Cold Storage and Biocontrol Agents to Extend the Storage Period of ‘BRS Isis’ Seedless Table Grapes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location
2.2. Fungal Identification and Suspension
2.3. Treatments and Experimental Design
2.4. Analysis Performed
2.4.1. Gray Mold Incidence
2.4.2. Physicochemical Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rosales, R.; Romero, I.; Fernandez-Caballero, C.; Escribano, M.I.; Merodio, C.; Sanchez-Ballesta, M.T. Low Temperature and Short-Term High CO2 treatment in postharvest storage of table grapes at two maturity stages: Effects on Transcriptome Profiling. Front. Plant Sci. 2016, 7, 1020. [Google Scholar] [CrossRef] [PubMed]
- Orak, H.H. Total antioxidant activities, phenolics, anthocyanins, polyphenoloxidase activities of selected red grape cultivars and their correlations. Sci. Hortic. 2007, 111, 235–241. [Google Scholar] [CrossRef]
- Rastija, V.; Srecnik, G.; Saric, M.M. Polyphenolic composition of Croatian wines with different geographical origins. Food Chem. 2009, 115, 54–60. [Google Scholar] [CrossRef]
- Georgiev, V.; Ananga, A.; Tsolova, V. Recent Advances and Uses of Grape Flavonoids as Nutraceuticals. Nutrients 2014, 6, 391–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritschel, P.S.; Maia, J.D.G.; Camargo, U.A.; Souza, R.T.; Fajardo, T.V.M.; Naves, R.L.; Girardi, C.L. BRS Isis: Nova Cultivar de Uva de Mesa Vermelha, sem Sementes e Tolerante ao Míldio; Comunicado Técnico 143; Embrapa: Brasilia, Brazil, 2013; pp. 6–11. [Google Scholar]
- Ahmed, S.; Roberto, S.R.; Colombo, R.C.; Koyama, R.; Shahab, M.; Souza, R.T. Performance of the new seedless grape ‘BRS Isis’ grown in subtropical area. BIO Web Conf. 2017, 9, 1–3. [Google Scholar] [CrossRef]
- Shin, Y.; Ryu, J.A.; Liu, R.H.; Nock, J.F.; Watkins, C.B. Harvest maturity, storage temperature and relative humidity affect fruit quality, antioxidant contents and activity, and inhibition of cell proliferation of strawberry fruit. Postharvest Biol. Technol. 2008, 49, 201–209. [Google Scholar] [CrossRef]
- Genta, W.; Tessmann, D.J.; Roberto, S.R.; Vida, J.B.; Colombo, L.A.; Scapin, C.R.; Ricce, W.S.; Clovis, L.R. Manejo de míldio no cultivo protegido de videira de mesa ‘BRS Clara’. Pesquisa Agropecuária Brasileira 2010, 45, 1388–1395. [Google Scholar] [CrossRef]
- Buffara, C.R.S.; Angelotti, F.; Vieira, F.A.; Bogo, A.; Tessmann, D.J.; Bem, B.P. Elaboration and validation of a diagrammatic scale to assess downy mildew severity in grapevine. Ciência Rural 2014, 44, 1384–1391. [Google Scholar] [CrossRef] [Green Version]
- Youssef, K.; Roberto, S.R.; Chiarotti, F.; Koyama, R.; Hussain, I.; Souza, R.T. Control of Botrytis mold of the new seedless grape ‘BRS Vitoria’ during cold storage. Sci. Hortic. 2015, 193, 316–321. [Google Scholar] [CrossRef]
- Pearson, R.C.; Goheen, A.C. Compendium of Grape Diseases; APS Press: St. Paul, MN, USA, 1988; 96p. [Google Scholar]
- Williamson, B.; Tudzynsk, B.; Tudzynski, P.; van Kan, J.A. Botrytis cinerea: The cause of grey mold disease. Mol. Plant Pathol. 2007, 8, 561–580. [Google Scholar] [CrossRef] [PubMed]
- Feliziani, E.; Smilanick, J.L.; Margosan, D.A.; Mansour, M.F.; Romanazzi, G.; Gu, S.; Gohil, H.L.; Rubio Ames, Z. Preharvest fungicide, potassium sorbate, or chitosan use on quality and storage decay of table grapes. Plant Dis. 2013, 97, 307–314. [Google Scholar] [CrossRef]
- Romanazzi, G.; Feliziani, E. Botrytis cinerea (Gray mold). In Postharvest Decay: Control Strategies; Bautista-Baños, S., Ed.; Elsevier: London, UK, 2014; pp. 131–146. ISBN 9780124115521. [Google Scholar]
- Smilanick, J.L.; Mansour, M.F.; Gabler, F.M.; Margosan, D.A.; Hashim-Buckey, J. Control of postharvest gray mold of table grapes in the San Joaquin Valley of California by fungicides applied during the growing season. Plant Dis. 2010, 94, 250–257. [Google Scholar] [CrossRef]
- Ippolito, A.; Sanzani, S.M. Control of postharvest decay by the integration of pre- and postharvest application of nonchemical compounds. Acta Hortic. 2011, 905, 135–143. [Google Scholar] [CrossRef]
- Youssef, K.; Ligorio, A.; Nigro, F.; Ippolito, A. Activity of salts incorporated in wax in controlling postharvest diseases of citrus fruit. Postharvest Biol. Technol. 2012, 65, 39–43. [Google Scholar] [CrossRef]
- Youssef, K.; Roberto, S.R. Salt strategies to control Botrytis mold of ‘Benitaka’ table grapes and to maintain fruit quality during storage. Postharvest Biol. Technol. 2014, 95, 95–102. [Google Scholar] [CrossRef]
- Youssef, K.; Roberto, S.R. Applications of salt solutions before and after harvest affect the quality and incidence of postharvest gray mold of ‘Italia’ table grapes. Postharvest Biol. Technol. 2014, 87, 95–102. [Google Scholar] [CrossRef]
- Palou, L.; Crisosto, C.H.; Garner, D.; Basinal, L.M.; Smilanick, J.L.; Zoffoli, J.P. Minimum constant sulfur dioxide emission rates to control gray mold of cold stored table grapes. Am. J. Enol. Vitic. 2002, 52, 110–115. [Google Scholar]
- Fernández-Trujillo, J.P.; Obando-Ulloa, J.M.; Baró, R.; Martínez, J.A. Quality of two table grape guard cultivars treated with single or dual-phase release SO2 generators. J. Appl. Bot. Food Qual. 2008, 82, 1–8. [Google Scholar]
- Lichter, A.; Zutahy, Y.; Kaplunov, T.; Lurie, S. Evaluation of table grape storage in boxes with sulfur dioxide-releasing pads with either an internal plastic liner or external wrap. HortTechnology 2008, 18, 206–214. [Google Scholar]
- Zutahy, Y.; Lichter, A.; Kaplunov, T.; Lurie, S. Extended storage of ‘Red Globe’ grapes in modified SO2 generating pads. Postharvest Biol. Technol. 2008, 50, 12–17. [Google Scholar] [CrossRef]
- Furtado, L.M.; Rodrigues, A.A.C.; Araújo, V.S.; Silva, L.L.S.; Catarino, A.M. Utilização de Ecolife® e Acibenzolar-s-metil (ASM) no controle da antracnose da banana em pós-colheita. Summa Phytopathol. 2010, 36, 237–239. [Google Scholar] [CrossRef]
- Zhu, X.; Lin, H.; Si, Z.; Xia, Y.; Chen, W.; Li, X. Benzothiadiazole-Mediated Induced Resistance to Colletotrichum musae and Delayed Ripening of Harvested Banana Fruit. J. Agric. Food Chem. 2016, 64, 1494–1502. [Google Scholar] [CrossRef] [PubMed]
- Mazaro, S.M.; Deschamps, C.; Mio, L.L.M.; Biasi, L.A.; Gouvea, A.; Sautter, C.K. Comportamento pós-colheita de frutos de morangueiro após a aplicação pré-colheita de quitosana e Acibenzolar-s-metil. Rev. Bras. Frutic. 2008, 30, 185–190. [Google Scholar] [CrossRef]
- Romanazzi, G.; Feliziani, E.; Santini, M.; Landi, L. Effectiveness of postharvest treatment with chitosan and other resistance inducers in the control of storage decay of strawberry. Postharvest Biol. Technol. 2013, 75, 24–27. [Google Scholar] [CrossRef]
- Liu, Y.; Geb, Y.; Bia, Y.; Li, C.; Deng, H.; Dong, B. Effect of postharvest acibenzolar-S-methyl dipping on phenylpropanoid pathway metabolism in muskmelon (Cucumis melo L.) fruits. Sci. Hortic. 2014, 168, 113–119. [Google Scholar] [CrossRef]
- Panebianco, S.; Vitale, A.; Platania, C.; Restuccia, C.; Polizzi, G.; Cirvilleri, G. Postharvest efficacy of resistance inducers for the control of green mold on important Sicilian citrus varieties. J. Plant Dis. Prot. 2014, 121, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, E.S.; Viana, F.M.P.; Martins, M.V.V. Alternativas a Fungicidas Sintéticos no Controle da Antracnose da Banana. Summa Phytopathol. 2016, 42, 340–350. [Google Scholar] [CrossRef]
- Ribeiro, J.G.; Serra, I.M.R.S.; Araújo, M.U.P. Uso de produtos naturais no controle de antracnose causado por Colletotrichum gloeosporioides em mamão. Summa Phytopathol. 2016, 42, 160–164. [Google Scholar] [CrossRef]
- Romanazzi, G.; Smilanick, J.L.; Feliziani, E.; Droby, S. Integrated management of postharvest gray mold on fruit crops. Postharvest Biol. Technol. 2016, 113, 69–76. [Google Scholar] [CrossRef]
- Paul, N.C.; Deng, J.X.; Lee, H.B.; Yu, S.-H. Characterization and pathogenicity of Alternaria burnsii from seeds of Cucurbita maxima (Cucurbitaceae) in Bangladesh. Mycology 2015, 43, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Mattiuz, B.; Miguel, A.C.A.; Galati, V.C.; Nachtigal, J.C. Efeito da temperatura no armazenamento de uvas apirênicas minimamente processadas. Rev. Bras. Frutic. 2009, 31, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Carreño, J.; Martínez, A.; Almela, L.; Fernández-López, J.A. Proposal of an index for the objective evaluation of the color of red table grapes. Food Res. Int. 1995, 28, 373–377. [Google Scholar] [CrossRef]
- Roberto, S.R.; Borges, W.F.S.; Colombo, R.C.; Koyama, R.; Hussain, I.; Souza, R.T. Berry-cluster thinning to prevent bunch compactness of ‘BRS Vitoria’, a new black seedless grape. Sci. Hortic. 2015, 197, 297–303. [Google Scholar] [CrossRef]
- Palou, L.; Serrano, M.; Martinez-Romero, D.; Valero, D. New approaches for postharvest quality retention of table grapes. Fresh Prod. 2010, 4, 103–110. [Google Scholar]
- UNECE. Standard FFV-19 Concerning the Marketing and Commercial Quality Control of Table Grapes. 2010. Available online: https://www.unece.org/fileadmin/DAM/trade/agr/standard/fresh/FFV-Std/English/19TableGrapes.pdf (accessed on 22 June 2018).
- Creasy, G.L.; Creasy, L.L. Grapes. Crop Production Science in Horticulture; CABI: Cambridge, MA, USA, 2009; 312p. [Google Scholar]
- Romero, I.; Sanchez-Ballesta, M.T.; Maldonado, R.; Escribano, M.I.; Merodio, C. Expression of a class I chitinase and β-1,3-glucanase genes and postharvest fungal decay control of table grapes by high CO2 pretreatment. Postharvest Biol. Technol. 2006, 41, 9–15. [Google Scholar] [CrossRef]
- Sanchez-Ballesta, M.T.; Jiménez, J.B.; Romero, I.; Orea, J.M.; Maldonado, R.; Ureña, A.G.; Escribano, I.; Merodio, C. Effect of high CO2 pretreatment on quality, fungal decay and molecular regulation of stilbene phytoalexin biosynthesis in stored table grapes. Postharvest Biol. Technol. 2006, 42, 209–216. [Google Scholar] [CrossRef]
- Artés-Hernández, F.; Tomàs-Barberán, F.A.; Artés, F. Modified atmosphere packaging preserves quality of SO2-free ‘Superior seedless’ table grapes. Postharvest Biol. Technol. 2006, 39, 146–154. [Google Scholar] [CrossRef]
- Pinto, J.A.V.; Schorr, M.R.W.; Thewes, F.R.; Ceconi, D.L.; Both, V.; Auri, B.; Diniz, F. Relative humidity during cold storage on Postharvest quality of ‘Niagara Rosada’ table grapes. Ciência Rural 2015, 45, 386–391. [Google Scholar] [CrossRef]
- Coertze, S.; Holz, G. Surface colonization, penetration, and lesion formation on grapes inoculated fresh or after cold storage with single airborne conidia of Botrytis cinerea. Plant Dis. 1999, 83, 917–924. [Google Scholar] [CrossRef]
Treatment | Product | Application Time |
---|---|---|
Control | Distilled water | Postharvest |
Control + Botrytis | Distilled water | Postharvest |
PreH PB + Botrytis | Potassium bicarbonate (PB) at 1% (m/v) | Preharvest (PreH) |
PreH/PostH PB + Botrytis | Potassium bicarbonate (PB) at 1% (m/v) | Pre- and postharvest (PreH/PostH) |
PostH PB + Botrytis | Potassium bicarbonate (PB) at 1% (m/v) | Postharvest (PostH) |
PreH Se + Botrytis | Serenade® (Se) 3 L ha−1 | Preharvest (PreH) |
PreH/PostH Se + Botrytis | Serenade® (Se) 3 L ha−1 | Pre- and postharvest (PreH/PostH) |
PostH Se + Botrytis | Serenade® (Se) 3 L ha−1 | Postharvest (PostH) |
Treatments | BM (kg) | SS (°Brix) | pH | TA (%) | MI (SS/TA) |
---|---|---|---|---|---|
Control | 0.54 ns z | 14.37 ns | 4.34 ns | 0.61 ns | 23.49 ns |
Potassium bicarbonate 1% | 0.50 | 14.69 | 4.34 | 0.60 | 24.75 |
Serenade® 3 L ha−1 | 0.55 | 14.46 | 4.34 | 0.60 | 24.08 |
CV (%) | 8.52 | 2.02 | 0.72 | 6.39 | 6.01 |
Treatments z | Gray Mold (%) | Water Loss (%) | ||
---|---|---|---|---|
50-ACS | 5-ASL | 50-ACS | 5-ASL | |
Control | 2.13 ns y | 1.28 b | 7.64 a | 7.06 ns |
Control + Botrytis | 5.00 | 6.00 a | 8.58 a | 6.98 |
PreH PB + Botrytis | 5.57 | 5.40 a | 4.96 b | 7.16 |
PreH/PostH PB + Botrytis | 10.11 | 9.00 a | 5.27 b | 8.15 |
PostH PB + Botrytis | 7.60 | 7.79 a | 5.28 b | 8.55 |
PreH Se + Botrytis | 4.93 | 5.36 a | 5.00 b | 7.07 |
PreH/PostH Se + Botrytis | 5.00 | 5.11 a | 5.49 b | 7.60 |
PostH Se + Botrytis | 6.11 | 6.59 a | 4.98 b | 7.90 |
CV (%) | 25.68 | 18.05 | 17.27 | 11.10 |
Treatments z | SS (°Brix) | pH | TA (%) | SS/TA | ||||
---|---|---|---|---|---|---|---|---|
50-ACS | 5-ASL | 50-ACS | 5-ASL | 50-ACS | 5-ASL | 50-ACS | 5-ASL | |
Control | 14.30 c y | 14.90 b | 4.54 ns | 4.50 b | 0.62 ns | 0.64 ns | 23.34 ns | 23.38 ns |
Control + Botrytis | 14.10 c | 14.03 b | 4.49 | 4.47 b | 0.64 | 0.68 | 22.22 | 20.66 |
PreH PB + Botrytis | 16.27 a | 16.77 a | 4.50 | 4.73 a | 0.66 | 0.68 | 24.74 | 24.84 |
PreH/PostH PB + Botrytis | 15.83 a | 16.77 a | 4.61 | 4.29 c | 0.64 | 0.65 | 24.93 | 25.74 |
PostH PB + Botrytis | 14.10 c | 15.17 b | 4.51 | 4.46 b | 0.64 | 0.68 | 22.29 | 22.47 |
PreH Se + Botrytis | 15.10 b | 14.77 b | 4.48 | 4.30 c | 0.59 | 0.69 | 25.75 | 21.75 |
PreH/PostH Se + Botrytis | 14.73 b | 15.13 b | 4.48 | 4.31 c | 0.62 | 0.65 | 23.89 | 23.33 |
PostH Se + Botrytis | 14.13 c | 14.43 b | 4.54 | 4.48 b | 0.61 | 0.71 | 23.15 | 20.42 |
CV (%) | 2.70 | 5.05 | 1.14 | 2.70 | 6.47 | 6.01 | 8.34 | 9.20 |
Treatments z | L* | C* | h° | CIRG | ||||
---|---|---|---|---|---|---|---|---|
50-ACS | 5-ASL | 50-ACS | 5-ASL | 50-ACS | 5-ASL | 50-ACS | 5-ASL | |
Control | 22.8 ns y | 23.9 ab | 4.8 ns | 23.9 ab | 57.0 ns | 55.9 ns | 4.5 ns | 4.3 ns |
Control + Botrytis | 23.6 | 24.7 a | 5.4 | 24.7 a | 61.7 | 61.4 | 4.1 | 3.9 |
PreH PB + Botrytis | 22.5 | 22.5 ab | 5.2 | 22.5 ab | 51.0 | 49.3 | 4.6 | 4.9 |
PreH/PostH PB + Botrytis | 22.6 | 21.9 b | 4.9 | 21.9 b | 74.8 | 51.0 | 3.8 | 4.8 |
PostH PB + Botrytis | 23.5 | 23.4 ab | 5.5 | 23.4 ab | 61.6 | 61.5 | 4.1 | 4.2 |
PreH Se + Botrytis | 22.5 | 22.0 b | 4.4 | 22.0 b | 54.8 | 59.9 | 4.7 | 4.6 |
PreH/PostH Se + Botrytis | 22.5 | 22.0 b | 5.3 | 22.0 b | 59.7 | 64.1 | 4.3 | 4.5 |
PostH Se + Botrytis | 23.3 | 23.7 ab | 5.7 | 23.7 ab | 57.5 | 65.7 | 4.2 | 4.0 |
CV (%) | 3.1 | 4.0 | 15.4 | 4.0 | 12.4 | 11.8 | 8.0 | 9.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colombo, R.C.; Carvalho, D.U.; Da Cruz, M.A.; Sumida, C.H.; Ahmed, S.; Bassoli, P.A.; De Souza, R.T.; Roberto, S.R. Cold Storage and Biocontrol Agents to Extend the Storage Period of ‘BRS Isis’ Seedless Table Grapes. Horticulturae 2018, 4, 18. https://doi.org/10.3390/horticulturae4030018
Colombo RC, Carvalho DU, Da Cruz MA, Sumida CH, Ahmed S, Bassoli PA, De Souza RT, Roberto SR. Cold Storage and Biocontrol Agents to Extend the Storage Period of ‘BRS Isis’ Seedless Table Grapes. Horticulturae. 2018; 4(3):18. https://doi.org/10.3390/horticulturae4030018
Chicago/Turabian StyleColombo, Ronan Carlos, Deived Uilian Carvalho, Maria Aparecida Da Cruz, Ciro Hideki Sumida, Saeed Ahmed, Paulo Augusto Bassoli, Reginaldo Teodoro De Souza, and Sergio Ruffo Roberto. 2018. "Cold Storage and Biocontrol Agents to Extend the Storage Period of ‘BRS Isis’ Seedless Table Grapes" Horticulturae 4, no. 3: 18. https://doi.org/10.3390/horticulturae4030018
APA StyleColombo, R. C., Carvalho, D. U., Da Cruz, M. A., Sumida, C. H., Ahmed, S., Bassoli, P. A., De Souza, R. T., & Roberto, S. R. (2018). Cold Storage and Biocontrol Agents to Extend the Storage Period of ‘BRS Isis’ Seedless Table Grapes. Horticulturae, 4(3), 18. https://doi.org/10.3390/horticulturae4030018