The Effect of Leaching Fraction-Based Irrigation on Fertilizer Longevity and Leachate Nutrient Content in a Greenhouse Environment
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. LF and Leachate Nutrient Content
3.2. LF and Fertilizer Longevity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Biernbaum, J.A. Root-zone management of greenhouse container-grown crops to control water and fertilizer. Hortic. Tech. 1992, 2, 127–132. [Google Scholar] [CrossRef]
- Howarth, R.W. Nutrient limitation of net primary production in marine ecosystems. Ann. Rev. Ecol. 1988, 19, 89–110. [Google Scholar] [CrossRef]
- Kabashima, J.N. Innovative irrigation techniques in nursery production to reduce water usage. Hortic. Sci. 1993, 28, 291–293. [Google Scholar] [CrossRef] [Green Version]
- Adams, C.; Frantz, J.; Bugbee, B. Macro-and micronutrient-release characteristics of three polymer-coated fertilizers: Theory and measurements. J. Plant Nutr. Soil Sci. 2013, 176, 76–88. [Google Scholar] [CrossRef]
- Kochba, M.; Gambash, S.; Avnimelech, Y. Studies on slow release fertilizers: 1. Effects of temperature, soil moisture, and water vapor pressure. Soil Sci. 1990, 149, 339–343. [Google Scholar] [CrossRef]
- Rathier, T.M.; Frink, C.R. Nitrate in runoff water from container grown juniper and Alberta spruce under different irrigation and N fertilization. J. Environ. Hortic. 1989, 7, 32–35. [Google Scholar]
- Bayer, A.; Ruter, J.; van Iersel, M.W. Optimizing irrigation and fertilization of Gardenia jasminoides for good growth and minimal leaching. Hortic. Sci. 2015, 50, 994–1001. [Google Scholar] [CrossRef] [Green Version]
- Million, J.B.; Yeager, T.H. Periodic versus real-time adjustment of a leaching fraction-based container-grown plants. Hortic. Sci. 2020, 55, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Chappell, M.; Dove, S.K.; van Iersel, M.W.; Thomas, P.A.; Ruter, J. Implementation of wireless sensor networks for irrigation control in three container nurseries. Hortic. Tech. 2013, 23, 747–753. [Google Scholar] [CrossRef] [Green Version]
- Stanley, J. Using leaching fractions to maximize irrigation efficiency©. Proc. Int. Plant Propag. Soc. 2012, 62, 331–334. [Google Scholar] [CrossRef]
- Owen, J.S., Jr.; Warren, S.L.; Bilderback, T.E.; Albano, J.P. Phosphorus rate, leaching fraction, and substrate influence on influent quantity, effluent nutrient content, and response of a containerized woody ornamental crop. Hortic. Sci. 2008, 43, 906–912. [Google Scholar] [CrossRef] [Green Version]
- Tyler, H.H.; Warren, S.L.; Bilderback, T.E. Reduced leaching fractions improve irrigation use efficiency and nutrient efficacy. J. Environ. Hortic. 1996, 14, 199–204. [Google Scholar]
- Prehn, A.E.; Owen, J.S., Jr.; Warren, S.L.; Bilderback, T.E.; Albano, J.P. Comparison of water management in container-grown nursery crops using leaching fraction or weight-based on demand irrigation control. J. Environ. Hortic. 2010, 28, 117–123. [Google Scholar]
- Du, C.W.; Zhou, J.M.; Shaviv, A. Release characteristics of nutrients from polymer-coated compound controlled release fertilizers. J. Polym. Environ. 2006, 14, 223–230. [Google Scholar] [CrossRef]
- Owens, J.S., Jr.; LeBude, A.V.; Chappell, M.; Hoskins, T. Advanced Irrigation Management for Container-Grown Ornamental Crop Production. Available online: http://digitalpubs.ext.vt.edu/vcedigitalpubs/3312473486515986/MobilePagedReplica.action?pm=2&folio=1#pg1 (accessed on 10 August 2018).
Nitrogen | LF | Leached from Pot (mg) | Left in Pot (mg) | ||
---|---|---|---|---|---|
0.05 | 102 | c z | 583 | a | |
0.15 | 135 | bc | 547 | ab | |
0.25 | 153 | bc | 534 | ab | |
0.35 | 213 | ab | 472 | bc | |
0.45 | 205 | ab | 476 | bc | |
0.55 | 270 | a | 422 | c | |
Significance y | L *** | Q *** | |||
Phosphorus | |||||
0.05 | 12 | b | 89 | a | |
0.15 | 16 | b | 84 | ab | |
0.25 | 18 | b | 82 | ab | |
0.35 | 27 | ab | 73 | bc | |
0.45 | 23 | b | 76 | ab | |
0.55 | 39 | a | 61 | c | |
Significance | L *** | Q *** | |||
Potassium | |||||
0.05 | 193 | d | 386 | a | |
0.15 | 215 | d | 375 | a | |
0.25 | 241 | cd | 353 | ab | |
0.35 | 305 | bc | 284 | bc | |
0.45 | 347 | b | 240 | c | |
0.55 | 460 | a | 136 | d | |
Significance | Q *** | Q *** |
Leached from Pot (mg) | ||||||||||||
LF | 0.05 | 0.15 | 0.25 | 0.35 | 0.45 | 0.55 | ||||||
Calcium | 92.3 | d z | 120.7 | d | 135.3 | cd | 179.0 | cd | 189.8 | b | 260.5 | a |
Magnesium | 43.8 | d | 55.1 | d | 61.8 | cd | 79.8 | bc | 85.6 | b | 117.4 | a |
SO4-Sulfur | 66.0 | c | 79.2 | c | 88.9 | cd | 119.5 | b | 127.4 | b | 188.1 | a |
Iron | 0.5 | bc | 0.4 | c | 0.7 | bc | 1.0 | b | 0.9 | b | 1.5 | a |
Manganese | 0.1 | b | 0.1 | b | 0.2 | b | 0.2 | b | 0.2 | b | 0.4 | a |
Boron | 0.0 | ab | 0.0 | b | 0.0 | b | 0.0 | a | 0.0 | ab | 0.0 | a |
Copper | 0.1 | bc | 0.1 | c | 0.2 | bc | 0.3 | ab | 0.2 | bc | 0.4 | a |
Zinc | 1.1 | bc | 0.9 | c | 1.2 | bc | 1.8 | ab | 1.8 | ab | 2.3 | ab |
Molybdenum | 0.0 | ab | 0.0 | a | 0.0 | a | 0.0 | a | 0.0 | a | 0.0 | a |
Sodium | 18.2 | e | 22.3 | de | 25.8 | d | 35.6 | c | 44.8 | b | 66.7 | a |
Aluminum | 0.1 | d | 0.1 | d | 0.2 | cd | 0.2 | cd | 0.2 | ab | 0.2 | ab |
Silicon | 5.7 | c | 6.7 | c | 7.6 | bc | 9.7 | b | 12.9 | a | 14.7 | a |
Left in Pot (mg) | ||||||||||||
LF | 0.05 | 0.15 | 0.25 | 0.35 | 0.45 | 0.55 | ||||||
Calcium | −92.3 y | a | −120.7 | a | −136.3 | ab | −179.9 | bc | −190.4 | c | −260.1 | d |
Magnesium | −58.9 | a | −70.5 | a | −80.0 | ab | −98.1 | bc | −104.6 | b | −134.6 | a |
SO4-Sulfur | 109.8 | a | 95.7 | a | 78.7 | ab | 47.9 | bc | 37.2 | c | −16.2 | d |
Iron | 6.9 | a | 6.9 | a | 6.6 | ab | 6.3 | b | 6.4 | b | 5.8 | c |
Manganese | 3.5 | a | 3.4 | ab | 3.2 | bc | 3.2 | cd | 3.2 | c | 2.9 | d |
Boron | 0.0 | ab | 0.0 | a | 0.0 | ab | 0.0 | b | 0.0 | ab | 0.0 | b |
Copper | 3.5 | a | 3.5 | a | 3.4 | a | 3.3 | ab | 3.4 | ab | 3.2 | b |
Zinc | 2.4 | ab | 2.7 | a | 2.3 | ab | 1.8 | bc | 1.7 | bc | 1.3 | c |
Molybdenum | 0.1 | a | 0.1 | a | 0.1 | a | 0.0 | ab | 0.1 | a | 0.1 | a |
Sodium | −6.1 | a | −10.0 | ab | −13.6 | bc | −22.9 | cd | −31.8 | d | −53.5 | e |
Aluminum | 0.0 | ab | −0.1 | ab | −0.1 | bc | −0.2 | cd | −0.2 | d | −0.3 | e |
Silicon | −5.7 | a | −6.7 | a | −7.6 | ab | −9.7 | b | −12.9 | c | −14.7 | c |
Target LF | |||||||
---|---|---|---|---|---|---|---|
Weeks | 0.05 | 0.15 | 0.25 | 0.35 | 0.45 | 0.55 | Significancex |
1 | 582.6 | 370.1 | 437.1 | 507.9 | 337.1 | 480.3 | ns |
2 | 619.0 | 667.0 | 634.1 | 583.0 | 608.5 | 516.0 | ns |
3 | 669.3 | 780.8 | 668.3 | 736.0 | 618.1 | 669.8 | ns |
4 | 757.2 | 991.9 | 936.7 | 1000.8 | 906.0 | 1053.6 | ns |
5 | 1505.6 | 1438.3 | 1331.4 | 1269.0 | 926.7 | 939.6 | L ** |
6 | 1481.0 | 1519.0 | 1562.3 | 1048.0 | 905.0 | 792.3 | L *** |
7 | 1333.3 | 1602.3 | 1415.5 | 1334.8 | 938.5 | 739.3 | Q * |
8 | 1648.5 | 1562.0 | 1541.0 | 1544.8 | 1195.5 | 1093.8 | L *** |
9 | 2023.0 | 1806.8 | 1698.3 | 1460.0 | 1247.3 | 1037.0 | L *** |
10 | 2084.0 | 1823.3 | 1822.8 | 1642.5 | 1277.5 | 917.5 | Q * |
Significance | L *** | Q * | L *** | L *** | L *** | Q * |
Target LF | |||||||
---|---|---|---|---|---|---|---|
Weeks | 0.05 | 0.15 | 0.25 | 0.35 | 0.45 | 0.55 | Significance z |
1 | 6.55 | 6.82 | 6.66 | 6.62 | 6.70 | 6.47 | Q * |
2 | 6.87 | 6.97 | 6.94 | 6.90 | 6.90 | 6.94 | ns |
3 | 6.70 | 6.82 | 6.80 | 6.69 | 6.80 | 6.77 | ns |
4 | 6.72 | 6.77 | 6.76 | 6.66 | 6.71 | 6.55 | ns |
5 | 6.39 | 6.41 | 6.42 | 6.36 | 6.55 | 6.47 | ns |
6 | 6.21 | 5.85 | 5.80 | 5.97 | 6.08 | 6.17 | Q *** |
7 | 5.71 | 5.67 | 5.68 | 5.73 | 5.88 | 6.06 | Q * |
8 | 6.31 | 5.90 | 5.83 | 5.81 | 5.98 | 6.06 | Q *** |
9 | 5.68 | 5.40 | 5.39 | 5.35 | 5.67 | 5.82 | Q *** |
10 | 5.70 | 5.41 | 5.30 | 5.33 | 5.51 | 5.73 | Q *** |
Significance | L *** | L *** | L *** | L *** | L *** | L *** |
LF | pH | EC (µS/cm) z | ||
---|---|---|---|---|
0.05 | 6.0 | b z | 805.0 | a |
0.15 | 6.3 | ab | 715.0 | ab |
0.25 | 6.4 | a | 620.0 | b |
0.35 | 6.4 | a | 645.0 | b |
0.45 | 6.4 | a | 652.5 | b |
0.55 | 6.4 | ab | 622.5 | b |
Sign. x | Q ** | Q ** |
Nitrogen | LF | Fertilizer Loss (mg) z | Remaining in Fertilizer (mg) | ||
0.05 | 685.2 | ns y | 119.2 | ns | |
0.15 | 682.1 | 122.3 | |||
0.25 | 687.5 | 116.9 | |||
0.35 | 684.5 | 119.9 | |||
0.45 | 681.7 | 122.7 | |||
0.55 | 691.6 | 112.8 | |||
Phosphorus | |||||
0.05 | 101.8 | ns | 31.2 | ns | |
0.15 | 99.9 | 33.1 | |||
0.25 | 100.5 | 32.5 | |||
0.35 | 99.9 | 33.1 | |||
0.45 | 99.7 | 33.3 | |||
0.55 | 100.8 | 32.2 | |||
Potassium | |||||
0.05 | 578.6 | ns | 170.4 | ns | |
0.15 | 590.8 | 158.2 | |||
0.25 | 593.8 | 155.2 | |||
0.35 | 589.1 | 159.9 | |||
0.45 | 586.3 | 162.7 | |||
0.55 | 595.3 | 153.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krofft, C.E.; Pickens, J.M.; Newby, A.F.; Sibley, J.L.; Fain, G.B. The Effect of Leaching Fraction-Based Irrigation on Fertilizer Longevity and Leachate Nutrient Content in a Greenhouse Environment. Horticulturae 2020, 6, 43. https://doi.org/10.3390/horticulturae6030043
Krofft CE, Pickens JM, Newby AF, Sibley JL, Fain GB. The Effect of Leaching Fraction-Based Irrigation on Fertilizer Longevity and Leachate Nutrient Content in a Greenhouse Environment. Horticulturae. 2020; 6(3):43. https://doi.org/10.3390/horticulturae6030043
Chicago/Turabian StyleKrofft, Claire E., Jeremy M. Pickens, Adam F. Newby, Jeff L. Sibley, and Glenn B. Fain. 2020. "The Effect of Leaching Fraction-Based Irrigation on Fertilizer Longevity and Leachate Nutrient Content in a Greenhouse Environment" Horticulturae 6, no. 3: 43. https://doi.org/10.3390/horticulturae6030043
APA StyleKrofft, C. E., Pickens, J. M., Newby, A. F., Sibley, J. L., & Fain, G. B. (2020). The Effect of Leaching Fraction-Based Irrigation on Fertilizer Longevity and Leachate Nutrient Content in a Greenhouse Environment. Horticulturae, 6(3), 43. https://doi.org/10.3390/horticulturae6030043