The Application of Mycorrhizal Fungi and Organic Fertilisers in Horticultural Potting Soils to Improve Water Use Efficiency of Crops
Abstract
:1. Introduction
2. Experimental Section
Site Characteristics and Experimental Setup
3. Results and Discussion
3.1. Inoculation Success
3.2. Dry Matter
3.3. Water Use Efficiency
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jeffries, P.; Gianinazzi, S.; Perotto, S.; Turnau, K.; Barea, J.M. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol. Fertil. Soils 2003, 37, 1–16. [Google Scholar]
- Bunemann, E.K.; Schwenke, G.D.; Van Zwieten, L. Impact of agricultural inputs on soil organism—A review. Aust. J. Soil Res. 2006, 44, 379–406. [Google Scholar] [CrossRef]
- Vosátka, M.; Albrechtová, J. Microbial strategies for crop improvement. In Benefits of Arbuscular Mycorrhizal Fungi to Sustainable Crop Production; Khan, M.S., Zaidi, A., Musarrat, J., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 205–225. [Google Scholar]
- Gianinazzi, S.; Gollotte, A.; Binet, M.N.; van Tuinen, D.; Redecker, D.; Wipf, D. Agroecology: The key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 2010, 20, 519–530. [Google Scholar] [CrossRef] [PubMed]
- El Husseini, M.M.; Bochow, H.; Junge, H. The biofertilising effect of seed dressing with PGPR Bacillus amyloliquefaciens FZB 42 combined with two levels of mineral fertilising in African cotton production. Arch. Phytopathol. Plant Prot. 2012, 45, 2261–2271. [Google Scholar] [CrossRef]
- Chowdhury, S.P.; Dietel, K.; Rändler, M.; Schmid, M.; Junge, H.; Borriss, R.; Hartmann, A.; Grosch, R. Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community. PLoS ONE 2013. [Google Scholar] [CrossRef] [PubMed]
- Brock, A.K.; Berger, B.; Mewis, I.; Ruppel, S. Impact of the PGPB Enterobacter radicincitans DSM 16656 on growth, glucosinolate profile, and immune responses of Arabidopsis thaliana. Microb. Ecol. 2013, 65, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, S.M.; Ahmad, M.; Zahir, Z.A.; Javaid, A.; Ashraf, M. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 2014, 32, 429–448. [Google Scholar] [CrossRef] [PubMed]
- Auge, R.M. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 2001, 11, 3–42. [Google Scholar] [CrossRef]
- Ruiz-Lozano, J.M. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 2003, 13, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Boomsma, C.R.; Vyn, T.J. Maize drought tolerance: Potential improvements through arbuscular mycorrhizal symbiosis? Field Crops Res. 2008, 108, 14–31. [Google Scholar] [CrossRef]
- Tauschke, M.; Behrendt, A.; Monk, J.; Lentzsch, P.; Eulenstein, F.; Monk, S. Improving the water use efficiency of crop plants by application of mycorrhizal fungi. In Moving Farm Systems to Improved Nutrient Attenuation; Currie, L., Burkitt, K.L., Eds.; Fertilizer and Lime Research Centre, Massey University: Palmerston North, New Zealand, 2015; pp. 1–8. [Google Scholar]
- Sylvia, D.E.; Hammond, L.C.; Bennet, J.M.; Hass, J.H.; Linda, S.B. Field response of maize to a VAM fungus and water management. Agron. J. 1993, 85, 193–198. [Google Scholar] [CrossRef]
- Subramanian, K.S.; Charest, C. Influence of arbuscular mycorrhizae on the metabolism of maize under drought stress. Mycorrhiza 1995, 5, 273–278. [Google Scholar] [CrossRef]
- Bryla, D.R.; Eissenstat, D.M. Respiratory costs of mycorrhizal associations. In Plant Respiration: From Cell to Ecosystem. Advances in Photosynthesis and Respiration; Lambers, H., Ribas-Carbo, M., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 207–224. [Google Scholar]
- Bethlenfalvay, G.J.; Schuepp, H. Arbuscular mycorrhizas and agroecosystem stability. In Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems; Gianinazzi, S., Schuepp, H., Eds.; Birkhäuser Verlag: Basel, Switzerland, 1994; pp. 117–131. [Google Scholar]
- Azcon, R.; Tobar, R.M. Activity of nitrate reductase and glutamine synthetase in shoot and root of mycorrhizal Allium cepa. Effects of drought stress. Plant Sci. 1998, 133, 1–8. [Google Scholar] [CrossRef]
- Tobar, R.M.; Azcon, R.; Barea, J.M. Improved nitrogen uptake and transport from 15N- labeled nitrate by external hyphae of arbuscular mycorrhizae under water-stressed conditions. New Phytol. 1994, 126, 119–122. [Google Scholar] [CrossRef]
- Tobar, R.M.; Azcon, R.; Barea, J.M. The improvement of plant N acquisition from an ammonium-treated, drought-stressed soil by the fungal symbiont in arbuscular mycorrhizae. Mycorrhiza 1994, 4, 105–108. [Google Scholar] [CrossRef]
- Azcon, R.; Gomez, M.; Tobar, R. Physiological and nutritional responses by Lactuca sativa L. to nitrogen sources and mycorrhizal fungi under drought conditions. Biol. Fertil. Soils 1996, 22, 156–161. [Google Scholar] [CrossRef]
- Ruiz-Lozano, J.M.; Azcon, R. Mycorrhizal colonization and drought stress exposition as factors affecting nitrate reductase activity in lettuce plants. Agric. Ecosyst. Environ. 1996, 60, 175–181. [Google Scholar] [CrossRef]
- Fitter, A.H. Water relations of red clover Trifolium pratense L. as affected by VA mycorrhizal infection and phosphorus supply before and during drought. J. Exp. Bot. 1988, 39, 595–604. [Google Scholar] [CrossRef]
- Subramanian, K.S.; Santhanakrishnan, P.; Balasubramanian, P. Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Sci. Hortic. 2006, 107, 245–253. [Google Scholar] [CrossRef]
- Phillips, I.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970. [Google Scholar] [CrossRef]
- Brundrett, M.; Bougher, N.; Dell, B.; Grove, T.; Malajczuk, N. Working with Mycorrhizas in Forestry and Agriculture; Australian Centre for International Agricultural Research (ACIAR): Canberra, Australia, 1996; p. 374.
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eulenstein, F.; Tauschke, M.; Behrendt, A.; Monk, J.; Schindler, U.; Lana, M.A.; Monk, S. The Application of Mycorrhizal Fungi and Organic Fertilisers in Horticultural Potting Soils to Improve Water Use Efficiency of Crops. Horticulturae 2017, 3, 8. https://doi.org/10.3390/horticulturae3010008
Eulenstein F, Tauschke M, Behrendt A, Monk J, Schindler U, Lana MA, Monk S. The Application of Mycorrhizal Fungi and Organic Fertilisers in Horticultural Potting Soils to Improve Water Use Efficiency of Crops. Horticulturae. 2017; 3(1):8. https://doi.org/10.3390/horticulturae3010008
Chicago/Turabian StyleEulenstein, Frank, Marion Tauschke, Axel Behrendt, Jana Monk, Uwe Schindler, Marcos A. Lana, and Shaun Monk. 2017. "The Application of Mycorrhizal Fungi and Organic Fertilisers in Horticultural Potting Soils to Improve Water Use Efficiency of Crops" Horticulturae 3, no. 1: 8. https://doi.org/10.3390/horticulturae3010008
APA StyleEulenstein, F., Tauschke, M., Behrendt, A., Monk, J., Schindler, U., Lana, M. A., & Monk, S. (2017). The Application of Mycorrhizal Fungi and Organic Fertilisers in Horticultural Potting Soils to Improve Water Use Efficiency of Crops. Horticulturae, 3(1), 8. https://doi.org/10.3390/horticulturae3010008