Agroecology: A Global Paradigm to Challenge Mainstream Industrial Agriculture
Abstract
:1. Introduction
2. Reviews about the Future of Agriculture
3. Challenges for the Future of Agriculture
4. Industry and Industry-Funded Academics Support Techno-Based Solutions
5. Does Conventional Agriculture Meet Basic Sustainability Criteria?
6. Calls for an Agroecological Approach
7. Conclusions
Conflicts of Interest
References
- McIntyre, B.D.; Herren, H.R.; Wakhungu, J.; Watson, R.T. International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD): Global Report; Island Press: Washington, DC, USA, 1978; p. 606. [Google Scholar]
- Carpenter, S.J. Farm chemicals, soil erosion, and sustainable agriculture. Stanf. Environ. Law J. 1994, 13, 190. [Google Scholar]
- Sachs, J.; Remans, R.; Smukler, S.; Winowiecki, L.; Andelman, S.J.; Cassman, K.G.; Sanchez, P.A. Monitoring the world’s agriculture. Nature 2010, 466, 558–560. [Google Scholar] [CrossRef] [PubMed]
- Barker, D. Genetically Engineered (GE) crops: A misguided strategy for the twenty-first century? Development 2014, 57, 192–200. [Google Scholar] [CrossRef]
- Anonymous. Editorial: How to feed a hungry world. Nature 2010, 466, 531–532. [Google Scholar]
- United Nations Conference on Trade and Development. Wake Up before It Is Too Late: Make Agriculture Truly Sustainable Now for Food Security and Changing Climate; United Nations: Geneva, Switzerland, 2013; p. 341. [Google Scholar]
- Arizpe, N.A.; Giampietro, M.; Ramos-Martin, J. Food security and fossil energy dependence: An international comparison of the use of fossil energy in agriculture (1991–2003). Crit. Rev. Plant Sci. 2011, 30, 45–63. [Google Scholar] [CrossRef]
- Fausti, S.W. The causes and unintended consequences of a paradigm shift in corn production practices. Environ. Sci. Policy 2015, 52, 41–50. [Google Scholar] [CrossRef]
- National Research Council. Publicly Funded Agricultural Research and the Changing Structure of U.S. Agriculture; Committee to Review the Role of Publicly Funded Agricultural Research on the Structure of U.S. Agriculture, National Academy Press: Washington, DC, USA, 2001; p. 158. [Google Scholar]
- Pretty, J.N.; Noble, A.D.; Bossio, D.; Dixon, J.; Hine, R.E.; Penning de Vries, F.W.; Morison, J.I. Resource-conserving agriculture increases yields in developing countries. Environ. Sci. Technol. 2006, 40, 1114–1119. [Google Scholar] [CrossRef] [PubMed]
- Crowder, D.W.; Reganold, J.P. Financial competitiveness of organic agriculture on a global scale. Proc. Natl. Acad. Sci. USA 2015, 112, 7611–7616. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Rosegrant, M. Investing in agriculture to overcome the world food crisis and reduce poverty and hunger. In IFPRI Policy Brief 3; International Food Policy Research Institute: Washington, DC, USA, 2008. [Google Scholar]
- Vargas-Lundius, R. Sustainable smallholder agriculture: Feeding the world, protecting the planet. In Proceedings of the Thirty-fifth Session of IFAD’s Governing Council, Rome, Italy, 22–23 February 2012.
- Pimbert, M.; Barry, B.; Berson, A.; Tran-Thanh, K. Democratising Agricultural Research for Food Sovereignty in West Africa; IIED, CNOP, Centre Djoliba, IRPAD, Kene Conseils, URTEL: Bamako, Mali; London, UK, 2010; p. 70. [Google Scholar]
- Pimentel, D. Environmental and economic costs of the application of pesticides primarily in the United States. Environ. Dev. Sustain. 2005, 7, 229–252. [Google Scholar] [CrossRef]
- Ekström, G.; Ekbom, B. Pest control in agro-ecosystems: An ecological approach. Crit. Rev. Plant Sci. 2011, 30, 74–94. [Google Scholar] [CrossRef]
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Environmental impact of different agricultural management practices: Conventional vs. organic agriculture. Crit. Rev. Plant Sci. 2011, 30, 95–124. [Google Scholar] [CrossRef]
- Beketov, M.A.; Kefford, B.J.; Schäfer, R.B.; Liess, M. Pesticides reduce regional biodiversity of stream invertebrates. Proc. Natl. Acad. Sci. USA 2013, 110, 11039–11043. [Google Scholar] [CrossRef] [PubMed]
- Stehle, S.; Schulz, R. Agricultural insecticides threaten surface waters at the global scale. Proc. Natl. Acad. Sci. USA 2015, 112, 5750–5755. [Google Scholar] [CrossRef] [PubMed]
- Tiemann, L.K.; Grandy, A.S.; Atkinson, E.E.; Marin-Spiotta, E.; McDaniel, M.D. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol. Lett. 2015, 18, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Report 8 of The Council on Science and Public Health (A-09). Available online: http://www.ama-assn.org/ama1/pub/upload/mm/475/refcomd.pdf (accessed on 28 March 2010).
- Pelletier, N.; Tyedmers, P. Forecasting potential global environmental costs of livestock production 2000–2050. Proc. Natl. Acad. Sci. USA 2010, 107, 18371–18374. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Pediatrics (AAP). Policy statement: Pesticide exposure in children. Pediatrics 2012, 130, e1757–e1763. [Google Scholar]
- American College of Obstetricians and Gynecologists. Exposure to toxic environmental agents. Committee Opinion No. 575. Obstet. Gynecol. 2013, 122, 931–935. [Google Scholar]
- Jones, B.A.; Grace, D.; Kock, R.; Alonso, S.; Rushton, J.; Said, M.Y.; McKeever, D.; Mutua, F.; Young, J.; McDermott, J.; et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc. Natl. Acad. Sci. USA 2013, 110, 8399–8404. [Google Scholar] [PubMed]
- Lopez, S.L.; Aiassa, D.; Benıtez-Leite, S.; Lajmanovich, R.; Manas, F.; Poletta, G.; Sanchez, N.; Simoniello, M.F.; Carrasco, A.E. Pesticides used in south American GMO-based agriculture: A review of their effects on humans and animal models. Adv. Mol. Toxicol. 2012, 6, 41–75. [Google Scholar]
- Mesnage, R.; Defarge, N.; Spiroux de Vendômois, J.; Séralini, G.E. Potential toxic effects of glyphosate and its commercial formulations below regulatory limits. Food Chem. Toxicol. 2015, 84, 133–153. [Google Scholar] [CrossRef] [PubMed]
- Guyton, K.Z.; Loomis, D.; Grosse, Y.; El Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Scoccianti, C.; Mattock, H.; Straif, K. Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancet Oncol. 2015, 5, 490–491. [Google Scholar]
- Khoury, C.K.; Bjorkman, A.D.; Dempewolf, H.; Ramirez-Villegas, J.; Guarino, L.; Jarvis, A.; Struik, P.C. Increasing homogeneity in global food supplies and the implications for food security. Proc. Natl. Acad. Sci. USA 2014, 111, 4001–4006. [Google Scholar] [CrossRef] [PubMed]
- Khoury, C.K.; Jarvis, A. The Changing Composition of the Global Diet: Implications for CGIAR Research; CIAT Policy Brief No. 18.; Centro Internacional de Agricultura Tropical: Cali, Colombia, 2014; p. 6. [Google Scholar]
- Puma, M.J.; Bose, S.; Chon, S.Y.; Cook, B.I. Assessing the evolving fragility of the global food system. Environ. Res. Lett. 2015, 10, 024007. [Google Scholar] [CrossRef]
- Minami, K. The global nitrogen/carbon cycles and agricultural practice for environmental sustainability. In Asian Productivity Organization (APO); Workshop on Environment-Friendly Agriculture: Tokyo, Japan, 2003; pp. 8–15. [Google Scholar]
- Fedoroff, N.V.; Battisti, D.S.; Beachy, R.N.; Cooper, P.J.M.; Fischhoff, D.A.; Hodges, C.N.; Zhu, J.K. Radically rethinking agriculture for the 21st century. Science 2010, 327, 833–834. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, S.J.; Challinor, A.J.; Thornton, P.K.; Campbell, B.M.; Eriyagama, N.; Vervoort, J.M.; Smith, D.R. Addressing uncertainty in adaptation planning for agriculture. Proc. Natl. Acad. Sci. USA 2013, 110, 8357–8362. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.B. Resilience in agriculture through crop diversification: Adaptive management for environmental change. BioScience 2011, 61, 183–193. [Google Scholar] [CrossRef]
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Is there a need for a more sustainable agriculture? Crit. Rev. Plant Sci. 2011, 30, 6–23. [Google Scholar] [CrossRef]
- Wijeratna, W. Fed Up, Now’s the Time to Invest in Agro-Ecology; Action Aid: Washington, DC, USA, 2012; p. 42. [Google Scholar]
- The Montpellier Panel. Sustainable Intensification: A New Paradigm for African Agriculture; Agriculture for Impact; Imperial College: London, UK, 2013. [Google Scholar]
- Heinemann, J.A.; Massaro, M.; Coray, D.S.; Agapito-Tenfen, S.Z.; Wen, J.D. Sustainability and innovation in staple crop production in the U.S. midwest. Int. J. Agric. Sustain. 2014, 12, 71–88. [Google Scholar] [CrossRef]
- Turner, P.A.; Griffis, T.J.; Lee, X.; Baker, J.M.; Venterea, R.T.; Wood, J.D. Indirect nitrous oxide emissions from streams within the U.S. Corn Belt scale with stream order. Proc. Natl. Acad. Sci. USA 2015, 112, 9839–9843. [Google Scholar]
- Soetan, K.O. The role of biotechnology towards attainment of a sustainable and safe global agriculture and environment–A review. Biotechnol. Mol. Biol. Rev. 2011, 6, 109–117. [Google Scholar]
- Schneiderman, H.A.; Carpenter, W.D. Planetary patriotism: Sustainable agriculture for the future. Environ. Sci. Technol. 1990, 24, 466–473. [Google Scholar] [CrossRef]
- Gilbert, N. Food: Inside the hothouses of industry. Nature 2010, 466, 548–551. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, F. Let Them Eat Cash! Can Bill Gates Turn Hunger into Profit; Harper’s Magazine: New York, NY, USA, 2009; pp. 51–59. [Google Scholar]
- Watkins, K. Grain Fish. Money Financing Africa’s Green and Blue Revolutions; Africa Progress Report; Africa Progress Panel: Geneva, Switzerland, 2014; p. 180. [Google Scholar]
- Tso, T.C. Agriculture of the future. Commentary. Nature 2004, 428, 215–217. [Google Scholar] [CrossRef] [PubMed]
- Tollefson, J. The global farm. Nature 2010, 466, 554–556. [Google Scholar] [CrossRef] [PubMed]
- Heller, M.C.; Keoleian, G.A. Assessing the sustainability of the U.S. food system: A life cycle perspective. Agric. Syst. 2003, 76, 1007–1041. [Google Scholar]
- Pesticide Use on Genetically Engineered Crops. Available online: http://static.ewg.org/agmag/pdfs/pesticide_use_on_genetically_engineered_crops.pdf (accessed on 15 May 2015).
- Mortensen, D.A.; Egan, J.F.; Maxwell, B.D.; Ryan, M.R.; Smith, R.G. Navigating a critical juncture for sustainable weed management. BioScience 2012, 62, 75–84. [Google Scholar] [CrossRef]
- Allen, C. History of pest management in Texas and the southern United States and how recent grower adoption of preventative pest management technologies have diminished the capability for IPM delivery. Outlooks Pest Manag. 2015, 26, 52–55. [Google Scholar] [CrossRef]
- Altieri, M.A. Agroecology: A new research and development paradigm for world agriculture. Agric. Ecosyst. Environ. 1989, 27, 37–46. [Google Scholar] [CrossRef]
- Edwards, C.A.; Grove, T.L.; Harwood, R.R.; Colfer, C.P. The role of agroecology and integrated farming systems in agricultural sustainability. Agric. Ecosyst. Environ. 1993, 46, 99–121. [Google Scholar] [CrossRef]
- Palmer, J.J. Synthesis of experiences on better agricultural practices for environmental sustainability. In Workshop on Environment-Friendly Agriculture; Asian Productivity Organization (APO): Tokyo, Japan, 2003; pp. 1–8. [Google Scholar]
- Turner, N.J.; Jakub Łuczaj, L.; Migliorini, P.; Pieroni, A.; Dreon, A.L.; Sacchetti, L.E.; Paoletti, M.G. Edible and tended wild plants, traditional ecological knowledge and agroecology. Crit. Rev. Plant Sci. 2011, 30, 198–225. [Google Scholar] [CrossRef]
- Francis, C.A.; Jordan, N.; Porter, P.; Breland, T.A.; Lieblein, G.; Salomonsson, L.; Sriskandarajah, N.; Wiedenhoeft, M.; DeHaan, R.; Braden, I.; et al. Innovative education in agroecology: Experiential learning for a sustainable agriculture. Crit. Rev. Plant Sci. 2011, 30, 226–237. [Google Scholar]
- Shaner, W.W.; Philipp, P.F.; Schmehl, W.R. Farming Systems Research and Development: Guidelines for Developing Countries; Westview Press: Boulder, CO, USA, 1982. [Google Scholar]
- Farming and Rural Systems Research: A Constellation of Systemic and Interdisciplinary Perspectives. NSS Dialogues 2010. Available online: http://www.nss-dialogues.fr/IMG/pdf/Farming_and_Rural_Systems_Research-2.pdf (accessed on 1 August 2014).
- Borenstein, S. Overlooked in the Global Food Crisis: A Problem with Dirt; Associated Press: Washington, DC, USA, 2008; Available online: http://usatoday30.usatoday.com/tech/science/2008-05-08-3388434369_x.htm (accessed on 13 March 2016).
- Pimentel, D. Food for thought: A review of the role of energy in current and evolving agriculture. Crit. Rev. Plant Sci. 2011, 30, 1–44. [Google Scholar] [CrossRef]
- Valenzuela, H. Pest and disease control strategies for sustainable pacific agroecosystem. In Agroforestry Landscapes for Pacific Islands: Creating Abundant and Resilient Food Systems; Elevitch, C.R., Ed.; Permanent Agriculture Resources (PAR): Kona, Hawaii Island, 2015; p. 332. Available online: http://agroforestry.org/images/pdfs/Sustainable_Pest_and_Disease_Control_Valenzuela.pdf (accessed on 13 March 2016).
- Francis, C.A.; Porter, P. Ecology in sustainable agriculture practices and systems. Crit. Rev. Plant Sci. 2011, 30, 64–73. [Google Scholar] [CrossRef]
- Carberry, P.S.; Liang, W.L.; Twomlow, S.; Holzworth, D.P.; Dimes, J.P.; McClelland, T.; Keating, B.A. Scope for improved eco-efficiency varies among diverse cropping systems. Proc. Natl. Acad. Sci. USA 2013, 110, 8381–8386. [Google Scholar] [CrossRef] [PubMed]
- Boreux, V.; Kushalappa, C.G.; Vaast, P.; Ghazoul, J. Interactive effects among ecosystem services and management practices on crop production: Pollination in coffee agroforestry systems. Proc. Natl. Acad. Sci. USA 2013, 110, 8387–8392. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, D.I.; Hodgkin, T.; Sthapit, B.R.; Fadda, C.; Lopez-Noriega, I. An heuristic framework for identifying multiple ways of supporting the conservation and use of traditional crop varieties within the agricultural production system. Crit. Rev. Plant Sci. 2011, 30, 125–176. [Google Scholar] [CrossRef]
- Jarvis, D.I.; Brown, A.H.; Cuong, P.H.; Collado-Panduro, L.; Latournerie-Moreno, L.; Gyawali, S.; Hodgkin, T. A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities. Proc. Natl. Acad. Sci. USA 2008, 105, 5326–5331. [Google Scholar] [CrossRef] [PubMed]
- Howe, L.; Redfeather, N.; Valenzuela, H. The Hawaii Public Seed Initiative; Hanai’ Ai/The Food Provider: Honolulu, HI, USA, 2012; p. 6. Available online: http://www.ctahr.hawaii.edu/sustainag/news/articles/V11-Valenzuela-seedinitiative.pdf (accessed on 13 March 2016).
- Sayer, J.; Cassman, K.G. Agricultural innovation to protect the environment. Proc. Natl. Acad. Sci. USA 2013, 110, 8345–8348. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.J.; Hilborn, R.; Andrew, N.L.; Allison, E.H. Innovations in capture fisheries are an imperative for nutrition security in the developing world. Proc. Natl. Acad. Sci. USA 2013, 110, 8393–8398. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Ferre, M.G. The future of agriculture. EMBO Rep. 2008, 9, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Wakhungu, J.W. Gender Dimensions of Science and Technology: African Women in Agriculture; African Centre for Technology Studies: Nairobi, Kenya, 2010; p. 8. [Google Scholar]
- Sayer, J.; Sunderland, T.; Ghazoul, J.; Pfund, J.L.; Sheil, D.; Meijaard, E.; Buck, L.E. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc. Natl. Acad. Sci. USA 2013, 110, 8349–8356. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, M.G. Invertebrate Biodiversity as Bioindicators of Sustainable Landscapes. Practical Use of Invertebrates to Assess Sustainable Land Use; Elsevier: Amsterdam, The Netherlands, 2012; p. 446. [Google Scholar]
- Paoletti, M.G. Ecological Implications of Minilivestock. Insects, Rodents, Frogs and Snails; Science Publishers Inc.: Enfield, NH, USA, 2005; p. 648. [Google Scholar]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016. [Google Scholar] [CrossRef]
- Crowder, D.W.; Northfield, T.D.; Strand, M.R.; Snyder, W.E. Organic agriculture promotes evenness and natural pest control. Nature 2010, 466, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Delate, K.; Cambardella, C.; Chase, C.; Johanns, A.; Turnbull, R. The long-term agroecological research (LTAR) experiment supports organic yields, soil quality, and economic performance in Iowa. Crop Manag. 2013, 12. [Google Scholar] [CrossRef]
- Pimentel, D.; Hepperly, P.; Hanson, J.; Douds, D.; Seidel, R. Environmental, energetic, and economic comparisons of organic and conventional farming systems. BioScience 2005, 55, 573–582. [Google Scholar] [CrossRef]
- Zehnder, G.; Gurr, G.M.; Kühne, S.; Wade, M.R.; Wratten, S.D.; Wyss, E. Arthropod pest management in organic crops. Annu. Rev. Entomol. 2007, 52, 57–80. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, S.A.; Zuo, A.; Loch, A. Watering the farm: Comparing organic and conventional irrigation water use in the Murray-Darling Basin, Australia. Ecol. Econ. 2015, 112, 78–85. [Google Scholar] [CrossRef]
- Marinari, S.; Lagomarsino, A.; Moscatelli, M.C.; Di Tizio, A.; Campiglia, E. Soil carbon and nitrogen mineralization kinetics in organic and conventional three-year cropping systems. Soil Tillage Res. 2010, 109, 161–168. [Google Scholar] [CrossRef]
- Petit, S.; Munier-Jolain, N.; Bretagnolle, V.; Bockstaller, C.; Gaba, S.; Cordeau, S.; Lechenet, M.; Mézière, D.; Colbach, N. Ecological intensification through pesticide reduction: Weed control, weed biodiversity and sustainability in arable farming. Environ. Manag. 2015, 56, 1078–1090. [Google Scholar]
- Tuck, S.L.; Winqvist, C.; Mota, F.; Ahnström, J.; Turnbull, L.A.; Bengtsson, J. Land-use intensity and the effects of organic farming on biodiversity: A hierarchical meta-analysis. J. Appl. Ecol. 2014, 51, 746–755. [Google Scholar] [CrossRef] [PubMed]
- Todd, J.H.; Malone, L.A.; McArdle, B.H.; Benge, J.; Poulton, J.; Thorpe, S.; Beggs, J.R. Invertebrate community richness in New Zealand kiwifruit orchards under organic or integrated pest management. Agric. Ecosyst. Environ. 2011, 141, 32–38. [Google Scholar] [CrossRef]
- Priego-Castillo, G.A.; Galmiche-Tejeda, A.; Castelán-Estrada, M.; Ruiz-Rosado, O.; Ortiz-Ceballos, A. Evaluación de la sustentabilidad de dos sistemas de producción de cacao: Estudios de caso de unidades de producción rural en Comalcalco, Tabasco. Univ. Cienc. 2009, 25, 39–57. (In Spanish) [Google Scholar]
- Barański, M.; Średnicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, C.; et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analyses. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [PubMed]
- Mitchell, A.E.; Hong, Y.J.; Koh, E.; Barrett, D.M.; Bryant, D.E.; Denison, R.F.; Kaffka, S. Ten-year comparison of the influence of organic and conventional crop management practices on the content of flavonoids in tomatoes. J. Agric. Food Chem. 2007, 55, 6154–6159. [Google Scholar] [CrossRef] [PubMed]
- Benbrook, C.M.; Baker, B.P. Perspective on dietary risk assessment of pesticide residues in organic food. Sustainability 2014, 6, 3552–3570. [Google Scholar] [CrossRef]
- Magnér, J.; Wallberg, P.; Sandberg, J.; Cousins, A.P. Human Exposure to Pesticides from Food; Report No. U 5080; Swedish Environmental Research Institute: Stockholm, Sweden, 2015. [Google Scholar]
- Bradman, A.; Quirós-Alcalá, L.; Castorina, R.; Schall, R.A.; Camacho, J.; Holland, N.T.; Barr, D.B.; Eskenazi, B. Effect of organic diet intervention on pesticide exposures in young children living in low-income urban and agricultural communities. Environ. Health Perspect. 2015, 123, 1086–1093. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, J.; Gramig, G.G.; Hendrickson, J.R.; Archer, D.W.; Forcella, F.; Liebig, M.A. Crop species diversity changes in the United States: 1978–2012. PLoS ONE 2015, 10, e0136580. [Google Scholar] [CrossRef] [PubMed]
Follow a Participatory Approach, Based on Indigenous or Local Knowledge |
● Reliance on Indigenous knowledge to maintain agrobiodiversity such as for the preservation and use of herbs and medicinal plants [55]. |
● Use of experiential knowledge in the preparation of research and outreach programs [56]. |
● Bottom-up approaches for the design of research and outreach programs [13,54]. |
● Follow a Farming Systems Research/Extension and Development approach [57,58]. |
Regeneration and Maintenance of Soil Quality |
● A healthy soil is needed to strengthen system resiliency [59]. |
● The value of cover crops and organic matter to soil quality [60]. |
● The value of soil quality to manage pests on the farm [61]. |
Resource Conservation and Establishment of Eco-Efficient and Integrated Systems |
● Conservation of basic farm natural resources [60]. |
● Improved nutrient use efficiency and integration of farm activities [62,63]. |
● Integrated crop-livestock systems [17,62]. |
● Improved nutrient cycles [31,63]. |
● Improved ecosystem services [64]. |
● Management of physical and biological resources to manage pests on the farm [61]. |
Agrobiodiversity |
● Germplasm conservation by local communities [65]. |
● Value of organic farms to support biodiversity [17]. |
● Promoting vegetational diversity to improve below-ground biodiversity [20]. |
● The importance of small farms to maintain biodiversity [66]. |
● The importance of public seed sources to maintain agrobiodiversity [39,67]. |
● The importance of biodiversity and habitat management for pest control [61]. |
Landscape-Wide Management Programs |
● Value of landscape approach to maintain biodiversity [17]. |
● Landscape approach to maintain environmental “stability” [68]. |
● Landscape approach to facilitate community management of natural resources [13]. |
Socio-Economics or Social Considerations |
● Need to consider socio-economical conditions [34,69]. |
● Value of promoting multifunctional agriculture [1,70]. |
● Need to include ethical considerations [69]. |
● Need to promote and maintain socially equitable systems [62]. |
● Need to incorporate gender considerations [13,71]. |
Research Considerations |
● Need to create new research protocols, to study agroecosystems from a holistic and landscape perspective [72]. |
● Bioindicators need to be implemented for assessment of soil and environmental quality [73]. |
● Need to elucidate the ecosystem services provided by soil biota to restore ecological balance on the farm [74]. |
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valenzuela, H. Agroecology: A Global Paradigm to Challenge Mainstream Industrial Agriculture. Horticulturae 2016, 2, 2. https://doi.org/10.3390/horticulturae2010002
Valenzuela H. Agroecology: A Global Paradigm to Challenge Mainstream Industrial Agriculture. Horticulturae. 2016; 2(1):2. https://doi.org/10.3390/horticulturae2010002
Chicago/Turabian StyleValenzuela, Hector. 2016. "Agroecology: A Global Paradigm to Challenge Mainstream Industrial Agriculture" Horticulturae 2, no. 1: 2. https://doi.org/10.3390/horticulturae2010002
APA StyleValenzuela, H. (2016). Agroecology: A Global Paradigm to Challenge Mainstream Industrial Agriculture. Horticulturae, 2(1), 2. https://doi.org/10.3390/horticulturae2010002