Effects of Repeated Application of Organic Soil Amendments on Horticultural Soil Physicochemical Properties, Nitrogen Budget and Yield
Abstract
:1. Introduction
- Organic amendments commonly used in horticulture are variable in terms of their physicochemical properties (pH, bulk density, nutrient content, etc.)
- Application of organic amendments will alter the multivariate soil physicochemical environment and N budget, and the extent of change compared to the control will depend on the amendment applied
- There will be a subsequent effect of amendment application on plant production
2. Materials and Methods
2.1. Experimental Site
2.2. Soil and Amendment Sampling and Analysis
2.3. Plant Sampling and Analysis
2.4. Nitrogen Budget
2.5. Statistical Analysis
3. Results
3.1. Amendment Properties over 7 Years of Sampling
3.2. Amendment and Soil Multivariate Analysis
3.3. Yield
3.4. Plant Biometrics
3.5. Plant Biomass Nutrients
3.6. Plant Nitrogen-Use Efficiency
3.7. Nitrogen Budget
4. Discussion
4.1. Physicochemical Properties of Organic Amendments Commonly Used in Horticulture
4.2. Amended Soil Physicochemical Properties and N Budget
4.3. Effect of Amendment Application on Plant Production
4.4. Further Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexander, P.D.; Nevison, I.M. The long-term effects of repeated application of the same organic material to soil in a horticultural context. Acta Hortic. 2015, 1076, 143–150. [Google Scholar] [CrossRef]
- Christensen, B.T. Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur. J. Soil Sci. 2001, 52, 345–353. [Google Scholar] [CrossRef]
- Lima, D.; Santos, S.M.; Scherer, H.W.; Schneider, R.J.; Duarte, A.C.; Santos, E.; Esteves, V.I. Effects of organic and inorganic amendments on soil organic matter properties. Geoderma 2009, 150, 38–45. [Google Scholar] [CrossRef]
- Roy, S.; Arunachalam, K.; Dutta, B.K.; Arunachalam, A. Effect of organic amendments of soil on growth and productivity of three common crops viz. Zea mays, Phaseolus vulgaris and Abelmoschus esculentus. Appl. Soil Ecol. 2010, 45, 78–84. [Google Scholar] [CrossRef]
- Thangarajan, R.; Bolan, N.S.; Tian, G.; Naidu, R.; Kunhikrishnan, A. Role of organic amendment application on greenhouse gas emission from soil. Sci. Total Environ. 2013, 465, 72–96. [Google Scholar] [CrossRef] [PubMed]
- Albiach, R.; Canet, R.; Pomares, F.; Ingelmo, F. Microbial biomass content and enzymatic activities after the application of organic amendments to a horticultural soil. Bioresour. Technol. 2000, 75, 43–48. [Google Scholar] [CrossRef]
- Magdoff, F.; Weil, R.R. Soil organic matter strategies. In Soil Organic Matter in Sustainable Agriculture; Magdoff, F., Weil, R.R., Eds.; CRC Press: London, UK, 2004; pp. 45–66. [Google Scholar]
- Reid, K. Improving your Soil: A Practical Guide to Soil Management for the Serious Home Gardener; Firefly Books Ltd.: Richmond Hill, ON, Canada, 2014. [Google Scholar]
- Tahboub, M.B.; Lindemann, W.C.; Murray, L. Chemical and physical properties of soil amended with pecan wood chips. HortScience 2008, 43, 891–896. [Google Scholar] [CrossRef]
- Paterson, E.; Neilson, R.; Midwood, A.J.; Osborne, S.M.; Sim, A.; Thornton, B.; Millard, P. Altered food web structure and C-flux pathways associated with mineralisation of organic amendments to agricultural soil. Appl. Soil Ecol. 2011, 48, 107–116. [Google Scholar] [CrossRef]
- Murphy, E. Building Soil: A Down-to-Earth Approach; Cool Springs Press: Beverly, MA, USA, 2015. [Google Scholar]
- RHS. Organic Matter: How to Use in the Garden; RHS: London, UK, 2021; Available online: https://www.rhs.org.uk/advice/profile?PID=865 (accessed on 5 August 2021).
- Verdonck, O. Composts from organic waste materials as substitutes for the usual horticultural substrates. Biol. Wastes 1988, 26, 325–330. [Google Scholar] [CrossRef]
- Rinaldi, S.; De Lucia, B.; Salvati, L.; Rea, E. Understanding complexity in the response of ornamental rosemary to different substrates: A multivariate analysis. Sci. Hortic. 2014, 176, 218–224. [Google Scholar] [CrossRef]
- MAFF. Bulletin RB 427—The analysis of Agricultural Materials; The Ministry of Agriculture, Fisheries and Food (MAFF): London, UK, 1981.
- Knecht, M.F.; Göransson, A. Terrestrial plants require nutrients in similar proportions. Tree Physiol. 2004, 24, 447–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benito, M.; Masaguer, A.; Moliner, A.; De Antonio, R. Chemical and physical properties of pruning waste compost and their seasonal variability. Bioresour. Technol. 2006, 97, 2071–2076. [Google Scholar] [CrossRef]
- Jordan, S.N.; Mullen, G.J.; Murphy, M.C. Composition variability of spent mushroom compost in Ireland. Bioresour. Technol. 2008, 99, 411–418. [Google Scholar] [CrossRef]
- Fenner, M.; Thompson, K. The Ecology of Seeds; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Uchida, R. Recommended Plant Tissue Nutrient Levels. In Plant Nutrient Management in Hawaii’s Soils: Approaches for Tropical and Subtropical Agriculture; Silva, J.A., Uchida, R., Eds.; College of Tropical Agriculture and Human Resources, University of Hawaai: Honolulu, HI, USA, 2000; pp. 57–65. [Google Scholar]
- Koerselman, W.; Meuleman, A.F.M. The Vegetation N:P Ratio: A New Tool to Detect the Nature of Nutrient Limitation. J. Appl. Ecol. 1996, 33, 1441. [Google Scholar] [CrossRef]
- Güsewell, S. N:P ratios in terrestrial plants: Variarion and functional significance. New Phytol. 2004, 164, 243–266. [Google Scholar] [CrossRef]
- Veresoglou, S.D.; Shaw, L.J.; Sen, R. Glomus intraradices and Gigaspora margarita arbuscular mycorrhizal associations differentially affect nitrogen and potassium nutrition of Plantago lanceolata in a low fertility dune soil. Plant Soil 2011, 340, 481–490. [Google Scholar] [CrossRef]
- Ferreras, L.; Gomez, E.; Toresani, S.; Firpo, I.; Rotondo, R. Effect of organic amendments on some physical, chemical and biological properties in a horticultural soil. Bioresour. Technol. 2006, 97, 635–640. [Google Scholar] [CrossRef]
- Pavlovic, D.; Nikolic, B.; Durovic, S.; Waisi, H.; Andelkovic, A.; Marisavljevic, D. Chlorophyll as a measure of plant health: Agroecological aspects. Pestic. Phytomed. 2014, 29, 21–34. [Google Scholar] [CrossRef]
- RHS. Lavatera Trimestris. R Hortic Soc n.d. Available online: https://www.rhs.org.uk/plants/119872/i-lavatera-trimestris-i/details (accessed on 28 September 2021).
- Lin, Y.; Tsay, Y. Influence of differing nitrate and nitrogen availability on flowering control in Arabidopsis. J. Exp. Bot. 2017, 68, 2603–2609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, M.; Gomez, E.; Comese, R.; Quesada, M.; Conti, M. Influence of organic amendments on soil quality potential indicators in an urban horticultural system. Bioresour. Technol. 2010, 101, 8897–8901. [Google Scholar] [CrossRef]
- Ghosh, S.; Wilson, B.; Ghoshal, S.; Senapati, N.; Mandal, B. Organic amendments influence soil quality and carbon sequestration in the Indo-Gangetic plains of India. Agric. Ecosyst. Environ. 2012, 156, 134–141. [Google Scholar] [CrossRef]
- Olk, D.C.; Gregorich, E.G. Overview of the Symposium Proceedings, Meaningful Pools in Determining Soil Carbon and Nitrogen Dynamics. Soil Sci. Soc. Am. J. 2006, 70, 967–974. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Piqueres, A.; Edel-Hermann, V.; Alabouvette, C.; Steinberg, C. Response of soil microbial communities to compost amendments. Soil Biol. Biochem. 2006, 38, 460–470. [Google Scholar] [CrossRef]
- Gerzabek, M.H.; Haberhauer, G.; Kandeler, E.; Sessitsch, A.; Kirchmann, H. Response of organic matter pools and enzyme activities in particle size fractions to organic amendments in a long-term field experiment. Dev. Soil Sci. 2002, 28, 329–344. [Google Scholar]
- Baumann, K.; Marschner, P.; Smernik, R.J.; Baldock, J.A. Residue chemistry and microbial community structure during decomposition of eucalypt, wheat and vetch residues. Soil Biol. Biochem. 2009, 41, 1966–1975. [Google Scholar] [CrossRef]
- Kallenbach, C.; Grandy, A.S. Controls over soil microbial biomass responses to carbon amendments in agricultural systems: A meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 241–252. [Google Scholar] [CrossRef]
- Kleber, M.; Nico, P.; Plante, A.; Filley, T.; Kramer, M.; Swanston, C.; Sollins, P. Old and stable soil organic matter is not necessarily chemically recalcitrant: Implications for modeling concepts and temperature sensitivity. Glob. Chang. Biol. 2011, 17, 1097–1107. [Google Scholar] [CrossRef] [Green Version]
- Gomez, E.; Ferreras, L.; Toresani, S. Soil bacterial functional diversity as influenced by organic amendment application. Bioresour. Technol. 2006, 97, 1484–1489. [Google Scholar] [CrossRef]
- Ge, G.; Li, Z.; Zhang, J.; Wang, L.; Xu, M.; Wang, J.; Xie, X.; Liang, Y. Geographical and climatic differences in long-term effect of organic and inorganic amendments on soil enzymatic activities and respiration in field experimental stations of China. Ecol. Complex. 2009, 6, 421–431. [Google Scholar] [CrossRef]
- Gunapala, N.; Venette, R.C.; Ferris, H.; Scow, K.M. Effects of soil management history on the rate of organic matter decomposition. Soil Biol. Biochem. 1998, 30, 1917–1927. [Google Scholar] [CrossRef] [Green Version]
Mean ± Standard Error (n = 80) | Method * | |
---|---|---|
pH | 5.90 ± 0.06 | 1:2 soil/deionised water |
OM Content (%) | 6.06 ± 0.16 | Loss on ignition (LOI) |
Bulk Density (g cm−3) | 1.01 ± 0.01 | Cylinder and driving tool |
Particle Size Distribution | H2O2, sedimentation and sieving | |
Sand (%) | 79.91 ± 0.17 | |
Silt (%) | 9.29 ± 0.17 | |
Clay (%) | 10.80 ± 0.19 | |
Extractable Nutrients (mg kg−1): | ||
P | 999.81 ± 46.60 | NaHCO3 (Olsen P) extraction |
K | 933.00 ± 28.00 | NH4NO3 extraction |
B | 7.31 ± 0.32 | Hot water extraction |
Cu | 38.74 ± 2.46 | EDTA ** extraction |
Fe | 1232.06 ± 48.7 | DPTA *** extraction |
Mg | 422.13 ± 8.79 | EDTA extraction |
Mn | 34.28 ± 1.85 | DPTA extraction |
SO4 | 174.82 ± 4.40 | Phosphate buffer extraction |
Zn | 142.24 ± 21.80 | EDTA extraction |
Spent Mushroom Compost | Garden Compost | Composted Bark | Composted Bracken | Composted Horse Manure | |
---|---|---|---|---|---|
Garden Compost | 0.002 | ||||
Composted Bark | 0.002 | 0.001 | |||
Composted Bracken | 0.001 | 0.001 | 0.002 | ||
Composted Horse Manure | 0.001 | 0.001 | 0.001 | 0.002 | |
Peat | 0.001 | 0.001 | 0.001 | 0.003 | 0.001 |
Treatment | pH | Bulk Density (g cm−3) | Total Extractable N (mg/kg) | Extractable Ammonia-N (mg/kg) | Extractable Nitrate-N (mg/kg) | Extractable P (mg/kg) | Extractable K (mg/kg |
---|---|---|---|---|---|---|---|
Composted Bark | 6.08 ± 0.10c | 0.176 ± 0.005bc | 678 ± 207b | 639 ± 205b | 39 ± 5b | 4646 ± 298ab | 3956 ± 215b |
Composted Bracken | 6.99 ± 0.43bc | 0.103 ± 0.008d | 871 ± 245b | 622 ± 215b | 249 ± 115b | 6584 ± 3154ab | 19583 ± 6220b |
Garden Compost | 8.45 ± 0.14a | 0.419 ± 0.022a | 3378 ± 741b | 1258 ± 362b | 2120 ± 556a | 1666 ± 242ab | 11000 ± 895b |
Composted Horse Manure | 8.33 ± 0.09ab | 0.135 ± 0.010cd | 3172 ± 995b | 3079 ± 1021b | 93 ± 30b | 3869 ± 624ab | 68150 ± 4682a |
Spent Mushroom Compost | 7.63 ± 0.19b | 0.212 ± 0.012b | 18442 ± 3622a | 18382 ± 3628a | 60 ± 23b | 6746 ± 1315a | 100819 ± 9973a |
Peat | 4.76 ± 0.07d | 0.140 ± 0.005cd | 1706 ± 241b | 760 ± 211b | 946 ± 240a | 151 ± 56b | 209 ± 75b |
Pairwise Comparisons p-Values According to ANOSIM | |||||||
---|---|---|---|---|---|---|---|
Year | Control vs. Bk | Control vs. Br | Control vs. GCh | Control vs. GCf | Control vs. HM | Control vs. M | Control vs. Peat |
0 | 0.537 | 0.957 | 0.909 | 0.879 | 0.743 | 0.494 | 0.313 |
1 | <0.01 | 0.06 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
2 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
3 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
4 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
5 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
6 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
7 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duddigan, S.; Alexander, P.D.; Shaw, L.J.; Collins, C.D. Effects of Repeated Application of Organic Soil Amendments on Horticultural Soil Physicochemical Properties, Nitrogen Budget and Yield. Horticulturae 2021, 7, 371. https://doi.org/10.3390/horticulturae7100371
Duddigan S, Alexander PD, Shaw LJ, Collins CD. Effects of Repeated Application of Organic Soil Amendments on Horticultural Soil Physicochemical Properties, Nitrogen Budget and Yield. Horticulturae. 2021; 7(10):371. https://doi.org/10.3390/horticulturae7100371
Chicago/Turabian StyleDuddigan, Sarah, Paul D. Alexander, Liz J. Shaw, and Chris D. Collins. 2021. "Effects of Repeated Application of Organic Soil Amendments on Horticultural Soil Physicochemical Properties, Nitrogen Budget and Yield" Horticulturae 7, no. 10: 371. https://doi.org/10.3390/horticulturae7100371
APA StyleDuddigan, S., Alexander, P. D., Shaw, L. J., & Collins, C. D. (2021). Effects of Repeated Application of Organic Soil Amendments on Horticultural Soil Physicochemical Properties, Nitrogen Budget and Yield. Horticulturae, 7(10), 371. https://doi.org/10.3390/horticulturae7100371