Changes in Sugar Accumulation and Related Enzyme Activities of Red Bayberry (Myrica rubra) in Greenhouse Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.1.1. Experimental Design
2.1.2. Water Management
2.1.3. Experimental Design
2.2. Sampling
2.3. Measurements
2.3.1. Environmental Conditions
2.3.2. Bayberry Fruit Development Index
2.3.3. Soluble Sugar Content
2.3.4. Enzyme Activity
Invertase Extraction
Invertase Activity
Sucrose-Phosphate Synthase Activity
Sucrose Synthase Activity
2.3.5. Titratable Acid and Vitamin C Content
2.3.6. Effective Accumulated Temperature
2.4. Statistical Analysis
3. Results
3.1. Environmental Factors
3.2. Fruit Weight and Diameter
3.3. Quality Indexes
3.4. Sugar Accumulation
3.5. Sucrose Metabolism-Related Enzymes Activities
3.5.1. Sucrose Synthase
3.5.2. Sucrose-Phosphate Synthase
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Li, X.; He, Y. Non-destructive measurement of acidity of Chinese bayberry using Vis/NIRS techniques. Eur. Food Res. Technol. 2006, 223, 731–736. [Google Scholar] [CrossRef]
- Liang, S.M.; Zhu, T.T.; Zhang, S.W.; Zheng, X.L.; Qi, X.J. Effects of transparent film of different colors on photosynthetic characteristics and fruit quality in Chinese bayberry. J. Fruit Sci. 2019, 36, 1049–1057. [Google Scholar]
- Jin, L.F.; Guo, D.Y.; Ning, D.Y.; Hussain, S.B.; Liu, Y.Z. Covering the trees of Kinokuni tangerine with plastic film during fruit ripening improves sweetness and alters the metabolism of cell wall components. Acta Physiol. Plant. 2018, 40, 182. [Google Scholar] [CrossRef]
- Jat, R.; Singh, V.P.; Kumar, V. Greenhouse cultivation of fruit crops with special reference to India: An overview. J. Appl. Polym. Sci. 2020, 12, 252–260. [Google Scholar] [CrossRef]
- Gruda, N.; Bisbisa, M.; Tanny, J. Impacts of protected vegetable cultivation on climate change and adaptation strategies for cleaner production–A review. J. Clean. 2019, 225, 324–339. [Google Scholar] [CrossRef]
- Tian, T.; Qiao, G.; Deng, B.; Wen, Z.; Hong, Y.; Wen, X.P. The effects of rain shelter coverings on the vegetative growth and fruit characteristics of Chinese cherry (Prunus pseudocerasus Lindl.). Sci. Hort. 2019, 254, 228–235. [Google Scholar] [CrossRef]
- Zhang, Q.M.; Pang, X.M.; Chen, X.M.; Ye, J.H.; Lin, S.X.; Jia, X.L. Rain-shelter cultivation influence rhizosphere bacterial community structure in pear and its relationship with fruit quality of pear and soil chemical properties. Sci. Hortic. 2020, 269, 109419. [Google Scholar] [CrossRef]
- Meng, J.F.; Ning, P.F.; Xu, T.F.; Zhang, Z.W. Effect of rain-shelter cultivation of Vitis vinifera cv. Cabernet Gernischet on the phenolic profile of berry skins and the incidence of grape diseases. Molecules 2013, 18, 381–397. [Google Scholar] [CrossRef]
- Mendoza-Castillo, V.M.; Vargas-Canales, J.M.; Calderón-Zavala, G.; Mendoza-Castillo, M.d.C.; Santacruz-Varela, A. Intensive production systems of fig (Ficus carica L.) under greenhouse conditions. Expl. Agric. 2017, 53, 339–350. [Google Scholar] [CrossRef]
- Cheng, J.H.; Xie, M.; Jiang, G.H.; Xu, K. The signaling role of hexokinase in plants. Chin. J. Cell Biol. 2004, 26, 594–598. [Google Scholar]
- Qian, J.B.; Chen, Z.M.; Chen, J.W.; Xie, M.; Qin, Q.Q.; Yang, R.X.; Wu, J.; Gui, H. The characteristics of fruit development and the accumulation of major quality composition in developing red bayberry (Myrica rubra Sieb. et Zucc.) fruit. Acta Agric. Zhejiangensis 2006, 3, 151–154. [Google Scholar]
- Wan, H.J.; Wu, L.; Yang, Y.L.; Zhou, G.Z.; Ruan, Y.L. Evolution of Sucrose Metabolism: The Dichotomy of Invertases and Beyond. Trends Plant Sci. 2018, 23, 163–177. [Google Scholar] [CrossRef]
- Wongmetha, O.; Ke, L.S.; Liang, Y.S. Sucrose metabolism and physiological changes during mango cv. Irwin growth and development. Hortic. Environ. Biotechnol. 2012, 5, 373–377. [Google Scholar] [CrossRef]
- Zhang, X.M.; Liu, S.H.; Du, L.Q.; Yao, Y.L.; Wu, J.Y. Activities, transcript levels, and subcellular localizations of sucrose phosphate synthase, sucrose synthase, and neutral invertase and change in sucrose content during fruit development in pineapple (Ananas comosus). J. Hortic. Sci. Biotechnol. 2019, 94, 573–579. [Google Scholar] [CrossRef]
- Fisher, D.B.; Wang, N. Sucrose concentration gradients along the post phloem transport pathway in the maternal tissues of developing wheat grains. Plant Physiol. 1995, 109, 587–592. [Google Scholar] [CrossRef]
- Tanase, K.; Shiratake, K.; Mori, H.; Yamaki, S. Changes in the phosphorylation state of sucrose synthase during development of Japanese pear fruit. Physiol. Plant. 2002, 114, 21–26. [Google Scholar] [CrossRef]
- Komatsu, A.; Takanokura, Y.; Moriguchi, T.; Omura, M.; Akihama, T. Differential expression of three sucrose-phosphate synthase isoforms during sucrose accumulation in citrus fruits (Citrus unshiu Marc.). Plant Sci. 1999, 140, 169–178. [Google Scholar] [CrossRef]
- Chen, J.W.; Zhang, S.L.; Zhang, L.C.; Zhao, Z.Z.; Xu, J.G. Fruit photosynthesis and assimilate translocation and partitioning: Their characteristics and role in sugar accumulation in developing citrus unshiu fruit. J. Integr. Plant Biol. 2002, 44, 158–163. [Google Scholar]
- Lowell, C.A.; Tomlinson, P.T.; Koch, K.E. Sucrose-metabolizing enzymes in transport tissues and adjacent sink structures in developing citrus fruit. Plant Physiol. 1989, 90, 1394–1402. [Google Scholar] [CrossRef]
- Hubbard, N.L.; Pharr, D.M.; Huber, S.C. Sucrose phosphate synthase and other sucrose metabolizing enzymes in fruits of various species. Physiol. Plant. 1991, 82, 191–196. [Google Scholar] [CrossRef]
- Ge, C.L.; Liu, K.P.; Qu, X.Y.; Xu, X.B.; Huang, C.H. Variation of Sugar, Acid and Vitamin C Contents in Fruit Development in Different Types of Kiwifruit. Agric. Sci. Technol. 2013, 14, 1772–174, 1778. [Google Scholar]
- Yang, Z.Q.; Huang, H.J.; Jin, Z.F.; Li, Y.X.; Huang, C.R.; Fei, Y.J. Development and validation of a photo-thermal effectiveness based simulation model for development of Myrica rubra. Acta Hortic. Sinica 2011, 38, 1259–1266. [Google Scholar]
- Xie, M.; Chen, J.W.; Cheng, J.H.; Qin, Q.Q.; Jiang, G.H.; Wang, L.H.; Qi, X.J. Studies on the fruit development and its relationship with sugar accumulation in bayberry fruit. J. Fruit Sci. 2005, 22, 634–638. [Google Scholar]
- Polat, A.A.; Durgac, C.; Caliskan, O. Effect of protected cultivation on the precocity, yield and fruit quality in loquat. Sci. Hortic. 2005, 104, 189–198. [Google Scholar] [CrossRef]
- Kamiloğlu, Ö.; Polat, A.A.; Durgaç, C. Comparison of open field and protected cultivation of five early table grape cultivars under Mediterranean conditions. Turk. J. Agric. For. 2011, 35, 491–499. [Google Scholar]
- Zeng, G.H.; Guo, Y.G.; Xu, J.X.; Hu, M.Y.; Zheng, J.; Wu, Z.W. Partial shade optimizes photosynthesis and growth in bayberry (Myrica rubra ) trees. Hortic. Environ. Biotechnol. 2017, 58, 203–211. [Google Scholar] [CrossRef]
- Li, X.X.; He, F.; Wang, J.; Li, Z.; Pan, Q.H. Simple rain-shelter cultivation prolongs accumulation period of anthocyanins in wine grape berries. Molecules 2014, 19, 14843–14861. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.B.; Zheng, W.W.; Zhang, C.; Zhang, L.L.; Xu, K. High temperature and high light intensity induced photoinhibition of bayberry (Myrica rubra Sieb. et Zucc.) by disruption of D1 turnover in photosystem II. Sci. Hortic. 2019, 248, 132–137. [Google Scholar] [CrossRef]
- Harel, D.; Fadida, H.; Slepoy, A.; Gantz, S.; Shilo, K. The effect of mean daily temperature and relative humidity on pollen, fruit set and yield of tomato grown in commercial protected cultivation. Agronomy 2014, 4, 167–177. [Google Scholar] [CrossRef]
- Chouinard, G.; Veilleux, J.; Pelletier, F.; Larose, M.; Philion, V.; Cormier, D. Impact of exclusion netting row covers on arthropod presence and crop damage to ‘Honeycrisp’ apple trees in North America: A five-year study. Crop Prot. 2017, 98, 248–254. [Google Scholar] [CrossRef]
- Li, G.B.; Fan, J.D.; Zhang, T.; Zhang, M.; Han, J.L.; Yang, F. Changes of rain shelter environment and the effects on fruit quality of early-maturing pear. J. Northw. AF Univ. 2020, 48, 77–85. [Google Scholar]
- Shi, L.Y.; Cao, S.F.; Shao, J.R.; Chen, W.; Yang, Z.F.; Zheng, Y.H. Relationship between sucrose metabolism and anthocyanin biosynthesis during ripening in Chinese bayberry fruit. J. Agric. Food Chem. 2014, 62, 10522–10528. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.W.; Qing, Q.P.; Xie, M.; Jing, G.H.; Xe, H.X.; Cheng, J.H.; Wu, J.; Sun, C.B. Characteristics of sucrose and hexose metabolism in relation to sugar accumulation in developing strawberry fruit. J. Fruit Sci. 2007, 24, 49–54. [Google Scholar]
- Burger, Y.; Schaffer, A.A. The Contribution of Sucrose Metabolism Enzymes to Sucrose Accumulation in Cucumis melo. J. Am. Soc. Hortic. Sci. 2007, 132, 704–712. [Google Scholar] [CrossRef]
- Shi, L.Y.; Cao, S.F.; Shao, J.R.; Chen, W.; Yang, Z.F.; Zheng, Y.H. Chinese bayberry fruit treated with blue light after harvest exhibit enhanced sugar production and expression of cryptochrome genes. Postharvest Biol. Technol. 2016, 111, 197–204. [Google Scholar] [CrossRef]
Sugar Composition | Cultivation Mode | AI | NI | SPS | SSs | SSc |
---|---|---|---|---|---|---|
Sucrose | Greenhouse | −0.73 * | −0.831 * | 0.725 * | −0.435 | −0.496 |
Open field | −0.738 * | −0.686 * | 0.765 * | −0.24 | −0.423 | |
Fructose | Greenhouse | −0.675 | −0.765 * | 0.665 | −0.405 | −0.414 |
Open field | −0.675 * | −0.625 | 0.756 * | −0.173 | −0.334 | |
Glucose | Greenhouse | −0.697 * | −0.79 * | 0.707 * | −0.361 | −0.448 |
Open field | −0.694 * | −0.638 | 0.742 * | −0.167 | −0.356 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, B.-P.; Zhang, C.; Gao, Y.-B.; Zheng, W.-W.; Xu, K. Changes in Sugar Accumulation and Related Enzyme Activities of Red Bayberry (Myrica rubra) in Greenhouse Cultivation. Horticulturae 2021, 7, 429. https://doi.org/10.3390/horticulturae7110429
Wu B-P, Zhang C, Gao Y-B, Zheng W-W, Xu K. Changes in Sugar Accumulation and Related Enzyme Activities of Red Bayberry (Myrica rubra) in Greenhouse Cultivation. Horticulturae. 2021; 7(11):429. https://doi.org/10.3390/horticulturae7110429
Chicago/Turabian StyleWu, Bo-Ping, Cong Zhang, Yong-Bin Gao, Wei-Wei Zheng, and Kai Xu. 2021. "Changes in Sugar Accumulation and Related Enzyme Activities of Red Bayberry (Myrica rubra) in Greenhouse Cultivation" Horticulturae 7, no. 11: 429. https://doi.org/10.3390/horticulturae7110429
APA StyleWu, B. -P., Zhang, C., Gao, Y. -B., Zheng, W. -W., & Xu, K. (2021). Changes in Sugar Accumulation and Related Enzyme Activities of Red Bayberry (Myrica rubra) in Greenhouse Cultivation. Horticulturae, 7(11), 429. https://doi.org/10.3390/horticulturae7110429