Bioherbicides in Organic Horticulture
Abstract
:1. The Problem of Weeds in Organic Horticulture
2. Bioherbicide Approach
2.1. Bioherbicides from Pathogens
2.2. Bioherbicides from Natural Products
2.3. Bioherbicides from Extracts
3. Factors Affecting the Efficacy of Bioherbicide
4. Conclusions
Conflicts of Interest
References
- Schonbeck, M. Principles of sustainable weed management in organic cropping systems. In Workshop for Farmers and Agricultural Professionals on Sustainable Weed Management, 3rd ed.; Clemson University: Clemson, SC, USA, 2011. [Google Scholar]
- Altland, J.E.; Gilliam, C.H.; Wehtje, G. Weed control in field nurseries. HortTechnology 2003, 13, 9–17. [Google Scholar]
- Webber, C.L.; Shrefler, J.W.; Brandenberger, L.P. Organic weed control. In Herbicides—Environmental Impact Studies and Management Approaches; Fernandez, R.A., Ed.; InTech: Rijeka, Croatia, 2012; pp. 186–198. [Google Scholar]
- Evans, G.J.; Bellinder, R.R. The potential use of vinegar and a clove oil herbicide for weed control in sweet corn, potato, and onion. Weed Technol. 2009, 23, 120–128. [Google Scholar] [CrossRef]
- Harpster, T.; Sellmer, J.; Kuhns, L.J. Controlling Weeds in Nursery and Landscape Plantings; PennState Cooperative Extension, College of Agricultural Sciences: State College, PA, USA, 2012. [Google Scholar]
- Booth, A.L.; Skelton, N.W. The use of domestic goats and vinegar as municipal weed control alternatives. Environ. Pract. 2009, 11, 3–16. [Google Scholar] [CrossRef]
- Granatstein, D.; Kirby, E.; Willer, H. Organic horticulture expands globally. Chron. Horticult. 2010, 504, 31–38. [Google Scholar]
- Risku-Norja, H.; Maenpaa, I. MFA model to assess economic and environmental consequences of food production and consumption. Ecol. Econ. 2007, 60, 700–711. [Google Scholar] [CrossRef]
- Worthington, V. Nutritional quality of organic vs. conventional fruits, vegetables, and grains. J. Altern. Complement. Med. 2001, 7, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Willer, H.; Lernoud, J. The World of Organic Agriculture—Statistics and Emerging Trends 2015; Research Institute of Organic Agriculture (FiBL), International Federation of Organic Agriculture Movements (IFOAM): Frick, Switzerland; Bonn, Germany, 2015. [Google Scholar]
- Kremer, R.J. The role of Bioherbicides in weed management. Biopestic. Int. 2005, 1, 127–141. [Google Scholar]
- Green, S. A review of the potential for the use of bioherbicides to control forest weeds in the UK. Forestry 2003, 76, 285–298. [Google Scholar] [CrossRef]
- Frantzen, J.; Paul, N.D.; MÜller-SchÄrer, H. The system management approach of biological weed control: Some theoretical considerations and aspects of application. BioControl 2001, 46, 139–155. [Google Scholar] [CrossRef]
- Thomas, M.B.; Willis, A.J. Biocontrol—Risky but necessary? TREE 1998, 13, 325–329. [Google Scholar] [CrossRef]
- Charudattan, R. Use of plant pathogens as bioherbicides to manage weeds in horticultural crops. Proc. Fla. State Hort. Soc. 2005, 118, 208–214. [Google Scholar]
- Ayres, P.; Paul, N. Weeding with fungi. New Sci. 1990, 732, 36–39. [Google Scholar]
- Walton, J.D. Host-selective toxins: Agents of compatibility. Plant Cell 1996, 8, 1723–1733. [Google Scholar] [CrossRef] [PubMed]
- Phatak, S.C.; Summer, D.R.; Wells, H.D.; Bell, D.K.; Glaze, N.C. Biological control of yellow nutsedge with the indigenous rust fungus Puccinia canaliculata. Science 1983, 219, 1446–1447. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R. Development of bioherbicides for integrated weed management in forestry. In Proceedings of the 2nd International Weed Control Congress, Department of Weed Control and Pesticide Ecology, Slagelse, Denmark, 25–28 June 1996; Brown, H., Ed.; pp. 1197–1203.
- Weidemann, G.J.; TeBeest, D.O.; Templeton, G.E. Fungal plant pathogens used for biological weed control. Ark. Farming Res. 1992, 41, 6–7. [Google Scholar]
- Bailey, K.L.; Derby, J. Fungal Isolates and Biological Control Compositions for the Control of Weeds. U.S. Patent Application Serial No. 60/294,475, 20 May 2001. [Google Scholar]
- Jones, R.W.; Hancock, J.G. Soilborne fungi for biological control of weeds. In Microbes and Microbial Products as Microbial Herbicides; Hoagland, R.E., Ed.; American Chemical Society: Washington, DC, USA, 1990; pp. 276–286. [Google Scholar]
- Héraux, F.M.G.; Hallett, S.G.; Ragothama, K.G.; Weller, S.C. Composted chicken manure as a medium for the production and delivery of Trichoderma virens for weed control. HortScience 2005, 40, 1394–1397. [Google Scholar]
- Hoagland, R.E.; Weaver, M.A.; Boyette, C.D. Myrothecium verrucaria fungus: A bioherbicide and strategies to reduce its non-target risks. Allelopath. J. 2007, 19, 179–192. [Google Scholar]
- Johnson, D.R.; Wyse, D.L.; Jones, K.L. Controlling weeds with phytopathogenic bacteria. Weed Technol. 1996, 10, 621–624. [Google Scholar]
- Norman, M.; Patten, K.; Gurusiddaiah, S. Evaluation of a phytotoxin from Pseudomonas syringae for weed control in cranberries. HortScience 1994, 29, 1475–1477. [Google Scholar]
- Boyette, C.D.; Hoagland, R.E.; Abbas, H.K. Evaluation of the bioherbicide Myrothecium verrucaria for weed control in tomato (Lycopersicon esculentum). Biocontrol Sci. Technol. 2007, 17, 171–178. [Google Scholar] [CrossRef]
- Ortiz-Ribbing, L.M.; Glassman, K.R.; Roskamp, G.K.; Hallett, S.G. Performance of two bioherbicide fungi for waterhemp and pigweed control in pumpkin and soybean. Plant Dis. 2011, 95, 469–477. [Google Scholar] [CrossRef]
- Hopen, H.J.; Bewick, T.A.; Caruso, F.L. Control of dodder in cranberry Vaccinium macrocarpon with a pathogen-based bioherbicide. Acta Hort. 1997, 446, 427. [Google Scholar] [CrossRef]
- Boydston, R.A.; Collins, H.P.; Vaughn, S.F. Response of weeds and ornamental plants to potting soil amended with dried distillers grains. HortScience 2008, 43, 191–195. [Google Scholar]
- Boydston, R.A.; Anderson, T.; Vaughn, S.F. Mustard (Sinapis alba) seed meal suppresses weeds in container-grown ornamentals. HortScience 2008, 43, 800–803. [Google Scholar]
- Liu, D.; Christians, N. Inhibitory activity of corn gluten hydrolysate on monocotyledonous and dicotyledonous species. HortScience 1997, 32, 243–245. [Google Scholar]
- Bingaman, B.R.; Christians, N.E. Green-house screening of corn gluten meal as a natural control product for broadleaf and grass weeds. HortScience 1995, 30, 1256–1259. [Google Scholar]
- Boydston, R.A.; Morra, M.J.; Borek, V.; Clayton, L.; Vaughn, S.F. Onion and weed response to mustard (Sinapis alba) seed meal. Weed Sci. 2011, 59, 546–552. [Google Scholar] [CrossRef]
- Borek, V.; Morra, M.J. Ionic thiocyanate (SCN−) production from 4-hydroxybenzyl glucosinolate contained in Sinapis alba seed meal. J. Agric. Food Chem. 2005, 53, 8650–8654. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.D.; Morra, M.J. Control of soilborne plant pests using glucosinolate-containing plants. Adv. Agron. 1997, 61, 167–231. [Google Scholar]
- Yu, J.; Morishita, D.W. Response of seven weed species to corn gluten meal and white mustard (Sinapis alba) seed meal rates. Weed Technol. 2014, 28, 259–265. [Google Scholar] [CrossRef]
- Handiseni, M.; Brown, J.; Zemetra, R.; Mazzola, M. Use of Brassicaceous seed meals to improve seedling emergence of tomato and pepper in Pythium ultimum infested soils. Arch. Phytopathol. Plant Protect. 2012, 45, 1204–1209. [Google Scholar] [CrossRef]
- Snyder, A.; Morra, M.J.; Johnson-Maynard, J.; Thill, D.C. Seed meals from brassicaceae oilseed crops as soil amendments: Influence on carrot growth, microbial biomass nitrogen, and nitrogen mineralization. HortScience 2009, 44, 354–361. [Google Scholar]
- Banuelos, G.S.; Hanson, B.D. Use of selenium-enriched mustard and canola seed meals as potential bioherbicides and green fertilizer in strawberry production. HortScience 2010, 45, 1567–1572. [Google Scholar]
- Fennimore, S.A.; Martin, F.N.; Miller, T.C.; Broome, J.C.; Dorn, N.; Greene, I. Evaluation of a mobile steam applicator for soil disinfestation in California strawberry. HortScience 2014, 49, 1542–1549. [Google Scholar]
- Intanon, S.; Hulting, A.G.; Mallory-Smith, C.A. Field evaluation of meadowfoam (Limnanthes alba) seed meal for weed management. Weed Sci. 2015, 63, 302–311. [Google Scholar] [CrossRef]
- Shrestha, A.; Rodriguez, A.; Pasakdee, S.; Banuelos, G. Comparative efficacy of white mustard (Sinapis alba L.) and soybean (Glycine max L. Merr.) seed meals as bioherbicides in organic broccoli (Brassica oleracea Var. Botrytis) and spinach (Spinacea oleracea) production. Commun. Soil Sci. Plant Anal. 2015, 46, 33–46. [Google Scholar] [CrossRef]
- Rothlisberger, K.L.; Hons, F.M.; Gentry, T.J.; Senseman, S.A. Oilseed meal effects on the emergence and survival of crop and weed species. Appl. Environ. Soil Sci. 2012, 2012, 1–10. [Google Scholar] [CrossRef]
- Johnson, W.C.; Boudreau, M.A.; Davis, J.W. Combinations of corn gluten meal, clove oil, and sweep cultivation are ineffective for weed control in organic peanut production. Weed Technol. 2013, 27, 417–421. [Google Scholar] [CrossRef]
- Russo, V.M.; Webber, C.L. Peanut pod, seed, and oil yield for biofuel following conventional and organic production systems. Ind. Crop Prod. 2012, 39, 113–119. [Google Scholar] [CrossRef]
- Liu, D.; Christians, N. Isolation and identification of root inhibiting compounds from corn gluten hydrolysate. J. Plant Growth Regul. 1994, 13, 227–230. [Google Scholar] [CrossRef]
- Tsao, R.; Romanchuk, F.; Peterson, C.J.; Coats, J.R. Plant growth regulatory effect and insecticidal activity of the extracts of the tree of heaven (Ailanthus altissima L.). BMC Ecol. 2002, 2, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, J.K.; Chung, I.M. Allelopathic potential of rice hulls on germination and seedling growth of barnyardgrass. Agron. J. 2000, 92, 1162–1167. [Google Scholar] [CrossRef]
- Nieves, J.A.; Acevedo, L.J.; Valencia-Islas, N.A.; Rojas, J.L.; Dávila, R. Fitotoxicidad de extractos metanólicos de los líquenes Everniastrum sorocheilum, Usnea roccellinay Cladonia confusa. Glalia 2011, 4, 96. [Google Scholar]
- Tigre, R.C. Investigação dos Mecanismos de Ação Alelopática de Cladonia Verticillaris Sobre Lactuca Sativa e Solanum lycopersicum. Ph.D. Theses, Department of Geographical Sciences, Federal University of Pernambuco, Brazil, 2014. [Google Scholar]
- Shrestha, A. Potential of a black walnut (Juglans nigra) extract product (NatureCur) as a pre- and post-emergence bioherbicide. J. Sustain. Agric. 2009, 33, 810–822. [Google Scholar] [CrossRef]
- Ramezani, S.; Saharkhiz, M.J.; Ramezani, F.; Fotokian, M.H. Use of essential oils as bioherbicides. Jeobp 2008, 11, 319–327. [Google Scholar] [CrossRef]
- Onen, H.; Ozer, Z.; Telci, I. Bioherbicidal effects of some plant essential oils on different weed species. J. Plant Dis. Prot. 2002, 18, 597–605. [Google Scholar]
- Dayan, F.E.; Howell, J.L.; Marais, J.P.; Ferreira, D.; Koivunen, M. Manuka oil, a natural herbicide with preemergence activity. Weed Sci. 2011, 59, 464–469. [Google Scholar] [CrossRef]
- Singh, H.P.; Batish, D.R.; Setia, N.; Kohli, R.K. Herbicidal activity of volatile oils from Eucalyptus citriodora against Parthenium hysterophorus. Ann. Appl. Biol. 2005, 146, 89–94. [Google Scholar] [CrossRef]
- Dudai, N.; Poljakoff-Mayber, A.; Mayer, A.M.; Putievsky, E.; Lerner, H.R. Essential oils as allelochemicals and their potential use as bioherbicides. J. Chem. Ecol. 1999, 25, 1079–1089. [Google Scholar] [CrossRef]
- Ahmad, A.; Misra, L.N. Terpenoids from Artemisia annua and constituents of its essential oil. Phytochemistry 1994, 37, 183–186. [Google Scholar] [CrossRef]
- Hogg, J.W.; Terhune, S.J.; Lawrence, B.M. Dehydro-1,8-cineole: A new monoterpene oxide in Laurus noblis oil. Phytochemistry 1974, 13, 868–869. [Google Scholar] [CrossRef]
- Manns, D. Linalool and cineole type glucosides from Cunila spicata. Phytochemistry 1995, 39, 1115–1118. [Google Scholar] [CrossRef]
- Naves, Y.R.; Ardizio, P. Etudes sur les matieres vegetales volatiles CI. Sur la composition de l’essence de Xanthoxylum rhetsa, D.C. Mem. Soc. Chim. 1950, 1950, 673–678. (In French) [Google Scholar]
- Zaouali, Y.; Messaoud, C.; Ben Salah, A.; Boussaïd, M. Oil composition variability among populations in relationship with their ecological areas in Tunisian Rosmarinus officinalis L. Flav. Fragr. J. 2005, 20, 512–520. [Google Scholar] [CrossRef]
- Auld, B.A.; Hethering, S.D.; Smith, H.E. Advances in bioherbicide formulation. Weed Biol. Man. 2003, 3, 61–67. [Google Scholar] [CrossRef]
- Ghosheh, H.Z. Constraints in implementing biological weed control: A review. Weed Biol Manag. 2005, 5, 83–92. [Google Scholar] [CrossRef]
- Johnson, B.J. Biological control of annual bluegrass with Xanthomonas campestris pv. poannua in bermudagrass. Hort. Sci. 1994, 29, 659–662. [Google Scholar]
- Abu-Dieyeh, M.H.; Watson, A.K. Increasing the efficacy and extending the effective application period of a granular turf bioherbicide by covering with jute fabric. Weed Technol. 2009, 23, 524–530. [Google Scholar] [CrossRef]
- Boyette, C.D.; Quimby, P.C., Jr.; Bryson, C.T.; Egley, G.T.; Fulgham, F.E. Biological control of hemp sesbania (Sesbania exaltata) under field conditions with Colletotrichun truncatum formulated in emulsion. Weed Sci. 1993, 41, 497–500. [Google Scholar]
- Bailey, K.L.; Falk, S.; Derby, J.; Melzer, M.; Boland, G.J. The effect of fertilizers on the efficacy of the bioherbicide, Phoma macrostoma, to control dandelions in turfgrass. Biol. Control. 2013, 65, 147–151. [Google Scholar] [CrossRef]
- Charudattan, R. Biological control of weeds by means of plants pathogens: Significance for integrated weed management in modern agroecology. Biocontrol 2001, 46, 229–260. [Google Scholar] [CrossRef]
- Klein, T. The application of mycoherbicides. Plant Prot. Quart. 1992, 7, 161–162. [Google Scholar]
- Singh, M.; Tan, S.Y.; Sharma, S.D. Adjuvants enhance weed control efficacy of foliar-applied diuron. Weed Technol. 2002, 16, 74–78. [Google Scholar] [CrossRef]
- Byer, K.N.; Peng, G.; Wolf, T.M.; Caldwell, B.C. Spray retention and its effect on weed control by mycoherbicides. Biol. Control. 2006, 37, 307–313. [Google Scholar] [CrossRef]
- Doll, D.A.; Sojka, P.E.; Hallett, S.G. Effect of nozzle type and pressure on the efficacy of spray applications of the bioherbicidal fungus Microsphaeropsis amaranthi. Weed Technol. 2005, 19, 918–923. [Google Scholar] [CrossRef]
- Boyette, C.D.; Abbas, H.K. Host range alteration of the bioherbicidal fungus Alternaria crassa with fruit pectin and plant filtrates. Weed Sci. 1994, 42, 487–491. [Google Scholar]
- Chadramohan, S.; Charudattan, R.; Sonoda, R.M.; Singh, M. Field evaluation of a fungal mixture for the control of seven weedy grasses. Weed Sci. 2002, 50, 204–213. [Google Scholar] [CrossRef]
- Chandramohan, S.; Charudattan, R. A multiple-pathogen system for bioherbicidal control of several weeds. Biocontr. Sci. Technol. 2003, 13, 199–205. [Google Scholar] [CrossRef]
- Tiourebaev, K.S.; Nelson, S.; Zidak, N.K.; Kaleyva, G.T.; Pilgeram, A.L.; Anderson, T.W.; Sands, D.C. Amino acid excretion enhances virulence of bioherbicides. In Proceedings of the X International Symposium on Biological Control of Weeds, Montana State University, Bozeman, MT, USA, 4–14 July 1999; Spencer, N.R., Ed.; pp. 295–299.
- Anderson, K.I.; Hallett, S.G. Herbicidal spectrum and activity of Myrothecium verrucaria. Weed Sci. 2004, 52, 623–627. [Google Scholar] [CrossRef]
- Morin, L.; Gianotti, S.F.; Lauren, D.R. Trichothecene production and pathogenicity of Fusarium tumidum, a candidate bioherbicide for gorse and broom in New Zealand. Mycol. Res. 2000, 104, 993–999. [Google Scholar] [CrossRef]
- Kenney, D.S. DeVine-the way it was developed—An industrialist’s view. Weed Sci. 1986, 34, 15–16. [Google Scholar]
- Karim Dagno, R.L.; Diourté, M.; Jijakli, M.H. Present status of the development of mycoherbicides against water hyacinth: Successes and challenges. A review. Biotechnol. Agron. Soc. Environ. 2012, 16, 360–368. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, X.; Gu, M. Bioherbicides in Organic Horticulture. Horticulturae 2016, 2, 3. https://doi.org/10.3390/horticulturae2020003
Cai X, Gu M. Bioherbicides in Organic Horticulture. Horticulturae. 2016; 2(2):3. https://doi.org/10.3390/horticulturae2020003
Chicago/Turabian StyleCai, Xiaoya, and Mengmeng Gu. 2016. "Bioherbicides in Organic Horticulture" Horticulturae 2, no. 2: 3. https://doi.org/10.3390/horticulturae2020003
APA StyleCai, X., & Gu, M. (2016). Bioherbicides in Organic Horticulture. Horticulturae, 2(2), 3. https://doi.org/10.3390/horticulturae2020003