Yield and Fruit Properties of Husk Tomato (Physalis phyladelphica) Cultivars Grown in the Open Field in the South of West Siberia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites
2.2. Experimental Setup
2.3. Biomass Collection and Analyses
2.4. Soil Sampling and Analyses
2.5. Statistical Analysis
3. Results
Husk Tomato Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ozaslan, C.; Farooq, S.; Onen, H.; Bukun, B.; Ozcan, S.; Gunal, H. Invasion Potential of Two Tropical Physalis Species in Arid and Semi-Arid Climates: Effect of Water-Salinity Stress and Soil Types on Growth and Fecundity. PLoS ONE 2016, 11, e0164369. [Google Scholar] [CrossRef]
- Caceres, A.; Alvarez, A.V.; Ovando, A.E.; Samayoa, B.E. Plants used in Guatemala for the treatment of respiratory diseases. 1. Screening of 68 plants against gram-positive bacteria. J. Ethnopharmacol. 1991, 31, 193–208. [Google Scholar] [CrossRef]
- Ankli, A.; Heinrich, M.; Bork, P.; Wolfram, L.; Bauerfeind, P.; Brun, R.; Schmid, C.; Weiss, C.; Bruggisser, R.; Gertsch, J.; et al. Yucatec Mayan medicinal plants: Evaluation based on indigenous uses. J. Ethnopharmacol. 2002, 79, 43–52. [Google Scholar] [CrossRef]
- Su, B.-N.; Misico, R.; Park, E.J.; Santarsiero, B.D.; Mesecar, A.D.; Fonga, H.H.S.; Pezzutoa, J.M.; Kinghorn, A.D. Isolation and characterization of bioactive principles of the leaves and stems of Physalis philadelphica. Tetrahedron 2002, 58, 3453–3466. [Google Scholar] [CrossRef]
- Lal, S.; Singh, D.B.; Sharma, O.C.; Rather, S.A.; Qureshi, I. Assessment of genetic variability among antioxidant constituents in Husk tomato (Physalis ixocarpa Brot.) selections grown in temperate region. J. Pharmacogn. Phytochem. 2017, 6, 1188–1193. [Google Scholar]
- Bernal, C.A.; Castellanos, L.; Aragón, D.M.; Martínez-Matamoros, D.; Jiménez, C.; Baena, Y.; Ramos, F.A. Peruvioses A to F, sucrose esters from the exudate of Physalis peruviana fruit as α-amylase inhibitors. Carbohydr Res. 2018, 461, 4–10. [Google Scholar] [CrossRef]
- Zhang, C.R.; Khan, W.; Bakht, J.; Nair, M.G. New antiinflammatory sucrose esters in the natural sticky coating of tomatillo (Physalis philadelphica), an important culinary fruit. Food Chem. 2016, 196, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.K.; Murillo, G.; Su, B.N.; Pezzuto, J.M.; Kinghorn, A.D.; Mehta, R.G. Ixocarpalactone A isolated from the Mexican tomatillo shows potent antiproliferative and apoptotic activity in colon cancer cells. FEBS J. 2006, 273, 5714–5723. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.M.; Wijeratne, E.M.K.; Brooks, A.D.; Tewary, P.; Xuan, L.J.; Wang, W.Q.; Sayers, T.J.; Gunatilaka, A.A.L. Cytotoxic and other withanolides from aeroponically grown Physalis philadelphica. Phytochemistry 2018, 152, 174–181. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.; He, C. Transcriptome-wide mining of the differentially expressed transcripts for natural variation of floral organ size in Physalis philadelphica. J. Exp. Bot. 2012, 63, 6457–6465. [Google Scholar] [CrossRef] [Green Version]
- Morales-Contreras, B.E.; Rosas-Flores, W.; Contreras-Esquivel, J.C.; Wicker, L.; Morales-Castro, J. Pectin from Husk Tomato (Physalis ixocarpa Brot.): Rheological behavior at different extraction conditions. Carbohydr. Polym. 2018, 179, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Alpatiev, A.V.; Gruner, V.S. Mexican Physalis, Its Production and Use in Confectionary Industry, 1st ed.; Pishepromizdat: Moscow, Russia, 1947; pp. 1–64. (In Russian) [Google Scholar]
- Makarov, P.N. Prospects of practical use for Physalis genus. North Reg. Sci. Educ. Cult. 2008, 2, 41–47. (In Russian) [Google Scholar]
- Mamedov, M.I.; Engalichev, M.P. Husk tomato (Physalis spp): Fruit, vegetable or medicine. Pharmacological and agronomic properties. Plant Breed. Seed Prod. 2015, 46, 380–393. (In Russian) [Google Scholar]
- Tridge Company. Available online: https://www.tridge.com/intelligences/tomatillos/production (accessed on 12 January 2019).
- Shulgina, T.M.; Genina, E.Y.; Gordov, E.P. Dynamics of climatic characteristics influencing vegetation in Siberia. Environ. Res. Let. 2011, 6, 045210. [Google Scholar] [CrossRef] [Green Version]
- IUSS Working Group. WRB, World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2014. [Google Scholar]
- Sapei, L.; Hwa, L. Study on the Kinetics of Vitamin C Degradation in Fresh Strawberry Juices. Procedia Chem. 2014, 9, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Li, Y.; Wang, Y. Optimizing the weight loss-on-ignition methodology to quantify organic and carbonate carbon of sediments from diverse sources. Environ. Monit. Assess. 2011, 174, 241–257. [Google Scholar] [CrossRef]
- Maynard, D.G.; Kalra, Y.P.; Crumbaugh, J.A. Nitrate and Exchangeable Ammonium Nitrogen. In Soil Sampling and methods of Analysis, 2nd ed.; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 71–80. [Google Scholar]
- Schoenau, J.J.; O’Halloran, I.P. Sodium Bicarbonate-Extractable Phosphorus. In Soil Sampling and Methods of Analysis, 2nd ed.; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 89–94. [Google Scholar]
- Hendershot, W.H.; Lalande, H.; Duquette, M. Soil Reaction and Exchangeable Acidity. In Soil Sampling and Methods of Analysis, 2nd ed.; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 173–178. [Google Scholar]
- Hendershot, W.H.; Lalande, H.; Duquette, M. Ion exchange and exchangeable cations In Soil Sampling and Methods of Analysis, 2nd ed.; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Boca Raton, USA, FL, 2008; pp. 197–206. [Google Scholar]
- Hammer, O.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Freyre, R.; Loy, J.B. Evaluation and Yield Trials of Tomatillo in New Hampshire. Hort. Technol. 2000, 10, 373–377. [Google Scholar] [CrossRef]
- Diaz-Perez, J.C.; Phatak, S.C.; Giddings, D.; Bertrand, D.; Mills, H.A. Root zone temperature, plant growth, and fruit yield of tomatillo as affected by plastic film mulch. Sci. Hort. 2005, 40, 1312–1319. [Google Scholar] [CrossRef]
- Ramírez-Godina, F.; Robledo-Torres, V.; Foroughbakhch-Pournabav, R.; Benavides-Mendoza, A.; Hernández-Piñero, J.L.; Reyes-Valdes, M.H.; Alvarado-Vázquez, M.A. Yield and fruit quality evaluation in husk tomato autotetraploids (Physalis ixocarpa) and diploids. Aust. J. Crop Sci. 2013, 933, 933–940. [Google Scholar]
- Mamedov, M.I.; Engalychev, M.R. Morphological and reproductive features of Physalis spp. in temperate climate. Veg. Crop. Russ. 2017, 14–17. (In Russian) [Google Scholar] [CrossRef]
- Smith, R.; Jimenez, M.; Cantwell, M. Tomatillo Production in California. University of California, Division of Agriculture and Natural Resources, Vegetable Research and Information Centre Vegetable Production Series 1999, Publication 7246. Available online: http://anrcatalog.ucanr.edu/pdf/7246.pdf (accessed on 1 December 2018).
- Maynard, D.N. Potential for commercial production of tomatillo in Florida. Proc. Fla. State Hort. Soc. 1993, 106, 223–224. [Google Scholar]
- Antoshkina, M.S.; Golubkina, N.A.; Engalychev, M.R.; Kosheleva, O.V. Intercultivar variation of physalis fruits in accumulation of biologically active substances. New Non-Conv. Crop. Use Prospect. 2017, S12, 102–105. (In Russian) [Google Scholar]
- USDA National Nutrient Database for Standard Reference, Release 1, April 2018, Basic Report 11954, Tomatillos, Raw. Available online: http://ndb.nal.usda.gov (accessed on 2 December 2018).
- Curi, P.N.; Carvalho, C.D.S.; Salgado, D.L.; Pio, R.; da Silva, D.F.; Pinheiro, A.C.M.; de Souza, V.R. Characterization of different native american physalis species and evaluation of their processing potential as jelly in combination with brie-type cheese. Food Sci. Technol. Camp. 2018, 38, 112–119. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; The National Academies Press: Washington, DC, USA, 2000. [Google Scholar]
Site 1 | Site 2 | Site 3 | Site 4 | Site 5 | |
---|---|---|---|---|---|
Northern latitude | 55°15′39.71″ | 54°57′55.31″ | 54°58′57.90″ | 54°42′21.10″ | 55°00′46.04″ |
Eastern longitude | 83°31′42.12″ | 83°13′09.92″ | 82°22′43.00″ | 83°16′02.60″ | 82°57′27.58″ |
Temperature sums | |||||
Air | 1403 | 1448 | 1485 | 1458 | 1570 |
Soil, 1-cm depth | 1544 | 1357 | 1403 | 1517 | 1404 |
Soil, 10-cm depth | 1387 | 1325 | 1338 | 1536 | 1381 |
Soil, 20-cm depth | 1458 | 1256 | 1257 | 1587 | 1314 |
Site 1 | Site 2 | Site 3 | Site 4 | Site 5 | |
---|---|---|---|---|---|
рНH2O | 5.77 | 5.91 | 5.96 | 6.01 | 5.65 |
Soil organic carbon, % | 6.7 | 12.3 | 11.4 | 3.2 | 4.0 |
N-NH4, mg/kg | 1.5 | 3.0 | 2.2 | 2.8 | 2.3 |
N-NO3, mg/kg | 11 | 12 | 56 | 12 | 29 |
P, mg/kg | 2.0 | 11.2 | 2.7 | 4.6 | 18.7 |
Na, mg/kg | 150 | 117 | 105 | 16 | 14 |
K, mg/kg | 905 | 342 | 315 | 342 | 362 |
Mg, mg/kg | 519 | 776 | 652 | 101 | 200 |
Ca, g/kg | 4.2 | 6.0 | 5.0 | 2.9 | 1.5 |
Parameter | Plum Jam | Confectioner | P-Value* |
---|---|---|---|
Number of fruit per plant | 79.6 ± 35.0 | 60.5 ± 32.2 | 0.12 |
Fruit yield per plant, g * (F) | 1426 ± 669 | 1502 ± 1190 | 0.83 |
Maximal fruit mass, g ** | 33 ± 10 | 38 ± 19 | 0.36 |
Mean fruit mass, g * | 17 ± 4 | 23 ± 8 | 0.03 |
Aboveground biomass, g * (AG) | 1001 ± 560 | 1139 ± 734 | 0.56 |
Belowground biomass, g * (R) | 86 ± 48 | 76 ± 46 | 0.57 |
Ratio AG/R | 12.0 ± 4.6 | 14.9 ± 3.2 | 0.05 |
Ratio AG/F | 0.8 ± 0.4 | 1.2 ± 0.9 | 0.11 |
Parameters | Plum Jam | Confectioner | P-Value * |
---|---|---|---|
pH | 4.0 ± 0.3 | 4.2 ± 0.4 | 0.10 |
Dry matter, % | 8.7 ± 1.2 | 9.3 ± 1.2 | 0.23 |
Сtot, % ** | 44.9 ± 3.3 | 44.1 ± 2.7 | 0.51 |
Ntot, % ** | 2.2 ± 0.7 | 2.1 ± 0.7 | 0.63 |
C/N (atomic) | 27 ± 8 | 28 ± 9 | 0.79 |
Ascorbic acid, mg/100 g *** | 14.1 ± 6.4 | 13.4 ± 4.5 | 0.76 |
Particulars | Factor | ||
---|---|---|---|
Site (А) | Cultivar (B) | A × B | |
Production properties | |||
Number of fruits | 32 (0.03) | 10 (0.05) | 7 (0.58) |
Fruit yield (F) | 44 (0.00) | 1 (0.87) | 13 (0.19) |
Mean fruit mass | 54 (0.03) | 7 (0.01) | 15 (0.01) |
Aboveground biomass (AG) | 43 (0.00) | 1 (0.63) | 13 (0.19) |
Belowground biomass (R) | 14 (0.32) | 2 (0.42) | 24 (0.10) |
Ratio AG/R | 38 (0.00) | 13 (0.01) | 12 (0.18) |
Ratio AG/F | 44 (0.00) | 17 (0.00) | 28 (0.00) |
Fruit properties | |||
pH | 34 (0.02) | 1 (0.90) | 29 (0.03) |
DM* | 26 (0.08) | 1 (0.85) | 27 (0.08) |
Сtot | 63 (0.00) | 2 (0.24) | 6 (0.49) |
Ntot | 76 (0.00) | 1 (0.99) | 5 (0.44) |
C/N | 73 (0.00) | 1 (0.74) | 4 (0.62) |
AA** | 3 (0.96) | 7 (0.26) | 22 (0.40) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naumova, N.; Nechaeva, T.; Savenkov, O.; Fotev, Y. Yield and Fruit Properties of Husk Tomato (Physalis phyladelphica) Cultivars Grown in the Open Field in the South of West Siberia. Horticulturae 2019, 5, 19. https://doi.org/10.3390/horticulturae5010019
Naumova N, Nechaeva T, Savenkov O, Fotev Y. Yield and Fruit Properties of Husk Tomato (Physalis phyladelphica) Cultivars Grown in the Open Field in the South of West Siberia. Horticulturae. 2019; 5(1):19. https://doi.org/10.3390/horticulturae5010019
Chicago/Turabian StyleNaumova, Natalia, Taisia Nechaeva, Oleg Savenkov, and Yury Fotev. 2019. "Yield and Fruit Properties of Husk Tomato (Physalis phyladelphica) Cultivars Grown in the Open Field in the South of West Siberia" Horticulturae 5, no. 1: 19. https://doi.org/10.3390/horticulturae5010019
APA StyleNaumova, N., Nechaeva, T., Savenkov, O., & Fotev, Y. (2019). Yield and Fruit Properties of Husk Tomato (Physalis phyladelphica) Cultivars Grown in the Open Field in the South of West Siberia. Horticulturae, 5(1), 19. https://doi.org/10.3390/horticulturae5010019