Effects of Berry Thinning on the Physicochemical, Aromatic, and Sensory Properties of Shine Muscat Grapes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grape Samples
2.2. General Properties
2.3. Phenolic Composition and Concentrations
2.3.1. Extraction of Phenolic Compounds
2.3.2. Total Phenolic Concentration
2.3.3. Proanthocyanidin Concentration
2.3.4. Polymeric Tannin Concentration
2.4. Volatile Free Aroma Compounds
2.5. Sensory Evaluation
2.6. Statistical Analysis
3. Results and Discussion
3.1. General Properties
3.2. Phenolic Composition and Concentration
3.3. Volatile Free Aroma Compounds
3.4. Sensory Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yamada, M.; Yamane, H.; Sato, A.; Hirakawa, N.; Iwanami, H.; Yoshinaga, K.; Ozawa, T.; Mitani, N.; Shiraishi, M.; Yoshioka, M.; et al. New Grape Cultivar ‘Shine Muscat’. Bull. Natl. Inst. Fruit Tree Sci. 2008, 7, 21–38. [Google Scholar]
- Choi, K.-O.; Lee, D.H.; Park, S.J.; Im, D.; Hur, Y.Y.; Kim, S.J. Changes in Biochemical and Volatile Flavor Compounds of Shine Muscat at Different Ripening Stages. Appl. Sci. 2020, 10, 5661. [Google Scholar] [CrossRef]
- Hamman, R.; Dami, I.; Baker, S.; Diaz, R.; Wilhelm, J.; Ross, D.; Seufferheld, P. Effects of irrigation on wine grape growth and fruit quality. Horttechnology 2000, 10, 162–168. [Google Scholar] [CrossRef] [Green Version]
- Intrigliolo, D.S.; Llacer, E.; Revert, J.; Esteve, M.D.; Climent, M.D.; Palau, D.; Gómez, I. Early defoliation reduces cluster compactness and improves grape composition in Mandó, an autochthonous cultivar of Vitis vinifera from southeastern Spain. Sci. Hortic. 2014, 167, 71–75. [Google Scholar] [CrossRef]
- Xi, X.; Zha, Q.; He, Y.; Tian, Y.; Jiang, A. Influence of cluster thinning and girdling on aroma composition in ‘Jumeigui’ table grape. Sci. Rep. 2020, 10, 6877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dardeniz, A. Effects of cluster tipping on yield and quality of Uslu and Cardinal table grape cultivars. COMU J. Agric. Fac. 2014, 21, 21–26. [Google Scholar]
- Shin, H.W.; Kim, G.H.; Choi, C. Effects of plant growth regulators and floral cluster thinning on fruit quality of ‘Shine Muscat’ grape. Hortic. Sci. Technol. 2019, 37, 678–686. [Google Scholar]
- Sivilotti, P.; Falchi, R.; VanderWeide, J.; Sabbatini, P.; Bubola, M.; Vanzo, A.; Lisjak, K.; Peterlunger, E.; Herrera, J.C. Yield reduction through cluster or selective berry thinning similarly modulates anthocyanins and proanthocyanidins composition in Refosco dal peduncolo rosso (Vitis vinifera L.) grapes. Sci. Hortic. 2020, 264, 109166. [Google Scholar] [CrossRef]
- Palliotti, A.; Cartechini, A. Cluster thinning effects on yield and grape composition in different grapevine cultivars. Acta Hortic. 2000, 512, 111–120. [Google Scholar] [CrossRef]
- Choi, K.-O.; Lee, D.H.; Park, S.J.; Im, D.; Hur, Y.Y. Correlations between phenolic composition and perceived astringency of wines. Appl. Sci. 2020, 10, 8020. [Google Scholar] [CrossRef]
- Woo, A.; Lindsay, R. Method for the routine quantitative gas chromatographic analysis of major free fatty acids in butter and cream. J. Dairy Sci. 1980, 63, 1058–1064. [Google Scholar] [CrossRef]
- Han, D.; Mi, S.; Zhang, C.-H.; Li, J.; Song, H.-L.; Fauconnier, M.-L.; Tyteca, E. Characterization and discrimination of chinese marinated pork hocks by volatile compound profiling using solid phase microextraction gas chromatography-mass spectrometry/olfactometry, electronic nose and chemometrics. Molecules 2019, 24, 1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Z.-X.; Rana, M.M.; Liu, G.-F.; Gao, M.-J.; Li, D.-X.; Wu, F.-G.; Li, X.-B.; Wan, X.-C.; Wei, S. Data on green tea flavor determinantes as affected by cultivars and manufacturing processes. Data Brief 2017, 10, 492–498. [Google Scholar] [CrossRef]
- Su, X.; Tortorice, M.; Ryo, S.; Li, X.; Waterman, K.; Hagen, A.; Yin, Y. Sensory Lexicons and Formation Pathways of Off-Aromas in Dairy Ingredients: A Review. Molecules 2020, 25, 569. [Google Scholar] [CrossRef]
- Tamura, H.; Boonbumrung, S.; Yoshizawa, T.; Varanyanond, W. The volatile constituents in the peel and pulp of a green thai mango, khieo Sawoei Cultivar (Mangifera indica L.). Food Sci. Technol. Res. 2001, 7, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Duan, S.; Zhao, L.; Gao, Z.; Luo, M.; Song, S.; Xu, W.; Zhang, C.; Ma, C.; Wang, S. Aroma characterization based on aromatic series analysis in table grapes. Sci. Rep. 2016, 6, 31116. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Zhang, R.; Hao, L.; Chen, W.; Cheng, S. Profiling of Volatile Compounds and Associated Gene Expression and Enzyme Activity during Fruit Development in Two Cucumber Cultivars. PLoS ONE 2015, 10, e0119444. [Google Scholar] [CrossRef] [Green Version]
- Granato, D.; Masson, M.L.; Ribeiro, J.C.B. Sensory acceptability and physical stability evaluation of a prebiotic soy-based dessert developed with passion fruit juice. Food Sci. Technol. 2012, 32, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Marko, K.; Osrecak, M.; Maslov Bandic, L.; Kozina, B. Effect of cluster and berry thinning on Merlot and Cabernet Sauvignon wines composition. Czech J. Food Sci. 2014, 32, 470–476. [Google Scholar]
- Abd El-Razek, E.E.D.; Treutter, D.; Saleh, M.; El-Shammaa, M.; Fouad, A.; Hamid, N.; Abou-Rawash, M. Effect of defoliation and fruit thinning on fruit quality of ‘Crimson Seedless’ grape. Res. J. Agric. Biol. Sci. 2010, 6, 289–295. [Google Scholar]
- Gil, M.; Esteruelas, M.; González, E.; Kontoudakis, N.; Jiménez, J.; Fort, F.; Canals, J.-M.; Hermosín-Gutiérrez, I.; Zamora, F. Effect of Two Different Treatments for Reducing Grape Yield in Vitis vinifera cv Syrah on Wine Composition and Quality: Berry Thinning versus Cluster Thinning. J. Agric. Food Chem. 2013, 61, 4968–4978. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Sun, L.; Xu, X.-Q.; Zhu, B.-Q.; Xu, H.-Y. Differential expression of VvLOXA diversifies C6 volatile profiles in some vitis vinifera table grape cultivars. Int. J. Mol. Sci. 2017, 18, 2705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, F.; Qian, M.C. Development of C13-norisoprenoids, carotenoids and other volatile compounds in Vitis vinifera L. Cv. Pinot noir grapes. Food Chem. 2016, 192, 633–641. [Google Scholar] [CrossRef] [PubMed]
Level of Berry Thinning (BT, %) | Color Coordinates | ||
---|---|---|---|
L | a | b | |
0 | 37.04 ± 1.91 a | −6.67 ± 0.33 a | 11.67 ± 0.76 b |
30 | 37.74 ± 1.31 a | −6.3 ± 0.20 b | 11.63 ± 0.48 b |
50 | 37.97 ± 0.73 a | −6.45 ± 0.27 a,b | 12.41 ± 0.32 a |
Classification | Aroma Compounds | RT (min) | Identification | The Level of Berry Thinning (%) | ||
---|---|---|---|---|---|---|
0 | 30 | 50 | ||||
Alcohols | (E)-2-Hexen-1-ol | 17.36 | Mass spectrum | 533.3 ± 133.1 a | 505.4 ± 55.1 a | 298.3 ± 59.0 b |
(E)-3-Hexen-1-ol | 15.45 | Standard | 1 ± 0.3 a | 0.3 ± 0.02 b | 0.9 ± 0.2 a | |
(Z)-2-Penten-1-ol | 13.55 | Standard | 0.5 ± 0.1 b | 0.5 ± 0.1 b | 1.5 ± 0.2 a | |
(Z)-3-Hexen-1-ol | 16.29 | Standard | 39.9 ± 5.1 b | 52.1 ± 4.2 a | 28.9 ± 0.7 c | |
1-Heptanol | 19.32 | Standard | 0.3 ± 0.1 | 0.4 ± 0.1 | N.D * | |
1-Hexanol | 15.09 | Standard | 323.4 ± 77.6 a | 265.1 ± 34.1 a | 294 ± 57.31 a | |
1-Nonanol | 27.42 | Standard | 0.2 ± 0.02 a | 0.1 ± 0.03 b | 0.1 ± 0.01 b | |
1-Octanol | 23.51 | Standard | 0.5 ± 0.03 | N.D | 0.4 ± 0.05 | |
1-Octen-3-ol | 19.29 | Standard | 0.2 ± 0.02 a | 0.2 ± 0.03 a | 0.1 ± 0.03 a | |
2-Ethyl-1-hexanol | 20.85 | Standard | 4.1 ± 0.4 b | 5 ± 0.4 a,b | 5.2 ± 0.5 a | |
Aldehydes | (E)-2-Heptenal | 13.16 | Mass spectrum | 0.8 ± 0.1 | N.D | N.D |
(Z)-3-Hexenal | 6.01 | Standard | 4.8 ± 0.1 b | 4.9 ± 0.5 b | 8.4 ± 0.1 a | |
(E)-2-Hexenal | 9.00 | Standard | 1140.3 ± 90.9 a | 1149 ± 287.2 a | 1419.7 ± 104.6 a | |
Benzaldehyde | 21.47 | Standard | 2.8 ± 0.2 b | 4.1 ± 0.2 a | 1.3 ± 0.6 c | |
Hexanal | 4.14 | Standard | 749.3 ± 91.4 b | 983.2 ± 15.2 b | 1538.5 ± 205.0 a | |
Nonanal | 16.46 | Standard | 0.3 ± 0.05 a | 0.4 ± 0.03 a | 0.2 ± 0.05 b | |
C13-Norisoprenoids | (E)-β-Damascenone | 32.48 | Standard | 0.6 ± 0.1 | 0.2 ± 0.002 | N.D |
Esters | Ethyl octanoate | 18.24 | Mass spectrum | 0.2 ± 0.05 | N.D | N.D |
Methyl salicylate | 30.73 | Standard | 1.1 ± 0.4 | 0.4 ± 0.1 | N.D | |
Ketones | 2,2-dimethyl-3-octanone | 23.57 | Mass spectrum | 0.6 ± 0.1 ab | 0.8 ± 0.2 a | 0.4 ± 0.03 b |
2-Heptanone | 7.50 | Standard | 1.2 ± 0.2 a | 0.4 ± 0.1 b | 0.2 ± 0.08 b | |
2-Octanone | 11.76 | Standard | 2.9 ± 0.6 a | 0.8 ± 0.4 b | 0.4 ± 0.06 b | |
4-Methyl-2-Heptanone | 8.61 | Mass spectrum | N.D | N.D | 0.2 ± 0.03 | |
6-Methyl-5-hepten-2-one | 14.13 | Standard | 3.5 ± 0.7 a | 3.8 ± 0.1 a | 2.8 ± 0.4 a | |
Monoterpenes | (E)-Linalool oxide | 18.44 | Standard | N.D | 7.9 ± 1.0 | 8.7 ± 1.4 |
(E)-β-Ocimene | 9.82 | Standard | 0.2 ± 0.03 a | 0.3 ± 0.1 a | 0.3 ± 0.07 a | |
(R)-(+)-Limonene | 7.82 | Standard | 0.1 ± 0.03 a | 0.2 ± 0.05 a | 0.2 ± 0.09 a | |
(Z)-Citral | 27.64 | Standard | N.D | 0.2 ± 0.003 | 0.2 ± 0.004 | |
(Z)-β-Ocimene | 10.48 | Standard | 0.2 ± 0.04 b | 0.4 ± 0.1 a | 0.3 ± 0.08 ab | |
Epoxylinalool | 30.13 | Mass spectrum | N.D | 1.8 ± 0.4 | 2.8 ± 0.7 | |
Geraniol | 34.15 | Standard | 13.4 ± 2.2 b | 26.9 ± 1.5 a | 8 ± 1.3 c | |
Hotrienol | 25.63 | Mass spectrum | 12.4 ± 1.0 b | 16.7 ± 0.4 a | 9.7 ± 1.5 c | |
Linalool | 23.25 | Standard | 38.7 ± 2.7 c | 76.6 ± 10.7 b | 116.3 ± 10.0 a | |
Nerol | 32.39 | Standard | 1.9 ± 0.5 b | 5.9 ± 1.0 a | 1.7 ± 0.2 b | |
Nerol oxide | 19.90 | Mass spectrum | 1.8 ± 0.09 | 1.1 ± 0.4 | N.D | |
Terpinen-4-ol | 24.46 | Standard | N.D | N.D | 0.2 ± 0.08 | |
Terpinolene | 11.47 | Standard | N.D | 0.1 ± 0.03 | 0.2 ± 0.06 | |
α-Terpineol | 28.46 | Standard | 13.4 ± 1.2 a | 13.2 ± 3.3 a | 22.4 ± 5.4 a | |
β-Citronellol | 31.33 | Standard | 1.7 ± 0.3 a | 1.9 ± 0.3 a | 0.4 ± 0.1 b | |
β-Myrcene | 7.02 | Standard | N.D | 0.2 ± 0.07 | 0.1 ± 0.03 | |
β-Pinene | 6.85 | Standard | 0.2 ± 0.04 b | 0.6 ± 0.1 a | 0.7 ± 0.06 a | |
γ-Terpinene | 7.09 | Standard | N.D | 0.1 ± 0.02 | N.D | |
Total | 2895.8 | 3131.3 | 3773.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, K.-O.; Im, D.; Park, S.J.; Lee, D.H.; Kim, S.J.; Hur, Y.Y. Effects of Berry Thinning on the Physicochemical, Aromatic, and Sensory Properties of Shine Muscat Grapes. Horticulturae 2021, 7, 487. https://doi.org/10.3390/horticulturae7110487
Choi K-O, Im D, Park SJ, Lee DH, Kim SJ, Hur YY. Effects of Berry Thinning on the Physicochemical, Aromatic, and Sensory Properties of Shine Muscat Grapes. Horticulturae. 2021; 7(11):487. https://doi.org/10.3390/horticulturae7110487
Chicago/Turabian StyleChoi, Kyeong-Ok, Dongjun Im, Seo Jun Park, Dong Hoon Lee, Su Jin Kim, and Youn Young Hur. 2021. "Effects of Berry Thinning on the Physicochemical, Aromatic, and Sensory Properties of Shine Muscat Grapes" Horticulturae 7, no. 11: 487. https://doi.org/10.3390/horticulturae7110487
APA StyleChoi, K. -O., Im, D., Park, S. J., Lee, D. H., Kim, S. J., & Hur, Y. Y. (2021). Effects of Berry Thinning on the Physicochemical, Aromatic, and Sensory Properties of Shine Muscat Grapes. Horticulturae, 7(11), 487. https://doi.org/10.3390/horticulturae7110487