Seed Geometry in the Arecaceae
Abstract
:1. Introduction
2. Seed Morphology in the Arecaceae
3. Geometric Models: Definition and Application
3.1. A Conceptual Aspect
3.2. J Index, a Magnitude in Seed Morphology
3.3. Calculation of J Index
4. Geometric Models: Definition of the Models
4.1. Circle
4.2. Ellipse
4.3. Oval
4.4. Lemniscate
4.5. Superellipse
4.6. Cardioid and Derivatives
4.7. Lens
4.8. Waterdrop
5. Geometric Models: Examples in Different Species in the Arecaceae
5.1. Seeds That Project Circular Images
5.2. Elliptical Seeds
5.3. Seeds Resembling Ovals
- Serenoa repens: ;
- Desmoncus sp.:
- Astrocaryum standleyanum: ;
- Medemia argun:
5.4. Seeds Resembling the Superellipse and Related Figures
5.5. Seeds Resembling Other Figures: Half Lemniscate, Lens and Waterdrops
6. Seed Shape Quantification by Comparison with an Oval in Chamaedorea pauciflora
7. Morphological Aspects of the Fruits and Seeds of Trachycarpus fortunei
8. Geometric Models in the Arecaceae: Relation with Anatomical Properties and Taxonomy
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Web Sources of the Images Used in the Figures
- Courtesy of Scott Zona
- Seed collection IRNASA-CSIC.
- Geonoma congesta seed image courtesy of Steven Paton
- Acoelorrhaphe wrightii:Acrocomia aculeata:Coccothrinax argentata:Geonoma congesta: Steven PatonIriartea deltoidea:
- Socratea exorrhiza: Steven Paton, https://www.discoverlife.org/mp/20p?see=I_SP3245&res=640Adonidia merrillii: Seeds were collected at Pastaza (Ecuador) in different urban gardens of Puyo and, after being photographed, the seeds were returned to their origin.Bismarckia nobilis:http://idtools.org/id/palms/palmid/factsheet.php?name=9401
- Serenoa repens: http://idtools.org/id/palms/palmid/factsheet.php?name=9457Desmoncus sp.: Steven Paton,Astrocaryum standleyanum: id.https://biogeodb.stri.si.edu/bioinformatics/dfm/metas/view/7546Medemia argun:
- Phoenix canariensis: Seed collection IRNASA-CSIC.Welfia regia:Raphia taedigera:
- Clinosperma macrocarpa:Johannesteijsmannia altifrons:Mauritia flexuosa:
- Syagrus romanzoffiana: http://realpalmtrees.com/palm-tree-store/queen-palm-seeds-pkg.html Available also at: https://bit.ly/3lcvFNnAphandra natalia: collected at Pastaza (Ecuador) in different urban gardens of Puyo. After being photographed, the seeds were returned to their origin.
- Seeds were collected at Pastaza (Ecuador) in different urban gardens of Puyo and, after being photographed, the seeds were returned to their origin.
- Seed collection IRNASA-CSIC.
References
- Dransfield, J.; Uhl, N.W.; Asmussen, C.B.; Baker, W.J.; Harley, M.M.; Lewis, C.E. Genera Palmarum: The Evolution and Classification of Palms; Kew Publishing, Royal Botanic Gardens of Kew: London, UK, 2008. [Google Scholar]
- Von Humboldt, A. Personal Narrative of Travels to the Equinoctial Regions of the New Continent During the Years 1799–1804; Longman, Hurst, Rees, Orme and Brown: London, UK, 1829; Volume 5.2, pp. 727–729. [Google Scholar]
- Hooker, W.J. Museum of Economic Botany: Or a Popular Guide to the Useful and Remarkable Products of the Museum of the Royal Gardens of Kew; Longman, Brown, Green and Longmans: London, UK, 1855. [Google Scholar]
- Ribeiro Mendes, J.C.; de Sousa Portilho, A.J.; Andrade de Aguiar-Dias, A.C.; da Silva Sampaio, K.L.; de Nazaré Farias, L. Arecaceae: Uma estratégia diferenciada para o ensino de botânica em uma escola de ensino médio na ilha de Cotijuba, Pará, Brasil. In Enciclopédia Biosfera; Centro Científico Conhecer: Goiânia, Brasil, 2019; Volume 16, pp. 2226–2240. [Google Scholar]
- Meerow, A.W. Arecaceae, the palm family. In The Encyclopedia of Fruits and Nuts; Janick, J., Paull, R.E., Eds.; CABI: Wallingford, UK; Cambridge, MA, USA, 2006. [Google Scholar]
- Valencia, R.; Montufar, R.; Navarrete, H.; Balslev, H. Palmas Ecuatorianas: Biología y Uso Sostenible; Publicaciones del Herbario QCA de la Pontificia Universidad Católica del Ecuador: Quito, Ecuador, 2013. [Google Scholar]
- Jácome, J.; Montúfar, R. Mocora. Astrocaryum standleyanum. In Palmas Ecuatorianas: Biología y Uso Sostenible; Valencia, R., Montufar, R., Navarrete, H., Balslev, H., Eds.; Publicaciones del Herbario QCA de la Pontificia Universidad Católica del Ecuador: Quito, Ecuador, 2013; pp. 99–101. [Google Scholar]
- Henderson, A. Evolution and Ecology of Palms; The New York Botanical Garden Press: Bronx, NY, USA, 2002. [Google Scholar]
- Gottsberger, G. Seed dispersal by fish in the inundated regions of Humaita, Amazonia. Biotropica 1978, 10, 170–183. [Google Scholar] [CrossRef]
- Zona, S.; Henderson, A. A review of animal-mediated seed dispersal of palms. Selbyana 1989, 11, 6–21. [Google Scholar]
- Cervantes, E.; Martín Gómez, J.J.; Gutiérrez del Pozo, D.; Silva Dias, L. An Angiosperm Species Dataset Reveals Relationships between Seed Size and Two-Dimensional Shape. Horticulturae 2019, 5, 71. [Google Scholar] [CrossRef] [Green Version]
- Piedade, M.T.; Parolin, P.; Junk, W.J. Phenology, fruit production and seed dispersal of Astrocaryum jauari (Arecaceae) in Amazonian black water floodplains. Rev. Biol. Trop. 2006, 54, 1171–1178. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, G.; Trøjelsgaard, K.; Kissling, W.D. A synthesis of animal-mediated seed dispersal of palms reveals distinct biogeographical differences in species interactions. J. Biogeogr. 2019, 46, 466–484. [Google Scholar] [CrossRef]
- Murray, S.G. The formation of endocarp in palm fruits. Principes 1973, 17, 91–102. [Google Scholar]
- Henderson, F.M.; Stevenson, D.W. A phylogenetic study of Arecaceae based on seedling morphological and anatomical data. Aliso 2006, 22, 251–264. [Google Scholar] [CrossRef]
- Rovner, I.; Gyulai, F. Computer-assisted morphometry: A new method for assessing and distinguishing morphological variation in wild and domestic seed populations. Econ. Bot. 2007, 61, 154–172. [Google Scholar] [CrossRef]
- Sonka, M.; Hlavac, V.; Boyle, R. Image Processing Analysis and Machine Vision; Thomson: Stamford, CT, USA, 2008. [Google Scholar]
- Zheng, Y.; Guo, B.; Chen, Z.; Li, C. A Fourier Descriptor of 2D Shapes Based on Multiscale Centroid Contour Distances Used in Object Recognition in Remote Sensing Images. Sensors 2019, 19, 486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cervantes, E.; Martín-Gómez, J.J.; Saadaoui, E. Updated Methods for Seed Shape Analysis. Scientifica 2016, 2016, 5691825. [Google Scholar] [CrossRef] [Green Version]
- Cervantes, E.; Martín Gómez, J.J. Seed Shape Description and Quantification by Comparison with Geometric Models. Horticulturae 2019, 5, 60. [Google Scholar] [CrossRef] [Green Version]
- Cervantes, E. Seed Morphology. Scholarly Community Encyclopedia. 2020. Available online: https://encyclopedia.pub/item/revision/7894d28ff2ebed5217b9d81a23a8c84e (accessed on 6 October 2020).
- Cervantes, E.; Martín, J.J.; Ardanuy, R.; de Diego, J.G.; Tocino, Á. Modeling the Arabidopsis seed shape by a cardioid: Efficacy of the adjustment with a scale change with factor equal to the Golden Ratio and analysis of seed shape in ethylene mutants. J. Plant Physiol. 2010, 67, 408–410. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, E.; Martín, J.J.; Chan, P.K.; Gresshoff, P.M.; Tocino, Á. Seed shape in model legumes: Approximation by a cardioid reveals differences in ethylene insensitive mutants of Lotus japonicus and Medicago truncatula. J. Plant Physiol. 2012, 169, 1359–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saadaoui, E.; Martín Gómez, J.J.; Tlili, N.; Khaldi, A.; Cervantes, E. Effect of Climate in Seed Diversity of Wild Tunisian Rhus tripartita (Ucria) Grande. J. Adv. Biol. Biotechnol. 2017, 13, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Martín-Gómez, J.J.; Saadaoui, E.; Cervantes, E. Seed Shape of Castor Bean (Ricinus communis L.) Grown in Different Regions of Tunisia. JAERI 2016, 8, 1–11. [Google Scholar]
- Saadaoui, E.; Martín, J.J.; Bouazizi, R.; Chokri, B.R.; Grira, M.; Saad, A.; Khouja, M.L.; Cervantes, E. Phenotypic variability and seed yield of Jatropha curcas L Introduced to Tunisia. Acta Bot. Mex. 2015, 110, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Martín-Gómez, J.J.; Gutiérrez del Pozo, D.; Ucchesu, M.; Bacchetta, G.; Cabello Sáenz de Santamaría, F.; Tocino, Á.; Cervantes, E. Seed Morphology in the Vitaceae Based on Geometric Models. Agronomy 2020, 10, 739. [Google Scholar] [CrossRef]
- Martín-Gómez, J.J.; Gutiérrez del Pozo, D.; Cervantes, E. Seed shape quantification in the Malvaceae reveals cardioid-shaped seeds predominantly in herbs. Bot. Lith. 2019, 25, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Cervantes, E.; Martín-Gómez, J.J. Seed shape quantification in the order Cucurbitales. Mod. Phytomorphol. 2018, 12, 1–13. [Google Scholar] [CrossRef]
- Martín-Gómez, J.J.; Rewicz, A.; Cervantes, E. Seed Shape Diversity in families of the Order Ranunculales. Phytotaxa 2019, 425, 193–207. [Google Scholar] [CrossRef]
- Saadaoui, E.; Martín-Gómez, J.J.; Cervantes, E. Seed morphology in Tunisian wild populations of Capparis spinosa L. Acta Biol. Cracov. Bot. 2013, 55, 99–106. [Google Scholar]
- Weisstein, E.W. Circle. From MathWorld—A Wolfram Web Resource. Available online: https://mathworld.wolfram.com/Circle.html (accessed on 24 June 2020).
- Weisstein, E.W. Ellipse. From MathWorld—A Wolfram Web Resource. Available online: https://mathworld.wolfram.com/Ellipse.html (accessed on 24 June 2020).
- Weisstein, E.W. Oval. From MathWorld—A Wolfram Web Resource. Available online: https://mathworld.wolfram.com/Oval.html (accessed on 24 June 2020).
- Weisstein, E.W. Lemniscate. From MathWorld—A Wolfram Web Resource. Available online: https://mathworld.wolfram.com/Lemniscate.html (accessed on 24 June 2020).
- Weisstein, E.W. Superellipse. From MathWorld—A Wolfram Web Resource. Available online: https://mathworld.wolfram.com/Superellipse.html (accessed on 24 June 2020).
- Weisstein, E.W. Cardioid. From MathWorld—A Wolfram Web Resource. Available online: https://mathworld.wolfram.com/Cardioid.html (accessed on 24 June 2020).
- Weisstein, E.W. Lens. From MathWorld—A Wolfram Web Resource. Available online: https://mathworld.wolfram.com/Lens.html (accessed on 24 June 2020).
- Weisstein, E.W. Vesica Piscis. From MathWorld—A Wolfram Web Resource. Available online: https://mathworld.wolfram.com/VesicaPiscis.html (accessed on 24 June 2020).
- Weisstein, E.W. Heart Curve. From MathWorld—A Wolfram Web Resource. Available online: http://mathworld.wolfram.com/HeartCurve.html (accessed on 24 June 2020).
- Clasen, A.; Kesel, A.B. Microstructural Surface Properties of Drifting Seeds—A Model for Non-Toxic Antifouling Solutions. Biomimetics 2019, 4, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira Viana, E. Pós-colheita de Sementes e Produção de Mudas de Copernicia. Ph.D. Thesis, Universidade Federal do Ceará, Fortaleza, Brazil, 2019. Available online: http://www.repositorio.ufc.br/handle/riufc/46681 (accessed on 30 July 2020).
- Dowe, J.L. A taxonomic account of Livistona R.Br. (Arecaceae). Gard. Bull. 2009, 60, 185–344. [Google Scholar]
- De Mendonca, M.S.; de Oliveira, A.B.; de Araujo, M.G.P.; Araujo, L.M. Morpho-anatomy of the fruit and seed of Oenocarpus minor Mart. (Arecaceae). Rev. Bras. Sementes 2008, 30, 90–95. [Google Scholar] [CrossRef] [Green Version]
- Santana Silva, R.; Monteiro Ribeiro, L.; Mercadante-Simões, M.O.; Ferreira Nunes, Y.R.; Nascimento Lopes, P.S. Seed structure and germination in buriti (Mauritia flexuosa), the Swamp palm. Flora 2014, 209, 674–685. [Google Scholar] [CrossRef]
- Martín-Gómez, J.J.; Rewicz, A.; Rodríguez-Lorenzo, J.L.; Janoušek, B.; Cervantes, E. Seed morphology in Silene based on geometric models. Plants 2020. under review. [Google Scholar]
- Bobrov, A.V.F.C.; Lorence, D.H.; Romanov, M.S.; Romanova, E.S. Fruit Development and Pericarp Structure in Nypa fruticans Wurmb (Arecaceae): A Comparison with Other Palms. Int. J. Plant Sci. 2012, 173, 751–766. [Google Scholar] [CrossRef]
- Bellot, S.; Bayton, R.P.; Couvreur, T.L.P.; Dodsworth, S.; Eiserhardt, W.L.; Guignard, M.S.; Pritchard, H.W.; Roberts, L.; Toorop, P.E.; Baker, W.J. On the origin of giant seeds: The macroevolution of the double coconut (Lodoicea maldivica) and its relatives (Borasseae, Arecaceae). New Phytol. 2020. [Google Scholar] [CrossRef]
- Wada, S.; Reed, B.M. Seed Coat Morphology Differentiates Blackberry Cultivars. J. Am. Pomol. Soc. 2010, 64, 152–161. [Google Scholar]
- Ter Steege, H.; Henkel, T.W.; Helal, N.; Marimon, B.S.; Marimon-Junior, B.H.; Huth, A.; Groeneveld, J.; Sabatier, D.; de Souza Coelho, L.; de Andrade Lima Filho, D.; et al. Rarity of monodominance in hyperdiverse Amazonian forests. Sci. Rep. 2019, 9, 13822. [Google Scholar] [CrossRef] [Green Version]
- Hubau, W.; De Mil, T.; Van den Bulcke, J.; Phillips, O.L.; Angoboy Ilondea, B.; Van Acker, J.; Sullivan, M.J.; Nsenga, L.; Toirambe, B.; Couralet, C.; et al. The persistence of carbon in the African forest understory. Nat. Plants 2019, 5, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.L.; Sonké, B.; Sunderland, T.; Begne, S.K.; Lopez-Gonzalez, G.; van der Heijden, G.M.F.; Phillips, O.L.; Affum-Baffoe, K.; Baker, T.R.; Banin, L.; et al. Above-ground biomass and structure of 260 African tropical forests. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Gonzalez, G.; Lewis, S.L.; Burkitt, M.; Phillips, O.L. ForestPlots.net: A web application and research tool to manage and analyse tropical forest plot data. J. Veg. Sci. 2011, 22, 610–613. [Google Scholar] [CrossRef]
- Muscarella, R.; Emilio, T.; Phillips, O.L.; Lewis, S.L.; Slik, F.; Baker, W.J.; Couvreur, T.L.; Eiserhardt, W.L.; Svenning, J.C.; Affum-Baffoe, K.; et al. The global abundance of tree palms. Glob. Ecol. Biogeogr. 2020, 29, 1495–1514. [Google Scholar] [CrossRef]
- Morcote-Rios, G.; Bernal, R. Remains of palms (Palmae) at archaeological sites in the New World: A review. Bot. Rev. 2001, 67, 309–350. [Google Scholar] [CrossRef]
- Tomlinson, P.B. The Structural Biology of Palms; Clarendon Press: Oxford, UK, 1990. [Google Scholar]
Subfamilies | Tribes | Genera |
---|---|---|
I. Calamoideae (21) | ||
Eugeissoneae (1) | Eugeissona | |
Lepidocaryae (7) | Oncocalamus, Eremospatha, Laccosperma, Raphia | |
Calameae (13) | Calamus, Retispatha, Ceratolobus | |
II. Nypoideae (1) | Nypha | |
III. Coryphoideae (46) | ||
Sabaleae (1) | Sabal | |
Cryosophileae (10) | Coccothrinax, Hemithrinax, Leucothrinax, Thrinax | |
Phoeniceae (1) | Phoenix | |
Trachycarpeae (18) | Chamaerops, Guihaia, Trachycarpus, Rhapis | |
Chuniophoeniceae (4) | Livistona, Licuala, Johannesteijsmannia | |
Caryoteae (3) | Caryota, Arenga, Wallichia | |
Corypheae (1) | Corypha | |
Borasseae (8) | Bismarckia, Lodoicea, Borassodendron, Borassus | |
IV. Ceroxyloideae (8) | ||
Cyclospatheae (1) | Pseudophoenix | |
Ceroxyleae (4) | Ceroxylon, Juania, Oraniopsis, Ravenea | |
Phytelepheae (3) | Ammandra, Aphandra, Phytelephas | |
V. Arecoideae (106) | ||
Iriarteeae (5) | Iriartea | |
Chamaedoreae (5) | Chamaedorea | |
Podococceae (1) | Podococcus | |
Oranieae (1) | Orania | |
Sclerospermeae (1) | Sclerosperma | |
Roystoneeae (1) | Roystonea | |
Reinhardtieae (1) | Reinhardtia | |
Cocoseae (18) | Cocos, Jubaea, Bactris, Elaeis | |
Manicarieae (1) | Manicaria | |
Euterpeae (5) | Hyospathe, Euterpe | |
Geonomateae (6) | Asterogyne, Geonoma | |
Leopoldiniaeae (1) | Leopoldinia | |
Pelagodoxeae (2) | Pelagodoxa, Sommieria | |
Areceae (58) | Archontophoenix, Areca, Basselinia, Carpoxylon, Clinosperma, Dypsis, Linospadix, Oncosperma, Ptychosperma, Rhopalostylis, Verschaffeltia, |
Name | Meaning |
---|---|
Actinorhytis | Radiate wrinkled (seed) |
Astrocaryum | Star-like pattern of fibers around endocarp pores |
Attalea amygdalina | Almond-shaped fruits |
Barcella | Little boat-shaped (seed) |
Calamus pycnocarpus | Thick fruit |
Carpoxylon | Thick, woody fruit |
Ceratolobus | Lobate horn-shaped fruit |
Chelyocarpus | Turtle carapace-shaped fruit |
Clinosperma, Clinospermatinae | Bent seeds (asymmetric) |
Cyphosperma | Gibbous seeds |
Chrysalidocarpus, Chrysalidosperma | Chrysalid-like fruit (seed) |
Daemonorops oxycarpa | Sharp, pointed (fruit) |
Dictyocaryum | Net of branches in the fruit |
Dictyosperma | Net of branches in the seed |
Eremospatha macrocarpa | Large fruit |
Kentiopsis oliviformis | Olive shaped |
Kentiopsis pyriformis | Pear shaped |
Laccosperma | Seed with a hole or pit |
Lepidocaryum | Fruit with scales |
Lithocarpos cocciformis | Fruit hard and round |
Lytocarium | Loose fruit |
Nephrosperma | Kidney-shaped seeds |
Oncosperma, Oncospermatinae | Humped or swollen seed |
Pholidocarpus | Fruit with scales |
Podococcus Podococceae | Foot shaped fruit |
Ptychococcus Ptychosperma, Ptychospermatinae | Folding or doubled seed surface |
Geometric Figure | Representative Examples |
---|---|
Circle (42 examples) | Acoelorrhaphe wrightii [41], Acrocomia aculeata, Brahea armata, B. edulis, Butia capitata, Ceroxylon parvum, Chelyocarpus chuco, Coccothrinax argentata, Copernicia alba [42], C. baileyana, C. macroglossa, Corypha macropoda, C. umbraculifera, Cryosophila stauracantha, Dictyocaryum lamarckianum, Dypsis decipiens, Geonoma congesta, Guihaia argyrata, Hemithrinax ekmaniana, Hydriastele microcarpa, Iriartea deltoideia, Johannesteijsmannia altifrons, Licuala grandis, L. parviflora, L. orbicularis, Livistona chinensis [43], Livistona jenkinsiana, Metroxylon warburgii, Normanbya normanbyi, Oncosperma horridum, Orania palindan, Pelagodoxa henriana, Prestoea acuminata, P. pubens, Pritchardia pacifica, Rhapis multifida, Sabal mexicana, S. minor, S. uresana, Thrinax excelsa, T.radiata, Wedlandiella sp. |
Ellipse (15 examples) | Adonidia merrillii, Attalea butyracea, Bactris cruegeriana, B. gassipaes, Bismarckia nobilis, Calyptrogyne ghiesbreghtiana, Iriartella sp., Mauritiella aculeata, Nephrosperma vanhoutteanum, Nanorhops ritchiana, Roystonea regia, Socratea exorrhiza, S. salazarii, Washingtonia filifera, W. robusta. |
Oval (34 examples) | Actinorhytis calapparia, Archontophoenix alexandrae, Adonidia merrellii, Astrocaryum standleyanum, Attalea blepharophus, A. cohune, A. martiana, A. speciosa, Beccariophoenix fenestralis, Brahea armata, Brahea moorei, Calyptronoma occidentalis, Carpoxylon macrospermum, Chamaerops humilis, Corypha utan, Cyrtostachys renda, Desmoncus sp., Dypsis bejofo, D. marojejyi, Iriartella sp., Kerriodoxa elegans, Medemia argun, Nannorrhops ritchiana, Oenocarpus sp. [44], Pholidostachys dactiloides, P. occidentalis, P. pulchra, P. synanthera, Retispatha dumetosa, Rhapidophyllum histrix, Serenoa repens, Voanioala gherardii, Wallichia disticha, Washingtonia robusta. |
Superellipse (5 examples) | Cyphophoenix elegans, P. canariensis, Ph. roebelenii, Raphia taedigera, Welfia regia. |
Squared circle (4 examples) | Johannesteijsmannia altifrons, Clinosperma macrocarpa, Mauritia flexuosa [45], Ravenea rivularis |
Half lemniscate (10 examples) | Aphandra natalia, Astrocaryum alatum, A. urostachys, Attalea dubia, Beccariophoenix fenestralis, Brahea moorei, Latania loddigesii, Pholidostachys panamensis, Phytelephas macrocarpa, Veitchia sp. |
Lens (3 examples) | Asterogyne martiana, Butia sp., Carpentaria acuminata |
Water drop (1 example) | Syagrus romanzoffiana |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez del Pozo, D.; Martín-Gómez, J.J.; Tocino, Á.; Cervantes, E. Seed Geometry in the Arecaceae. Horticulturae 2020, 6, 64. https://doi.org/10.3390/horticulturae6040064
Gutiérrez del Pozo D, Martín-Gómez JJ, Tocino Á, Cervantes E. Seed Geometry in the Arecaceae. Horticulturae. 2020; 6(4):64. https://doi.org/10.3390/horticulturae6040064
Chicago/Turabian StyleGutiérrez del Pozo, Diego, José Javier Martín-Gómez, Ángel Tocino, and Emilio Cervantes. 2020. "Seed Geometry in the Arecaceae" Horticulturae 6, no. 4: 64. https://doi.org/10.3390/horticulturae6040064
APA StyleGutiérrez del Pozo, D., Martín-Gómez, J. J., Tocino, Á., & Cervantes, E. (2020). Seed Geometry in the Arecaceae. Horticulturae, 6(4), 64. https://doi.org/10.3390/horticulturae6040064