Quantitative and Qualitative Evaluation of Sorghum bicolor L. under Intercropping with Legumes and Different Weed Control Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area and Design
2.2. Plant Sampling and Measurements
2.3. Statistical Analyses
3. Results and Discussion
3.1. Dry Matter Digestibility (DMD)
3.2. Crude Protein (CP)
3.3. Crude Fiber (CF)
3.4. Total Ash (ASH)
3.5. Neutral Detergent Fiber (NDF)
3.6. Water-Soluble Carbohydrate (WSC)
3.7. Dry Matter Intake (DMI)
3.8. Relative Feed Value (RFV)
3.9. Cell Wall Percentage Minus Hemicellulose (ADF)
3.10. Sorghum Forage and Forage Legumes Yield
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ghanbari-Bonjar, A.; Lee, H.C. Intercropped wheat (Triticum aestivum L.) and bean (Vicia faba L.) as a whole-crop forage: Effect of harvest time on forage yield and quality. Grass Forage Sci. 2003, 58, 28–36. [Google Scholar] [CrossRef]
- Aldababseh, A.; Temimi, M.; Maghelal, P.; Branch, O.; Wulfmeyer, V. Multi-criteria evaluation of irrigated agriculture suitability to achieve food security in an arid environment. Sustainability 2018, 10, 803. [Google Scholar] [CrossRef] [Green Version]
- Olson, S.N.; Ritter, K.; Rooney, W.; Kemanian, A.; McCarl, B.A.; Zhang, Y.Q.; Hall, S.; Packer, D.; Mullet, J. High biomass yield energy sorghum: Developing a genetic model for C4 grass bioenergy crops. Biofuels Bioprod. Biorefining 2012, 6, 640–655. [Google Scholar] [CrossRef]
- Acharya, P.; Ghimire, R.; Cho, Y. Linking soil health to sustainable crop production: Dairy compost effects on soil properties and sorghum biomass. Sustainability 2019, 11, 3552. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Memo, M.; Mastinu, A. Plant behaviour: An evolutionary response to the environment? Plant Biol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Mahdavi, A.; Moradi, P.; Mastinu, A. Variation in terpene profiles of thymus vulgaris in water deficit stress response. Molecules 2020, 25, 1091. [Google Scholar] [CrossRef] [Green Version]
- Bonini, S.A.; Mastinu, A.; Maccarinelli, G.; Mitola, S.; Premoli, M.; La Rosa, L.R.; Ferrari-Toninelli, G.; Grilli, M.; Memo, M. Cortical structure alterations and social behavior impairment in p50-deficient mice. Cereb. Cortex 2016, 26, 2832–2849. [Google Scholar] [CrossRef]
- Gianoncelli, A.; Bonini, S.A.; Bertuzzi, M.; Guarienti, M.; Vezzoli, S.; Kumar, R.; Delbarba, A.; Mastinu, A.; Sigala, S.; Spano, P.; et al. An integrated approach for a structural and functional evaluation of biosimilars: Implications for erythropoietin. BioDrugs 2015, 29, 285–300. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.W.; Walker, S.R.; Osten, V.A.; Robinson, G. Competition of sorghum cultivars and densities with Japanese millet (Echinochloa esculenta). Weed Biol. Manag. 2010, 10, 185–193. [Google Scholar] [CrossRef]
- Gressel, J.; Valverde, B.E. A strategy to provide long-term control of weedy rice while mitigating herbicide resistance transgene flow, and its potential use for other crops with related weeds. Pest Manag. Sci. Former. Pestic. Sci. 2009, 65, 723–731. [Google Scholar] [CrossRef]
- Swanton, C.J.; Nkoa, R.; Blackshaw, R.E. Experimental methods for crop–weed competition studies. Weed Sci. 2017, 63, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Norsworthy, J.K.; Ward, S.M.; Shaw, D.R.; Llewellyn, R.S.; Nichols, R.L.; Webster, T.M.; Bradley, K.W.; Frisvold, G.; Powles, S.B.; Burgos, N.R.; et al. Reducing the Risks of herbicide resistance: Best management practices and recommendations. Weed Sci. 2017, 60, 31–62. [Google Scholar] [CrossRef] [Green Version]
- Lazzari, P.; Pau, A.; Tambaro, S.; Asproni, B.; Ruiu, S.; Pinna, G.; Mastinu, A.; Curzu, M.M.; Reali, R.; Bottazzi, M.E.; et al. Synthesis and pharmacological evaluation of novel 4-alkyl-5-thien-2′-yl pyrazole carboxamides. Cent. Nerv. Syst. Agents Med. Chem. 2012, 12, 254–276. [Google Scholar] [CrossRef] [PubMed]
- Skøien, S.E.; Børresen, T.; Bechmann, M. Effect of tillage methods on soil erosion in Norway. Acta Agric. Scand. Sect. B Soil Plant Sci. 2012, 62, 191–198. [Google Scholar] [CrossRef]
- Gupta, A.K.; Rather, M.A.; Kumar Jha, A.; Shashank, A.; Singhal, S.; Sharma, M.; Pathak, U.; Sharma, D.; Mastinu, A. Artocarpus lakoocha roxb. and artocarpus heterophyllus lam. flowers: New sources of bioactive compounds. Plants 2020, 9, 1329. [Google Scholar] [CrossRef]
- Uchino, H.; Iwama, K.; Jitsuyama, Y.; Ichiyama, K.; Sugiura, E.; Yudate, T.; Nakamura, S.; Gopal, J. Effect of interseeding cover crops and fertilization on weed suppression under an organic and rotational cropping system. Field Crops Res. 2012, 127, 9–16. [Google Scholar] [CrossRef] [Green Version]
- den Hollander, N.G.; Bastiaans, L.; Kropff, M.J. Clover as a cover crop for weed suppression in an intercropping design. Eur. J. Agron. 2007, 26, 92–103. [Google Scholar] [CrossRef]
- Elsalahy, H.; Döring, T.; Bellingrath-Kimura, S.; Arends, D. Weed suppression in only-legume cover crop mixtures. Agronomy 2019, 9, 648. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Liu, Q.; Gou, F.; Li, X.; Zhang, C.; van der Werf, W.; Zhang, F. Plant growth patterns in a tripartite strip relay intercrop are shaped by asymmetric aboveground competition. Field Crops Res. 2017, 201, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Mastinu, A.; Bonini, S.A.; Rungratanawanich, W.; Aria, F.; Marziano, M.; Maccarinelli, G.; Abate, G.; Premoli, M.; Memo, M.; Uberti, D. Gamma-oryzanol prevents lps-induced brain inflammation and cognitive impairment in adult mice. Nutrients 2019, 11, 728. [Google Scholar] [CrossRef] [Green Version]
- Mastinu, A.; Kumar, A.; Maccarinelli, G.; Bonini, S.A.; Premoli, M.; Aria, F.; Gianoncelli, A.; Memo, M. Zeolite clinoptilolite: Therapeutic virtues of an ancient mineral. Molecules 2019, 24, 1517. [Google Scholar] [CrossRef] [Green Version]
- Dawo, M.I.; Wilkinson, J.M.; Sanders, F.E.T.; Pilbeam, D.J. The yield and quality of fresh and ensiled plant material from intercropped maize (Zea mays) and beans (Phaseolus vulgaris). J. Sci. Food Agric. 2007, 87, 1391–1399. [Google Scholar] [CrossRef]
- Huňady, I.; Hochman, M. Potential of legume-cereal intercropping for increasing yields and yield stability for self-sufficiency with animal fodder in organic farming. Czech J. Genet. Plant Breed. 2014, 50, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Javanmard, A.; Nasab, A.D.M.; Javanshir, A.; Moghaddam, M.; Janmohammadi, H. Forage yield and quality in intercropping of maize with different legumes as double-cropped. J. Food Agric. Environ. 2009, 7, 163–166. [Google Scholar]
- Serbester, U.; Akkaya, M.R.; Yucel, C.; Gorgulu, M. Comparison of yield, nutritive value, andin vitrodigestibility of monocrop and intercropped corn-soybean silages cut at two maturity stages. Ital. J. Anim. Sci. 2015, 14, 3636. [Google Scholar] [CrossRef]
- Naim, A.M.E. Agronomic evaluation of sorghum and cowpea intercropped at different spatial arrangements. J. Renew. Agric. 2013, 1, 11–16. [Google Scholar] [CrossRef]
- Iqbal, M.A. Comparative performance of forage cluster bean accessions as companion crops with sorghum under varied harvesting times. Bragantia 2018, 77, 476–484. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Hamid, A.; Ahmad, T.; Siddiqui, M.H.; Hussain, I.; Ali, S.; Ali, A.; Ahmad, Z. Forage sorghum-legumes intercropping: Effect on growth, yields, nutritional quality and economic returns. Bragantia 2019, 78, 82–95. [Google Scholar] [CrossRef]
- Borghi, E.; Crusciol, C.A.C.; Nascente, A.S.; Sousa, V.V.; Martins, P.O.; Mateus, G.P.; Costa, C. Sorghum grain yield, forage biomass production and revenue as affected by intercropping time. Eur. J. Agron. 2013, 51, 130–139. [Google Scholar] [CrossRef]
- Jafari, A.; Connolly, V.; Frolich, A.; Walsh, E.J. A note on estimation of quality parameters in perennial ryegrass by near infrared reflectance spectroscopy. Irish J Agric. Food Res. 2003, 42, 293–299. [Google Scholar]
- Carita, T.; Simes, N.; Carneiro, J.; Moreira, J.; Bagulho, A. Forage yield and quality of simple and complex grass-legumes mixtures under Mediterranean conditions. Emir. J. Food Agric. 2016, 28, 501–505. [Google Scholar] [CrossRef]
- Coleman, S.W.; Moore, J.E. Feed quality and animal performance. Field Crops Res. 2003, 84, 17–29. [Google Scholar] [CrossRef]
- Phelan, P.; Moloney, A.P.; McGeough, E.J.; Humphreys, J.; Bertilsson, J.; O’Riordan, E.G.; O’Kiely, P. Forage legumes for grazing and conserving in ruminant production systems. Crit. Rev. Plant Sci. 2015, 34, 281–326. [Google Scholar] [CrossRef]
- Arzani, H.; Zohdi, M.; Fish, E.; Zahedi Amiri, G.; Nikkhah, A.; Wester, D. Phenological effects on forage quality of five grass species. Rangel. Ecol. Manag. 2004, 57, 624–629. [Google Scholar] [CrossRef]
- Restelatto, R.; Pavinato, P.S.; Sartor, L.R.; Einsfeld, S.M.; Baldicera, F.P. Nitrogen efficiency and nutrient absorption by a sorghum-oats forage succession. Adv. Agric. 2015, 2015, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Capstaff, N.M.; Miller, A.J. Improving the Yield and Nutritional Quality of Forage Crops. Front. Plant Sci. 2018, 9, 535. [Google Scholar] [CrossRef] [Green Version]
- Lithourgidis, A.S.; Vlachostergios, D.N.; Dordas, C.A.; Damalas, C.A. Dry matter yield, nitrogen content, and competition in pea–cereal intercropping systems. Eur. J. Agron. 2011, 34, 287–294. [Google Scholar] [CrossRef]
- Reza, Z.O.; Allahdadi, I.; Mazaheri, D.; Akbari, G.A.; Jahanzad, E.; Mirshekari, M. Evaluation of quantitative and qualitative traits of forage sorghum and lima bean under different nitrogen fertilizer regimes in additive - replacement series. J. Agric. Sci. 2012, 4, 223. [Google Scholar] [CrossRef]
- La Guardia Nave, R.; Corbin, M. Forage warm-season legumes and grasses intercropped with corn as an alternative for corn silage production. Agronomy 2018, 8, 199. [Google Scholar] [CrossRef] [Green Version]
- Saarsalmi, A.; Smolander, A.; Kukkola, M.; Moilanen, M.; Saramäki, J. 30-Year effects of wood ash and nitrogen fertilization on soil chemical properties, soil microbial processes and stand growth in a Scots pine stand. For. Ecol. Manag. 2012, 278, 63–70. [Google Scholar] [CrossRef]
- Palmer, J.; Thorburn, P.J.; Biggs, J.S.; Dominati, E.J.; Probert, M.E.; Meier, E.A.; Huth, N.I.; Dodd, M.; Snow, V.; Larsen, J.R.; et al. Nitrogen cycling from increased soil organic carbon contributes both positively and negatively to ecosystem services in wheat agro-ecosystems. Front. Plant Sci. 2017, 8, 731. [Google Scholar] [CrossRef] [PubMed]
- Monti, A.; Di Virgilio, N.; Venturi, G. Mineral composition and ash content of six major energy crops. Biomass Bioenergy 2008, 32, 216–223. [Google Scholar] [CrossRef] [Green Version]
- Spears, J.W. Minerals in Forages. Forage Qual. Eval. Util. 1994, 7, 281–317. [Google Scholar]
- Contreras-Govea, F.E.; Muck, R.E.; Armstrong, K.L.; Albrecht, K.A. Fermentability of corn–lablab bean mixtures from different planting densities. Anim. Feed Sci. Technol. 2009, 149, 298–306. [Google Scholar] [CrossRef]
- Schulze, H.; van Leeuwen, P.; Verstegen, M.W.A.; Huisman, J.; Souffrant, W.B.; Ahrens, F. Effect of level of dietary neutral detergent fiber on ileal apparent digestibility and ileal nitrogen losses in pigs. J. Anim. Sci. 1994, 72, 2362–2368. [Google Scholar] [CrossRef] [PubMed]
- Marcos, C.N.; Carro, M.D.; García, S.; González, J. The acid detergent insoluble nitrogen (ADIN) analysis overestimates the amount of N associated to acid detergent fibre. Anim. Feed Sci. Technol. 2018, 244, 36–41. [Google Scholar] [CrossRef]
- Farías-Kovac, C.; Nicodemus, N.; Delgado, R.; Ocasio-Vega, C.; Noboa, T.; Abdelrasoul, R.A.-S.; Carabaño, R.; García, J. Effect of dietary insoluble and soluble fibre on growth performance, digestibility, and nitrogen, energy, and mineral retention efficiency in growing rabbits. Animals 2020, 10, 1346. [Google Scholar] [CrossRef]
- Stoltz, E.; Nadeau, E. Effects of intercropping on yield, weed incidence, forage quality and soil residual N in organically grown forage maize (Zea mays L.) and faba bean (Vicia faba L.). Field Crops Res. 2014, 169, 21–29. [Google Scholar] [CrossRef]
- Jahanzad, E.; Sadeghpour, A.; Hosseini, M.B.; Barker, A.V.; Hashemi, M.; Zandvakili, O.R. Silage yield and nutritive value of millet-soybean intercrops as influenced by nitrogen application. Agron. J. 2014, 106, 1993–2000. [Google Scholar] [CrossRef]
- Dhima, K.V.; Vasilakoglou, I.B.; Eleftherohorinos, I.G.; Lithourgidis, A.S. Allelopathic potential of winter cereals and their cover crop mulch effect on grass weed suppression and corn development. Crop Sci. 2006, 46, 345–352. [Google Scholar] [CrossRef]
- Assefa, G.; Ledin, I. Effect of variety, soil type and fertiliser on the establishment, growth, forage yield, quality and voluntary intake by cattle of oats and vetches cultivated in pure stands and mixtures. Anim. Feed Sci. Technol. 2001, 92, 95–111. [Google Scholar] [CrossRef]
- Strydhorst, S.M.; King, J.R.; Lopetinsky, K.J.; Harker, K.N. Forage potential of intercropping barley with faba bean, lupin, or field pea. Agron. J. 2008, 100, 182–190. [Google Scholar] [CrossRef]
- Vern, S.; Baron, A.A.; Clayton, G.W.; Campbell Dick, A.; McCartney, D.H. Swath grazing potential of spring cereals, field pea and mixtures with other species. Can. J. Plant Sci. 2004, 84, 1051–1058. [Google Scholar] [CrossRef]
- Mosebi, P.E.; Matebesi-Ranthimo, P.A.; Ntakatsane, M.P.; Ratsele, R. Forage potential of alfalfa with oats and barley in intercropping system. Asian J. Res. Agric. For. 2018, 1, 1–11. [Google Scholar] [CrossRef]
- Bybee-Finley, K.; Ryan, M. Advancing intercropping research and practices in industrialized agricultural landscapes. Agriculture 2018, 8, 80. [Google Scholar] [CrossRef] [Green Version]
- Aladesanwa, R.D.; Adigun, A.W. Evaluation of sweet potato (Ipomoea batatas) live mulch at different spacings for weed suppression and yield response of maize (Zea mays L.) in southwestern Nigeria. Crop Prot. 2008, 27, 968–975. [Google Scholar] [CrossRef]
- Kumar, P.; Pal, M.; Joshi, R.; Sairam, R.K. Yield, growth and physiological responses of mung bean [Vigna radiata (L.) Wilczek] genotypes to waterlogging at vegetative stage. Physiol. Mol. Biol. Plants 2013, 19, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Tanveer, M.; Anjum, S.A.; Hussain, S.; Cerdà, A.; Ashraf, U. Relay cropping as a sustainable approach: Problems and opportunities for sustainable crop production. Environ. Sci. Pollut. Res. 2017, 24, 6973–6988. [Google Scholar] [CrossRef]
- Samal, S.K.; Rao, K.K.; Poonia, S.P.; Kumar, R.; Mishra, J.S.; Prakash, V.; Mondal, S.; Dwivedi, S.K.; Bhatt, B.P.; Naik, S.K.; et al. Evaluation of long-term conservation agriculture and crop intensification in rice-wheat rotation of Indo-Gangetic Plains of South Asia: Carbon dynamics and productivity. Eur. J. Agron. 2017, 90, 198–208. [Google Scholar] [CrossRef]
Year | Month | Average Temperature (°C) | Max. Temperature (°C) | Min. Temperature (°C) | Actual Evaporation (mm) | Precipitation (mm) | RH (%) |
---|---|---|---|---|---|---|---|
2015 | July | 26.6 | 34.6 | 18.5 | 300 | 0.04 | 41.2 |
August | 25.9 | 35.7 | 16.2 | 297 | 0 | 36.3 | |
September | 21.5 | 30.3 | 12.6 | 207 | 0.11 | 50.4 | |
October | 17.1 | 25.4 | 9.1 | 147 | 0.59 | 52.1 | |
2016 | July | 24.7 | 32.8 | 15.7 | 301 | 0.05 | 41.2 |
August | 25.6 | 34.7 | 16.4 | 298 | 0 | 42 | |
September | 22.6 | 32.5 | 12.7 | 240 | 0 | 42 | |
October | 16.6 | 22.7 | 10.6 | 180 | 0.5 | 50.3 |
Year | Potassium mg kg−1 | Phosphorus mg kg−1 | EC mS cm−1 | Sand (%) | Silt (%) | Clay (%) | Soil Texture | Organic Carbon (%) | pH |
---|---|---|---|---|---|---|---|---|---|
2015 | 220 | 22.63 | 3.14 | 42.2 | 34.4 | 23.4 | Silty clay loam | 1.3 | 7.72 |
2016 | 270 | 45.23 | 4.21 | 38.16 | 32 | 29.84 | Silty clay loam | 0.98 | 7.15 |
Source | DF | MS | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DMD Dry Matter Digestibility | CP Crude Protein | WSC Water Soluble Carbohydrates | CF Crude Fiber | ADF Acid Detergent Fiber | NDF Neutral Detergent Fiber | ASH Total Ash Percentage | DMI Dry Matter Intake | RFV Relative Feed Value | Fresh Weight of Sorghum | Dry Weight of Sorghum | Dry Weight of Forage Legumes | ||
Year | 1 | 50.22 | 0.084ns | 51.00 ** | 3.94 * | 29.05 * | 680.02 ** | 65.95 ** | 0.588 ** | 55205 ** | 6214.39 ** | 108105 ** | 23.59 ** |
Rep./Y | 4 | 1.15ns z | 2.14ns | 3.04ns | 0.98ns | 1.37ns | 2.21ns | 0.343 * | 0.003Ns | 15.99ns | 298.54 ** | 15.09 ** | 0.42ns |
P.Ry (A) | 6 | 7.57ns | 8.41 ** | 9.43 ** | 2.88 ** | 9.77ns | 41.18 ** | 0.319 ** | 0.038 ** | 147.63 ** | 676.34 ** | 98.73 ** | 68.67 ** |
A × Y | 6 | 9.79 * | 5.07 * | 8.33 ** | 3.49 ** | 7.19ns | 33.97 ** | 0.163ns | 0.032 ** | 179.96 ** | 99.38 ** | 42.96 ** | 4.24 ** |
W.My (B) | 2 | 1.76ns | 1.2ns | 13.81 ** | 0.289ns | 2.05ns | 43.68 ** | 0.198ns | 0.034 * | 210.43 ** | 1094.91 ** | 196.10 ** | 47.29 ** |
B × Y | 2 | 22.93 ** | 1.89ns | 0.98ns | 3.42 * | 37.84 ** | 0.203ns | 0.015ns | 0.001ns | 3.44ns | 1.54ns | 0.45ns | 0.45ns |
A × B | 12 | 6.42ns | 3.62ns | 3.13ns | 2.91 ** | 10.48 * | 19.21 * | 0.523 ** | 0.019 * | 87.03 * | 20.76 ** | 6.47ns | 3.36 ** |
B × A × Y | 12 | 3.91ns | 2.76ns | 2.99ns | 1.03ns | 5.31ns | 10.46ns | 0.181ns | 0.009ns | 18.94ns | 15.99ns | 1.88ns | 0.33ns |
Error | 80 | 4.22 | 2.15 | 2.45 | 0.798 | 4.72 | 8.19 | 0.102 | 0.008 | 36.66 | 20.08 | 4.16 | 0.41 |
CV | 3.39% | 14.62% | 14.21% | 2.51% | 6.28% | 4.48% | 4.43% | 4.70% | 8.21% | 7.28% | 11.42% | 19.72% |
Year | Planting Ratios | NDF% | CF% | WSC% | CP% | DMD% | Dry Weight of Sorghum | Fresh Weight of Sorghum | DMI% | RFV% |
---|---|---|---|---|---|---|---|---|---|---|
First year | sole cropping of sorghum | 63.97cdz | 36.50a | 9.90b–d | 10.86a | 59.37b–d | 22.31b | 75.14ab | 1.88b–d | 89.42b |
Sorghum with 33% vetch | 63.23cd | 35.59ab | 12.112ab | 11.28a | 59.96d | 27.16a | 76.53a | 1.89bc | 92.56b | |
Sorghum with 66% vetch | 58.44e | 34.32c | 13.40a | 9.07bc | 62.14a | 21.86bc | 69.57bc | 2.06a | 103.0a | |
Sorghum with 100 % vetch | 60.74de | 35.78ab | 11.37a–d | 10.11a–c | 61.24a–c | 19.23cd | 65.36cd | 1.98ab | 95.22b | |
Sorghum with 33% Lathyrus | 61.48de | 36.47a | 11.91a–c | 8.89c | 58.80d | 21.87bc | 73.67ab | 1.96ab | 94.14b | |
Sorghum with 66% Lathyrus | 61.46de | 35.96ab | 10.87b–d | 10.61ab | 59.15cd | 17.48de | 63.04de | 1.96ab | 93.37b | |
Sorghum with 100% Lathyrus | 61.58de | 35.94ab | 11.93a–c | 10.04a–c | 60.12a–d | 15.53e–g | 56.58fg | 1.96ab | 94.93b | |
Second year | sole cropping of sorghum | 68.18ab | 35.44a–c | 10.12b–d | 8.67c | 60.90a–d | 15.97ef | 58.75ef | 1.76de | 48.90d |
Sorghum with 33% vetch | 68.30ab | 34.76bc | 9.94b–d | 11.12a | 61.48ab | 16.37ef | 62.68de | 1.76de | 48.92d | |
Sorghum with 66% vetch | 68.74a | 35.90ab | 9.72cd | 9.11bc | 61.92a | 14.79e–g | 56.18fg | 1.75e | 48.01d | |
Sorghum with 100 % vetch | 63.98cd | 35.33a–c | 10.74b–d | 10.10a–c | 61.79a | 15.57e–g | 57.27ef | 1.88b–d | 57.00c | |
Sorghum with 33% Lathyrus | 63.13cd | 35.99ab | 11.97a–c | 9.98a–c | 60.96a–d | 14.22fg | 51.15gh | 1.90bc | 58.91c | |
Sorghum with 66% Lathyrus | 66.26a–c | 35.23a–c | 9.30d | 10.15a–c | 60.36a–d | 14.58fg | 48.63h | 1.81c–e | 52.40cd | |
Sorghum with 100% Lathyrus | 64.81b–d | 35.42a–c | 10.79b–d | 10.58ab | 61.21a–c | 12.93g | 46.90h | 1.87b–d | 55.43cd |
Planting Ratios | Weed | Fresh Weight of Sorghum (ton/ha) | ASH% | NDF% | ADF% | CF% | DMI% | RFV% |
---|---|---|---|---|---|---|---|---|
sole culture of sorghum | Full weed control | 71.38abz | 7.15a–d | 65.85a–c | 35.15a–e | 35.97a–e | 1.82d–f | 69.67e–h |
Single weed control | 69.54bc | 6.86de | 65.57a–d | 35.49a–c | 36.89a | 1.84c–f | 70.72d–h | |
No weed control | 61.38d–h | 7.52ab | 66.82ab | 35.77a–c | 35.06c–e | 1.80ef | 67.10gh | |
Sorghum with 33% vetch | Full weed control | 77.89a | 7.17a–d | 64.50a–e | 33.06c–e | 34.42e | 1.87b–f | 73.31a–h |
Single weed control | 66.69b–e | 7.61a | 64.53a–e | 34.29a–e | 35.48a–e | 1.86c–f | 72.74b–h | |
No weed control | 62.78c–g | 6.93c–e | 68.27a | 35.40a–d | 35.63a–e | 1.77f | 66.17h | |
Sorghum with 66% vetch | Full weed control | 68.92b–d | 7.44a–c | 61.65d–f | 32.27e | 34.67de | 1.98ab | 80.52ab |
Single weed control | 61.53d–h | 7.43a–d | 62.90b–f | 32.38de | 34.74c–e | 1.91a–e | 77.00a–f | |
No weed control | 58.17f–i | 7.42a–d | 66.22a–c | 35.31a–d | 35.93a–e | 1.82d–f | 68.94f–h | |
Sorghum with 100 % vetch | Full weed control | 65.55b–f | 7.43a–d | 60.40f | 35.22a–e | 34.83c–e | 1.99a | 78.38a–d |
Single weed control | 60.99e–h | 6.98b–e | 61.61d–f | 34.49a–e | 36.25a–d | 1.95a–c | 78.62a–d | |
No weed control | 57.40g–j | 7.31a–d | 65.07a–d | 33.47b–e | 35.58a–e | 1.84c–f | 71.33c–h | |
Sorghum with 33% Lathyrus | Full weed control | 67.94b–e | 6.99b–e | 64.39a–e | 35.32a–d | 36.77ab | 1.87b–f | 72.55b–h |
Single weed control | 62.59c–g | 7.08a–d | 60.67ef | 35.46a–c | 36.03a–e | 1.98ab | 79.34a–c | |
No weed control | 56.69g–j | 7.09a–d | 61.85d–f | 33.10c–e | 35.90a–e | 1.95a–d | 77.69a–e | |
Sorghum with 66% Lathyrus | Full weed control | 60.98e–h | 7.26a–d | 65.39a–d | 36.54a | 36.02a–e | 1.84c–f | 69.69e–h |
Single weed control | 56.67g–j | 7.50a–c | 63.42b–f | 35.23a–e | 35.27b–e | 1.89a–e | 74.21a–h | |
No weed control | 49.87jk | 7.09a–d | 62.77c–f | 34.53a–e | 35.50a–e | 1.92a–e | 74.75a–g | |
Sorghum with 100% Lathyrus | Full weed control | 54.12h–k | 6.52e | 60.76ef | 33.16c–e | 36.33a–c | 1.99ab | 81.52a |
Single weed control | 52.09i–k | 7.43a–d | 64.43a–e | 36.43ab | 35.33a–e | 1.87a–f | 71.99c–h | |
No weed control | 49.01k | 7.21a–d | 64.40a–e | 34.15a–e | 35.38a–e | 1.86a–f | 72.03c–h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rad, S.V.; Valadabadi, S.A.R.; Pouryousef, M.; Saifzadeh, S.; Zakrin, H.R.; Mastinu, A. Quantitative and Qualitative Evaluation of Sorghum bicolor L. under Intercropping with Legumes and Different Weed Control Methods. Horticulturae 2020, 6, 78. https://doi.org/10.3390/horticulturae6040078
Rad SV, Valadabadi SAR, Pouryousef M, Saifzadeh S, Zakrin HR, Mastinu A. Quantitative and Qualitative Evaluation of Sorghum bicolor L. under Intercropping with Legumes and Different Weed Control Methods. Horticulturae. 2020; 6(4):78. https://doi.org/10.3390/horticulturae6040078
Chicago/Turabian StyleRad, Saeid Vaezi, Said Ali Reza Valadabadi, Majid Pouryousef, Saeid Saifzadeh, Hamid Reza Zakrin, and Andrea Mastinu. 2020. "Quantitative and Qualitative Evaluation of Sorghum bicolor L. under Intercropping with Legumes and Different Weed Control Methods" Horticulturae 6, no. 4: 78. https://doi.org/10.3390/horticulturae6040078
APA StyleRad, S. V., Valadabadi, S. A. R., Pouryousef, M., Saifzadeh, S., Zakrin, H. R., & Mastinu, A. (2020). Quantitative and Qualitative Evaluation of Sorghum bicolor L. under Intercropping with Legumes and Different Weed Control Methods. Horticulturae, 6(4), 78. https://doi.org/10.3390/horticulturae6040078