic. Acta Hortic. 2015, 1061, 259–266. [Google Scholar] [CrossRef]
- Krejpcio, Z.; Król, E.; Sionkowski, S. Evaluation of Heavy Metals Contents in Spices and Herbs Available on the Polish Market. Pol. J. Environ. Stud. 2007, 16, 97–100. [Google Scholar]
- Sung, T.-C.; Huang, J.-W.; Guo, H.-R. Association between Arsenic Exposure and Diabetes: A Meta-Analysis. Biomed. Res. Int 2015, 2015, 368087. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Guidelines for Assessing Quality of Herbal Medicines with Reference to Contaminants and Residues; WHO Press: Geneva, Switzerland, 2007. [Google Scholar]
- Matos, A.L.; Bruno, D.F.; Ambrósio, A.F.; Santos, P.F. The Benefits of Flavonoids in Diabetic Retinopathy. Nutrients 2020, 12, 3169. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, A. Mechanisms of Antidiabetic Effects of Flavonoid Rutin. Biomed. Pharmacother. 2017, 96, 305–312. [Google Scholar] [CrossRef]
- Gülçin, İ. Antioxidant Activity of Food Constituents: An Overview. Arch. Toxicol. 2012, 86, 345–391. [Google Scholar] [CrossRef]
- Nakamura, K.; Ogasawara, Y.; Endou, K.; Fujimori, S.; Koyama, M.; Akano, H. Phenolic Compounds Responsible for the Superoxide Dismutase-like Activity in High-Brix Apple Vinegar. J. Agric. Food Chem. 2010, 58, 10124–10132. [Google Scholar] [CrossRef] [PubMed]
- Vinayagam, R.; Jayachandran, M.; Xu, B. Antidiabetic Effects of Simple Phenolic Acids: A Comprehensive Review. Phytother. Res. 2016, 30, 184–199. [Google Scholar] [CrossRef]
- Moldovan, L.; Gaspar, A.; Toma, L.; Craciunescu, O.; Saviuc, C. Comparison of Polyphenolic Content and Antioxidant Capacity of Five Romanian Traditional Medicinal Plants. Rev. Chim. 2011, 62, 299–303. [Google Scholar]
- Nankar, R.; Prabhakar, P.K.; Doble, M. Hybrid Drug Combination: Combination of Ferulic Acid and Metformin as Anti-Diabetic Therapy. Phytomedicine 2017, 37, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Zhou, X.; Guo, K.; Zhou, F.; Yang, H. Use of Chlorogenic Acid against Diabetes Mellitus and Its Complications. J. Immunol. Res. 2020, 2020, 9680508. [Google Scholar] [CrossRef] [PubMed]
- Mocan, A.; Babotă, M.; Pop, A.; Fizeșan, I.; Diuzheva, A.; Locatelli, M.; Carradori, S.; Campestre, C.; Menghini, L.; Sisea, C.R.; et al. Chemical Constituents and Biologic Activities of Sage Species: A Comparison between Salvia officinalis L., S. glutinosa L. and S. transsylvanica (Schur Ex Griseb. & Schenk) Schur. Antioxidants 2020, 9, 480. [Google Scholar] [CrossRef]
- Viapiana, A.; Wesolowski, M. The Phenolic Contents and Antioxidant Activities of Infusions of Sambucus nigra L. Plant Foods Hum. Nutr. 2017, 72, 82–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geszprych, A.; Przybył, J.L.; Kuczerenko, A.; Wȩglarz, Z. Diversity of Wormwood (Artemisia absinthium L.) Growing Wild in Poland in Respect of the Content and Composition of Essential Oil and Phenolic Compounds. Acta Hortic. 2011, 925, 123–130. [Google Scholar] [CrossRef]
- Chawla, R.; Thakur, P.; Chowdhry, A.; Jaiswal, S.; Sharma, A.; Goel, R.; Sharma, J.; Priyadarshi, S.S.; Kumar, V.; Sharma, R.K.; et al. Evidence Based Herbal Drug Standardization Approach in Coping with Challenges of Holistic Management of Diabetes: A Dreadful Lifestyle Disorder of 21st Century. J. Diabetes Metab. Disord. 2013, 12. [Google Scholar] [CrossRef] [Green Version]
- Faraone, I.; Rai, D.K.; Russo, D.; Chiummiento, L.; Fernandez, E.; Choudhary, A.; Milella, L. Antioxidant, Antidiabetic, and Anticholinesterase Activities and Phytochemical Profile of Azorella Glabra Wedd. Plants 2019, 8, 265. [Google Scholar] [CrossRef] [Green Version]
- Pokorny, J.; Yanishlieva, N.; Gordon, M.H. Antioxidants in Food: Practical Applications; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Ghorbani, A.; Esmaeilizadeh, M. Pharmacological Properties of Salvia Officinalis and Its Components. J. Tradit. Complement. Med. 2017, 7, 433–440. [Google Scholar] [CrossRef]
- Zengin, G.; Aktumsek, A.; Ceylan, R.; Uysal, S.; Mocan, A.; Guler, G.O.; Mahomoodally, M.F.; Glamočlija, J.; Ćirić, A.; Soković, M. Shedding Light on the Biological and Chemical Fingerprints of Three Achillea Species (A. biebersteinii, A. millefolium and A. teretifolia). Food Funct. 2017, 8, 1152–1165. [Google Scholar] [CrossRef]
- Jiménez-Aspee, F.; Theoduloz, C.; Soriano, M.D.P.C.; Ugalde-Arbizu, M.; Alberto, M.R.; Zampini, I.C.; Isla, M.I.; Simirigiotis, M.J.; Schmeda-Hirschmann, G. The Native Fruit Geoffroea Decorticans from Arid Northern Chile: Phenolic Composition, Antioxidant Activities and In Vitro Inhibition of Pro-Inflammatory and Metabolic Syndrome-Associated Enzymes. Molecules 2017, 22, 1565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oboh, G.; Agunloye, O.M.; Adefegha, S.A.; Akinyemi, A.J.; Ademiluyi, A.O. Caffeic and Chlorogenic Acids Inhibit Key Enzymes Linked to Type 2 Diabetes (in vitro): A Comparative Study. J. Basic Clin. Physiol. Pharmacol. 2015, 26, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Q.; Zhou, F.C.; Gao, F.; Bian, J.S.; Shan, F. Comparative Evaluation of Quercetin, Isoquercetin and Rutin as Inhibitors of α-Glucosidase. J. Agric. Food Chem. 2009, 57, 11463–11468. [Google Scholar] [CrossRef]
- Adisakwattana, S.; Ruengsamran, T.; Kampa, P.; Sompong, W. In Vitro Inhibitory Effects of Plant-Based Foods and Their Combinations on Intestinal α-Glucosidase and Pancreatic α-Amylase. BMC Complement. Altern. Med. 2012, 12, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Hung, P. Phenolic Compounds of Cereals and Their Antioxidant Capacity. Crit. Rev. Food Sci. Nutr. 2016, 56, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Leopoldini, M.; Russo, N.; Toscano, M. The Molecular Basis of Working Mechanism of Natural Polyphenolic Antioxidants. Food Chem. 2011, 125, 288–306. [Google Scholar] [CrossRef]
- Diaz, P.; Jeong, S.C.; Lee, S.; Khoo, C.; Koyyalamudi, S.R. Antioxidant and Anti-Inflammatory Activities of Selected Medicinal Plants and Fungi Containing Phenolic and Flavonoid Compounds. Chin. Med. 2012, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Berker, K.I.; Güçlü, K.; Tor, İ.; Apak, R. Comparative Evaluation of Fe(III) Reducing Power-Based Antioxidant Capacity Assays in the Presence of Phenanthroline, Batho-Phenanthroline, Tripyridyltriazine (FRAP), and Ferricyanide Reagents. Talanta 2007, 72, 1157–1165. [Google Scholar] [CrossRef]
- Kling, B.; Bücherl, D.; Palatzky, P.; Matysik, F.-M.; Decker, M.; Wegener, J.; Heilmann, J. Flavonoids, Flavonoid Metabolites, and Phenolic Acids Inhibit Oxidative Stress in the Neuronal Cell Line HT-22 Monitored by ECIS and MTT Assay: A Comparative Study. J. Nat. Prod. 2014, 77, 446–454. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Czemerys, R. Antioxidant Activity and Phenolic Compounds in 32 Selected Herbs. Food Chem. 2007, 105, 940–949. [Google Scholar] [CrossRef]
- Mahdi, S.; Azzi, R.; Lahfa, F.B. Evaluation of in Vitro α-Amylase and α-Glucosidase Inhibitory Potential and Hemolytic Effect of Phenolic Enriched Fractions of the Aerial Part of Salvia officinalis L. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 689–694. Available online: https://pubmed.ncbi.nlm.nih.gov/32442919/ (accessed on 1 December 2020). [CrossRef] [PubMed]
- Józefczuk, J.; Malikowska, K.; Glapa, A.; Stawińska-Witoszyńska, B.; Nowak, J.K.; Bajerska, J.; Lisowska, A.; Walkowiak, J. Mulberry Leaf Extract Decreases Digestion and Absorption of Starch in Healthy Subjects—A Randomized, Placebo-Controlled, Crossover Study. Adv. Med. Sci. 2017, 62, 302–306. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Qi, X.; Fu, Y.; Chen, Q.; Cheng, P.; Yu, X.; Sun, X.; Wu, J.; Li, W.; Zhang, Q.; et al. Flavonoids Extracted from Mulberry (Morus alba L.) Leaf Improve Skeletal Muscle Mitochondrial Function by Activating AMPK in Type 2 Diabetes. J. Ethnopharmacol. 2020, 248, 112326. [Google Scholar] [CrossRef] [PubMed]
- Patra, P.; Das, D.; Behera, B.; Maiti, T.K.; Islam, S.S. Structure Elucidation of an Immunoenhancing Pectic Polysaccharide Isolated from Aqueous Extract of Pods of Green Bean (Phaseolus vulgaris L.). Carbohydr. Polym. 2012, 87, 2169–2175. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Saab, A.M.; Tundis, R.; Menichini, F.; Bonesi, M.; Piccolo, V.; Statti, G.A.; de Cindio, B.; Houghton, P.J.; Menichini, F. In Vitro Inhibitory Activities of Plants Used in Lebanon Traditional Medicine against Angiotensin Converting Enzyme (ACE) and Digestive Enzymes Related to Diabetes. J. Ethnopharmacol. 2008, 119, 109–116. [Google Scholar] [CrossRef]
- Mota, A.H.; Andrade, J.M.; Rodrigues, M.J.; Custódio, L.; Bronze, M.R.; Duarte, N.; Baby, A.; Rocha, J.; Gaspar, M.M.; Simões, S.; et al. Synchronous Insight of In Vitro and In Vivo Biological Activities of Sambucus nigra L. Extracts for Industrial Uses. Ind. Crop. Prod. 2020, 154, 112709. [Google Scholar] [CrossRef]
- Ho, G.T.T.; Kase, E.T.; Wangensteen, H.; Barsett, H. Effect of Phenolic Compounds from Elderflowers on Glucose- and Fatty Acid Uptake in Human Myotubes and HepG2-Cells. Molecules 2017, 22, 90. [Google Scholar] [CrossRef] [Green Version]
Standard | Equation | r2 | LOD (μg/mL) | LOQ (μg/mL) |
---|---|---|---|---|
Caffeic acid | y = 5335.00x − 19.45 | 0.9999 | 0.012 | 0.041 |
Chlorogenic acid | y = 2587.30x + 73.42 | 0.9996 | 0.036 | 0.11 |
p-coumaric acid | y = 6214.63x − 137.38 | 0.9973 | 0.09 | 0.299 |
Ferulic acid | y = 5045.04x − 45.10 | 0.9998 | 0.026 | 0.088 |
Gallic acid | y = 4808.10x + 12.88 | 0.9998 | 0.026 | 0.087 |
Hyperoside | y = 1426.20x + 15.40 | 0.9999 | 0.013 | 0.04 |
Luteolin | y = 3205.25x − 46.60 | 0.9998 | 0.025 | 0.077 |
Myricetin | y = 4341.80x − 691.78 | 0.9997 | 0.315 | 1.049 |
Quercetine | y = 2200.20x − 36.75 | 0.9998 | 0.027 | 0.083 |
Rosmarinic acid | y = 2518.90x + 21.44 | 0.9999 | 0.003 | 0.01 |
Rutin | y = 3197.71x − 478.76 | 0.9988 | 0.289 | 0.962 |
Plant Species | Type of Material | Abbreviation * |
---|---|---|
Artemisia absinthium L., Asteraceae (wormwood) | Flowering aerial parts | AA |
Achillea millefolium L., Asteraceae (yarrow) | Flowering aerial parts | AM |
Centaurium erythraea Rafn., Gentianaceae (centaury) | Flowering aerial parts | CE |
Morus alba L., Moraceae (white mulberry) | Leaf | MA |
Phaseolus vulgaris L., Fabaceae (common bean) | Fruit (pericarp) | PV |
Sambucus nigra L., Caprifoliaceae (elder) | Flower | SN |
Salvia officinalis L., Lamiaceae (sage) | Leaf | SO |
Plant Material | Cr mg/kg | Mg mg/kg | Zn mg/kg | Mn mg/kg | Cu mg/kg | Pb mg/kg | Ni mg/kg | As mg/kg |
---|---|---|---|---|---|---|---|---|
AA | 0.5 ± 0.1 | 205 ± 80 | 31.9 ± 0.15 | 28.4 ± 0.2 | 25.2 ± 0.1 | 1.6 ± 0.05 | 2.0 ± 0.05 | 0.8 ± 0.05 |
AM | n.d. | 655 ± 90 | 21.4 ± 0.1 | 24.6 ± 0.2 | 11.0 ± 0.1 | 0.8 ± 0.05 | 0.6 ± 0.05 | 1.1 ± 0.05 |
CE | n.d. | 295 ± 80 | 29.5 ± 1.3 | 37.1 ± 2.3 | 13.6 ± 1.0 | 0.4 ± 4.25 | 3.1 ± 0.07 | 1.3 ± 4.0 |
MA | n.d. | 795 ± 110 | 14.4 ± 0.1 | 9.5 ± 0.2 | 5.6 ± 0.1 | 0.8 ± 0.05 | 1.5 ± 0.05 | 1.0 ± 0.05 |
PV | n.d. | 1575 ± 110 | 16.4 ± 0.1 | 12.5 ± 0.2 | 11.3 ± 0.1 | 0.3 ± 0.05 | 5.8 ± 0.1 | 1.2 ± 0.05 |
SN | n.d. | 715 ± 105 | 22.5 ± 0.2 | 11.1±0.2 | 12.0 ± 0.1 | 0.4 ± 0.05 | 0.4 ± 0.05 | 1.1 ± 0.05 |
SO | n.d. | 310 ± 75 | 16.7 ± 0.1 | 7.8 ± 0.1 | 9.7 ± 0.1 | 0.4 ± 0.05 | 0.5 ± 0.05 | 0.6 ± 0.05 |
Extract | TP (mg GAE/g DW) | TF (mg QE/g DW) | TPA (mg CAE/g DW) |
---|---|---|---|
AA-E | 154.37 ±18.95 CDE | 63.67 ± 2.74 BCD | 13.46 ± 0.74 GH |
AA-W | 68.62 ± 8.33 DE | 17.25 ± 1.09 DE | 42.77 ± 0.8 D |
AM-E | 362.58 ± 36.06 AB | 43.43 ± 1.6 CDE | 54.41 ± 2.23 C |
AM-W | 116.67 ± 3.73 DE | 38.4 ± 0.39 CDE | 74.7 ± 1.35 A |
CE-E | 111.92 ± 20.24 DE | 17.43 ± 0.57 DE | 9.08 ± 0.6 HI |
CE-W | 44.6 ± 4.99 DE | 13.29 ± 0.85 DE | 13.04 ± 0.19 GH |
MA-E | 281.29 ± 6.75 BC | 154.51 ± 22.64 A | 14.37 ± 0.64 GH |
MA-W | 89.74 ± 7.36 DE | 31.51 ± 4.25 CDE | 16.37 ± 1.15 G |
PV-E | 54.51 ± 7.87 DE | 34.07 ± 5.17 CDE | 3.8 ± 0.51 IJ |
PV-W | 27.59 ± 1.89 E | 6.22 ± 1.23 E | 1.54 ± 0.00 E |
SN-E | 423.51 ± 13.88 A | 105.55 ± 3.24 AB | 35.87 ± 1.06 E |
SN-W | 87.08 ± 5.56 DE | 21.39 ± 1.03 CDE | 31.78 ± 2.59 E |
SO-E | 271.99 ± 10.66 BC | 140.03 ± 21.35 A | 65.67 ± 2.97 B |
SO-W | 147.78 ± 14.85 CDE | 47.85 ± 4.6 CDE | 77.47 ± 3.76 A |
Extract | The Identified Flavonoids and Phenolic Acid |
---|---|
AA-E | Chlorogenic acid (12.73 mg/g DW), Ferulic acid (12.07 mg/g DW), Rosmarinic acid (9.32 mg/g DW), Hyperoside (1.62 mg/g DW), Rutin (15.53 mg/g DW) |
AA-W | Hyperoside (0.89 mg/g DW) |
AM-E | Chlorogenic acid (39.72 mg/g DW), Ferulic acid (2.34 mg/g DW), Luteolin (3.19 mg/g DW), Rutin (30.24 mg/g DW) |
AM-W | Chlorogenic acid (11.07 mg/g DW), Ferulic acid (1.2 mg/g DW), |
CE-E | p-coumaric acid (3.55 mg/g DW), Gallic acid (1.22 mg/g DW) |
CE-W | p-coumaric acid (2.82 mg/g DW), Gallic acid (3.67 mg/g DW) |
MA-E | Caffeic acid (0.53 mg/g DW), Chlorogenic acid (15.16 mg/g DW), Rutin (14.74 mg/g DW) |
MA-W | Caffeic acid (2.68 mg/g DW) |
PV-E | p-coumaric acid (<LOQ) |
PV-W | n.d. |
SN-E | Caffeic acid (0.95 mg/g DW), Chlorogenic acid (25.83 mg/g DW), Ferulic acid (9.38 mg/g DW), Myricetin (16.79 mg/g DW), Rutin (41.9 mg/g DW) |
SN-W | Caffeic acid (0.45 mg/g DW), Chlorogenic acid (10.27 mg/g DW), Ferulic acid (1.67 mg/g DW), Myricetin (14.79), Rutin (16.31 mg/g DW) |
SO-E | Ferulic acid (5.11), Rosmarinic acid (39.2 mg/g DW), Rutin (22.62 mg/g DW) |
SO-W | Ferulic acid (1.19 mg/g DW), Rosmarinic acid (0.45 mg/g DW), Rutin (14.2 mg/g DW) |
Extract | (IC50 ABTS RSA) (μg DW/mL) | IC50 DPPH RSA (μg DW/mL) | ChA IC50 (μg DW/mL) |
---|---|---|---|
AA-E | 799.6 ± 24.3 F | 156.85 ± 8.37 DEF | 56.04 ± 1.40 FGX |
AA-W | 1066.1 ± 28.2 E | 206.27 ± 2.32 D | 18.26 ± 1.50 GX |
AM-E | 569.0 ± 29.3 G | 68.78 ± 7.63 FGX | 334.37 ± 17.87 BCDE |
AM-W | 481.6 ± 32.7 GH | 75.24 ± 4.10 FGX | 223.59 ± 14.35 CDEFG |
CE-E | 1474.1 ± 57.2 D | 835.86 ± 64.59 B | 272.88 ± 7.01 CDEF |
CE-W | 2399.9 ± 160.7 B | 388.75 ± 32.79 C | 230.41 ± 30.42 CDEFG |
MA-E | 515.1 ± 41.3 GH | 177.79 ± 10.87 DE | 399.40 ± 39.02 BC |
MA-W | 749.7 ± 18.3 F | 225.50 ± 19.05 D | 277.29 ± 12.97 CDEF |
PV-E | 1997.5 ± 76.7 C | 876.82 ± 87.35 B | 392.19 ± 7.43 BC |
PV-W | 2700.7 ± 72.0 A | 2127.86 ± 35.89 A | 142.99 ± 3.72 DEFGX |
SN-E | 370.3 ± 10.5 HI | 85.91 ± 9.86 FG | 541.13 ± 61.51 B |
SN-W | 548.1 ± 0.1 G | 84.07 ± 2.41 FGX | 364.11 ± 30.72 BCD |
SO-E | 300.4 ± 6.6 IJ | 68.86 ± 6.15 FGX | 900.74 ± 265.24 A |
SO-W | 185.2 ± 6.8 J | 40.70 ± 0.84 GX | 217.45 ± 12.26 CDEFG |
Standard | a 41.7 ± 1.8 X | b 8.40 ± 0.19 X | c 17.76 ± 3.90 X |
Extract | TAA mg AAE/g DW | RP mg TA/g DW | FRAP mg TA/g DW |
---|---|---|---|
AA-E | 149.0 ± 4.0 D | 189.5 ± 5.8 E | 123.3 ± 6.3 F |
AA-W | 81.2 ± 2.7 H | 50.9 ± 2.6 IJ | 77.7 ± 3.0 G |
AM-E | 94.7 ± 1.5 G | 261.6 ± 9.0 C | 204.4 ± 4.3 E |
AM-W | 170.7 ± 7.2 C | 81.8 ± 2.1 H | 288.1 ± 6.4 D |
CE-E | 111.2 ± 1.0 F | 65.0 ± 6.7 HI | 56.4 ± 3.8 H |
CE-W | 134.7 ± 3.0 E | 29.4 ± 1.4 JK | 42.5 ± 1.8 H |
MA-E | 142.3 ± 4.1 DE | 140.0 ± 1.8 F | 109.6 ± 4.4 F |
MA-W | 116.9 ± 1.6 F | 61.0 ± 1.7 HI | 86.2 ± 4.6 G |
PV-E | 30.1 ± 1.4 I | 21.8 ± 0.9 K | 14.3 ± 0.3 I |
PV-W | 26.4 ± 0.5 I | 25.3 ± 2.1 K | 12.6 ± 0.3 I |
SN-E | 137.1 ± 1.7 DE | 385.5 ± 23.4 B | 323.4 ± 10.4 C |
SN-W | 141.6 ± 6.5 DE | 111.6 ± 4.3 G | 203.4 ± 7.9 E |
SO-E | 199.5 ± 3.4 B | 501.9 ± 6.9 A | 435.9 ± 0.2 A |
SO-W | 220.6 ± 10.6 A | 234.8 ± 12.1 D | 408.3 ± 5.4 B |
ABTS RSA | DPPH RSA | ChA | ANT | TAA | RP | FRAP | AG | |
---|---|---|---|---|---|---|---|---|
TP | r2 = 0.39 (−) | n.s. | r2 = 0.31 (+) | n.s. | r2 = 0.64 (+) | r2 = 0.31 (+) | r2 = 0.30 (−) | |
TF | r2 = 0.31 (−) | n.s. | r2 = 0.46 (+) | n.s. | r2 = 0.51 (+) | n.s. | r2 = 0.36 (−) | |
TPA | r2 = 0.48 (−) | r2 = 0.35 (−) | n.s. | r2 = 0.45 (+) | r2 = 0.29 (+) | r2 = 0.74 (+) | n.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bljajić, K.; Brajković, A.; Čačić, A.; Vujić, L.; Jablan, J.; Saraiva de Carvalho, I.; Zovko Končić, M. Chemical Composition, Antioxidant, and α-Glucosidase-Inhibiting Activity of Aqueous and Hydroethanolic Extracts of Traditional Antidiabetics from Croatian Ethnomedicine. Horticulturae 2021, 7, 15. https://doi.org/10.3390/horticulturae7020015
Bljajić K, Brajković A, Čačić A, Vujić L, Jablan J, Saraiva de Carvalho I, Zovko Končić M. Chemical Composition, Antioxidant, and α-Glucosidase-Inhibiting Activity of Aqueous and Hydroethanolic Extracts of Traditional Antidiabetics from Croatian Ethnomedicine. Horticulturae. 2021; 7(2):15. https://doi.org/10.3390/horticulturae7020015
Chicago/Turabian StyleBljajić, Kristina, Andrea Brajković, Ana Čačić, Lovorka Vujić, Jasna Jablan, Isabel Saraiva de Carvalho, and Marijana Zovko Končić. 2021. "Chemical Composition, Antioxidant, and α-Glucosidase-Inhibiting Activity of Aqueous and Hydroethanolic Extracts of Traditional Antidiabetics from Croatian Ethnomedicine" Horticulturae 7, no. 2: 15. https://doi.org/10.3390/horticulturae7020015
APA StyleBljajić, K., Brajković, A., Čačić, A., Vujić, L., Jablan, J., Saraiva de Carvalho, I., & Zovko Končić, M. (2021). Chemical Composition, Antioxidant, and α-Glucosidase-Inhibiting Activity of Aqueous and Hydroethanolic Extracts of Traditional Antidiabetics from Croatian Ethnomedicine. Horticulturae, 7(2), 15. https://doi.org/10.3390/horticulturae7020015