Spray-Applied RNA Interference Biopesticides: Mechanisms, Technological Advances, and Challenges Toward Sustainable Pest Management
Abstract
1. Introduction
2. Discovery and Mechanisms of RNAi
3. Application Potential of RNAi Technology in Pest Control
- Insect-specific genes: Genes such as chitin synthase are unique to arthropods, offering a high safety profile. The selection of precise target sequences within these genes maximizes control efficacy while ensuring biosafety by minimizing off-target effects on non-pest species.
- Housekeeping genes: Genes like V-ATPase are fundamental to essential cellular processes across many life forms. While silencing these targets is often highly lethal, they require rigorous bioinformatic screening to ensure sequence specificity to the pest, thereby preventing unintended harm to beneficial organisms.
- Resistance-associated genes: Genes involved in detoxification, such as P450 monooxygenases, play key roles in metabolic resistance to chemical pesticides. Targeting these genes via RNAi can re-sensitize resistant pest populations by impairing insecticide detoxification, potentially enabling effective control with lower application rates and/or fewer spray events, and thus reducing overall reliance on conventional chemical pesticides (Table 1).
4. Development and Applications of RNAi-Based Biopesticides
5. Application of Spray-Induced RNAi-Based Biopesticide in Pest Control
6. Challenges in the Application of RNAi Technology
7. Nuclease That Degrades DsRNA
8. Endocytosis
9. Methods to Improve the Efficiency of RNAi-Based Biopesticides
9.1. Dosage Optimization and Strategic Application
9.2. Improve dsRNA Stability
10. Issues That Must Be Considered for the Large-Scale Application of RNAi-Based Biopesticides
10.1. Biosafety and Environmental Impact
10.2. Low-Cost Mass Production of DsRNA
10.3. Resistance of Pests to RNAi-Based Biopesticides
11. Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gandara, L.; Jacoby, R.; Laurent, F.; Spatuzzi, M.; Vlachopoulos, N.; Borst, N.O.; Ekmen, G.; Potel, C.M.; Garrido-Rodriguez, M.; Böhmert, A.L.; et al. Pervasive sublethal effects of agrochemicals on insects at environmentally relevant concentrations. Science 2024, 386, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Lovett, B.; Bilgo, E.; Millogo, S.A.; Ouattarra, A.K.; Sare, I.; Gnambani, E.J.; Dabire, R.K.; Diabate, A.; St. Leger, R.J. Transgenic Metarhizium rapidly kills mosquitoes in a malaria-endemic region of Burkina Faso. Science 2019, 364, 894–897. [Google Scholar] [CrossRef] [PubMed]
- Weiberg, A.; Wang, M.; Lin, F.M.; Zhao, H.; Zhang, Z.; Kaloshian, I.; Huang, H.D.; Jin, H. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 2013, 342, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Wang, S. Epigenetic regulation in insect–microbe interactions. Annu. Rev. Entomol. 2025, 70, 293–311. [Google Scholar] [CrossRef]
- Carthew, R.W.; Sontheimer, E.J. Origins and mechanisms of miRNAs and siRNAs. Cell 2009, 136, 642–655. [Google Scholar] [CrossRef]
- Cedden, D.; Bucher, G. The quest for the best target genes for RNAi-mediated pest control. Insect Mol. Biol. 2025, 34, 505–517. [Google Scholar] [CrossRef]
- Cagliari, D.; Dias, N.P.; Galdeano, D.M.; Dos Santos, E.A.; Smagghe, G.; Zotti, M.J. Management of pest insects and plant diseases by non-transformative RNAi. Front. Plant Sci. 2019, 10, 1319. [Google Scholar] [CrossRef]
- Wytinck, N.; Manchur, C.L.; Li, V.H.; Whyard, S.; Belmonte, M.F. dsRNA uptake in plant pests and pathogens: Insights into RNAi-based insect and fungal control technology. Plants 2020, 9, 1780. [Google Scholar] [CrossRef]
- He, L.; Huang, Y.; Tang, X. RNAi-based pest control: Production, application and the fate of dsRNA. Front. Bioeng. Biotechnol. 2022, 10, 1080576. [Google Scholar] [CrossRef]
- Quilez-Molina, A.I.; Niño Sanchez, J.; Merino, D. The role of polymers in enabling RNAi-based technology for sustainable pest management. Nat. Commun. 2024, 15, 9158. [Google Scholar] [CrossRef]
- Yan, J.; Nauen, R.; Reitz, S.; Alyokhin, A.; Zhang, J.; Mota-Sanchez, D.; Kim, Y.; Palli, S.R.; Rondon, S.I.; Nault, B.A. The new kid on the block in insect pest management: Sprayable RNAi goes commercial. Sci. China Life Sci. 2024, 67, 1766–1768. [Google Scholar] [CrossRef]
- Arpaia, S.; Christiaens, O.; Giddings, K.; Jones, H.; Mezzetti, B.; Moronta-Barrios, F.; Perry, J.N.; Sweet, J.B.; Taning, C.N.T.; Smagghe, G.; et al. Biosafety of GM crop plants expressing dsRNA: Data requirements and EU regulatory considerations. Front. Plant Sci. 2020, 11, 940. [Google Scholar] [CrossRef]
- Ahmad, S.; Jamil, M.; Lodhi, A.F.; Barati, Z.; Kakar, M.U.; Gao, Y.; Zhang, W. RNAi revolution in agriculture: Unlocking mechanisms, overcoming delivery challenges, and advancing sustainable pest control. Pest. Manag. Sci. 2025, 81, 6029–6040. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Xu, J.; Shen, W.; Zhang, S.; Xu, Z.; Zhu, K.Y. Development and evaluation of RNA microsphere-based RNAi approaches for managing the striped flea beetle (Phyllotreta striolata), a globally destructive pest of Cruciferae crops. Pest. Manag. Sci. 2025, 81, 1529–1538. [Google Scholar] [CrossRef] [PubMed]
- Mathur, S.; Chaturvedi, A.; Ranjan, R. Advances in RNAi-based nanoformulations: Revolutionizing crop protection and stress tolerance in agriculture. Nanoscale Adv. 2025, 7, 1768–1783. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Kim, D.S.; Zhang, J. Plastid-mediated RNA interference: A potential strategy for efficient pest control. Plant Cell Environ. 2023, 46, 2595–2605. [Google Scholar] [CrossRef]
- Tardin-Coelho, R.; Fletcher, S.; Manzie, N.; Gunasekara, S.N.; Fidelman, P.; Mitter, N.; Ashworth, P. A systematic review on public perceptions of RNAi-based biopesticides: Developing social licence to operate. NPJ Sustain. Agric. 2025, 3, 15. [Google Scholar] [CrossRef]
- Rinaldi, A.; Mat Jalaluddin, N.S.; Mohd Hussain, R.B.; Abdul Ghapor, A. Building public trust and acceptance towards spray-on RNAi biopesticides: Lessons from current ethical, legal and social discourses. GM Crops Food 2025, 16, 398–412. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Lu, W.; Yin, X.; An, S. Application progress of plant-mediated RNAi in pest control. Front. Bioeng. Biotechnol. 2022, 10, 963026. [Google Scholar] [CrossRef]
- Spina, D.; Pappalardo, G.; Raimondo, M.; Califano, G.; Di Vita, G.; Caracciolo, F.; D’Amico, M. Cultivating trust: Public perception of RNAi technologies in agriculture. Int. J. Food Sci. Technol. 2025, 60, vvaf066. [Google Scholar] [CrossRef]
- Hammond, S.M.; Caudy, A.A.; Hannon, G.J. Post-transcriptional gene silencing by double-stranded RNA. Nat. Rev. Genet. 2001, 2, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Napoli, C.; Lemieux, C.; Jorgensen, R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 1990, 2, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Romano, N.; Macino, G. Quelling: Transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol. Microbiol. 1992, 6, 3343–3353. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Kemphues, K.J. Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 1995, 81, 611–620. [Google Scholar] [CrossRef]
- Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806–811. [Google Scholar] [CrossRef]
- Meister, G.; Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 2004, 431, 343–349. [Google Scholar] [CrossRef]
- Miyoshi, K.; Tsukumo, H.; Nagami, T.; Siomi, H.; Siomi, M.C. Slicer function of Drosophila argonautes and its involvement in RISC formation. Genes Dev. 2005, 19, 2837–2848. [Google Scholar] [CrossRef]
- Matranga, C.; Tomari, Y.; Shin, C.; Bartel, D.P.; Zamore, P.D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 2005, 123, 607–620. [Google Scholar] [CrossRef]
- Chen, H.M.; Chen, L.T.; Patel, K.; Li, Y.H.; Baulcombe, D.C.; Wu, S.H. 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc. Natl. Acad. Sci. USA 2010, 107, 15269–15274. [Google Scholar] [CrossRef]
- Zhu, K.Y.; Palli, S.R. Mechanisms, applications, and challenges of insect RNA interference. Annu. Rev. Entomol. 2020, 65, 293–311. [Google Scholar] [CrossRef]
- Turner, C.T.; Davy, M.W.; MacDiarmid, R.M.; Plummer, K.M.; Birch, N.P.; Newcomb, R.D. RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol. Biol. 2006, 15, 383–391. [Google Scholar] [CrossRef]
- Shakesby, A.J.; Wallace, I.S.; Isaacs, H.V.; Pritchard, J.; Roberts, D.M.; Douglas, A.E. A water-specific aquaporin involved in aphid osmoregulation. Insect Biochem. Mol. Biol. 2009, 39, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bautista, M.A.; Miyata, T.; Miura, K.; Tanaka, T. RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochem. Mol. Biol. 2009, 39, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wheeler, M.M.; Oi, F.M.; Scharf, M.E. RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA. Insect Biochem. Mol. Biol. 2008, 38, 805–815. [Google Scholar] [CrossRef] [PubMed]
- Kola, V.S.; Renuka, P.; Madhav, M.S.; Mangrauthia, S.K. Key enzymes and proteins of crop insects as candidate for RNAi based gene silencing. Front. Physiol. 2015, 6, 119. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, H.W.; Huang, H.J.; Xue, J.; Wu, W.J.; Bao, Y.Y.; Xu, H.J.; Zhu, Z.R.; Cheng, J.A.; Zhang, C.X. Chitin synthase 1 gene and its two alternative splicing variants from two sap-sucking insects, Nilaparvata lugens and Laodelphax striatellus (Hemiptera: Delphacidae). Insect Biochem. Mol. Biol. 2012, 42, 637–646. [Google Scholar] [CrossRef]
- Zhao, Y.; Sui, X.; Xu, L.; Liu, G.; Lu, L.; You, M.; Xie, C.; Li, B.; Ni, Z.; Liang, R. Plant-mediated RNAi of grain aphid CHS1 gene confers common wheat resistance against aphids. Pest. Manag. Sci. 2018, 74, 2754–2760. [Google Scholar] [CrossRef]
- Zhao, W.J.; Li, Y.; Jiao, Z.L.; Su, P.P.; Yang, L.B.; Sun, C.Q.; Xiu, J.F.; Shang, X.L.; Guo, G. Function analysis and characterisation of a novel chitinase, MdCht9, in Musca domestica. Insect Mol. Biol. 2024, 33, 157–172. [Google Scholar]
- Jiao, Z.; Su, P.; Li, Y.; Zhao, W.; Yang, L.; Sun, C.; Xiu, J.; Shang, X.; Guo, G. Identification and function analysis of chitinase 2 gene in housefly, Musca domestica. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2022, 259, 110717. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, H.; Zhou, W.; Li, C.; Chen, Y.N.; Zhang, Q.; Fu, K.Y.; Guo, W.C.; Shi, J.F. Identification of chitinase genes and roles in the larval-pupal transition of Leptinotarsa decemlineata. Pest. Manag. Sci. 2024, 80, 282–295. [Google Scholar] [CrossRef]
- Zhu, J.Q.; Liu, S.; Ma, Y.; Zhang, J.Q.; Qi, H.S.; Wei, Z.J.; Yao, Q.; Zhang, W.Q.; Li, S. Improvement of pest resistance in transgenic tobacco plants expressing dsRNA of an insect-associated gene EcR. PLoS ONE 2012, 7, e38572. [Google Scholar] [CrossRef]
- Jin, S.; Singh, N.D.; Li, L.; Zhang, X.; Daniell, H. Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa zea larval development and pupation. Plant Biotechnol. J. 2015, 13, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Shan, J.; Li, R.; Liang, P.; Gao, X. Identification and RNAi-based function analysis of chitinase family genes in diamondback moth, Plutella xylostella. Pest. Manag. Sci. 2019, 75, 1951–1961. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Situ, G.; He, K.; Xiao, H.; Su, C.; Li, F. Functional analysis of eight chitinase genes in rice stem borer and their potential application in pest control. Insect Mol. Biol. 2018, 27, 835–846. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Chen, J.; Yao, Q.; Pan, Z.; Xu, W.; Wang, S.; Zhang, W. Characterization of a trehalose-6-phosphate synthase gene from Spodoptera exigua and its function identification through RNA interference. J. Insect Physiol. 2010, 56, 813–821. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, J.; Yang, J.; Wu, S.; Teng, X.; Han, H.; Xu, Y.; Qian, X.; Zhu, W.; Yang, Y. Microfluidic-based dsRNA delivery nanoplatform for efficient Spodoptera exigua Control. J. Agric. Food Chem. 2024, 72, 12508–12515. [Google Scholar] [CrossRef]
- Li, D.; Zhang, J.; Yang, Y.; Liu, J.; Lu, J.; Ren, M.; Abbas, M.; Zhu, K.Y.; Zhang, J. Identification and RNAi-based functional analysis of chitinase family genes in Agrotis ipsilon. Pest. Manag. Sci. 2022, 78, 4278–4287. [Google Scholar] [CrossRef]
- Baum, J.A.; Bogaert, T.; Clinton, W.; Heck, G.R.; Feldmann, P.; Ilagan, O.; Johnson, S.; Plaetinck, G.; Munyikwa, T.; Pleau, M.; et al. Control of coleopteran insect pests through RNA interference. Nat. Biotechnol. 2007, 25, 1322–1326. [Google Scholar] [CrossRef]
- Bolognesi, R.; Ramaseshadri, P.; Anderson, J.; Bachman, P.; Clinton, W.; Flannagan, R.; Ilagan, O.; Lawrence, C.; Levine, S.; Moar, W.; et al. Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera LeConte). PLoS ONE 2012, 7, e47534. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, Q.; Kang, Z.H.; Wen, J.X.; Yang, Y.B.; Lu, X.J.; Guo, W.; Zhao, D. Novel environmentally friendly RNAi biopesticides: Targeting V-ATPase in Holotrichia parallela larvae using Layered double hydroxide nanocomplexes. J. Agric. Food Chem. 2024, 72, 11381–11391. [Google Scholar] [CrossRef]
- Guo, C.F.; Qiu, J.H.; Hu, Y.W.; Xu, P.P.; Deng, Y.Q.; Tian, L.; Wei, Y.Y.; Sang, W.; Liu, Y.T.; Qiu, B.L. Silencing of V-ATPase-E gene causes midgut apoptosis of Diaphorina citri and affects its acquisition of Huanglongbing pathogen. Insect Sci. 2023, 30, 1022–1034. [Google Scholar] [CrossRef]
- Qiu, L.; Sun, Y.; Jiang, Z.; Yang, P.; Liu, H.; Zhou, H.; Wang, X.; Zhang, W.; Lin, Y.; Ma, W. The midgut V-ATPase subunit A gene is associated with toxicity to crystal 2Aa and crystal 1Ca-expressing transgenic rice in Chilo suppressalis. Insect Mol. Biol. 2019, 28, 520–527. [Google Scholar] [CrossRef]
- Khan, A.M.; Ashfaq, M.; Khan, A.A.; Naseem, M.T.; Mansoor, S. Evaluation of potential RNA-interference-target genes to control cotton mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcuidae). Insect Sci. 2018, 25, 778–786. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, Y.; Zhao, J.; Gao, Y.; Liu, Z.; Zhang, P.; Fan, R.; Xing, S.; Zhou, X. Target gene selection for RNAi-based biopesticides against the hawthorn spider mite, Amphitetranychus viennensis (Acari: Tetranychidae). Pest. Manag. Sci. 2023, 79, 2482–2492. [Google Scholar] [CrossRef] [PubMed]
- Pang, R.; Chen, M.; Liang, Z.; Yue, X.; Ge, H.; Zhang, W. Functional analysis of CYP6ER1, a P450 gene associated with imidacloprid resistance in Nilaparvata lugens. Sci. Rep. 2016, 6, 34992. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Fu, B.; Yin, C.; Gong, P.; Liu, S.; Yang, J.; Wei, X.; Liang, J.; Xue, H.; He, C.; et al. Cytochrome P450 CYP6EM1 underpins dinotefuran resistance in the whitefly Bemisia tabaci. J. Agric. Food Chem. 2024, 72, 5153–5164. [Google Scholar] [CrossRef]
- Ding, Y.; Li, J.; Yan, K.; Jin, L.; Fan, C.; Bi, R.; Kong, H.; Pan, Y.; Shang, Q. CF2–II Alternative Splicing Isoform Regulates the Expression of Xenobiotic Tolerance-Related Cytochrome P450 CYP6CY22 in Aphis gossypii Glover. J. Agric. Food Chem. 2024, 72, 3406–3414. [Google Scholar] [CrossRef]
- Zhu, W.; Yu, R.; Wu, H.; Zhang, X.; Liu, Y.; Zhu, K.Y.; Zhang, J.; Ma, E. Identification and characterization of two CYP9A genes associated with pyrethroid detoxification in Locusta migratoria. Pestic. Biochem. Physiol. 2016, 132, 65–71. [Google Scholar] [CrossRef]
- Mao, Y.B.; Cai, W.J.; Wang, J.W.; Hong, G.J.; Tao, X.Y.; Wang, L.J.; Huang, Y.P.; Chen, X.Y. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat. Biotechnol. 2007, 25, 1307–1313. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Tai, S.; Qi, L.; Yu, X.; Dai, W. Transcription factor CncC potentially regulates cytochrome P450 CYP321A1-mediated flavone tolerance in Helicoverpa armigera. Pestic. Biochem. Physiol. 2023, 191, 105360. [Google Scholar] [CrossRef]
- Wang, R.L.; Zhu-Salzman, K.; Baerson, S.R.; Xin, X.W.; Li, J.; Su, Y.J.; Zeng, R.S. Identification of a novel cytochrome P450 CYP321B1 gene from tobacco cutworm (Spodoptera litura) and RNA interference to evaluate its role in commonly used insecticides. Insect Sci. 2017, 24, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Tian, Z.; Li, R.; Ni, S.; Sun, H.; Yin, F.; Li, Z.; Zhang, Y.; Li, Y. Key Contributions of the Overexpressed Plutella xylostella Sigma Glutathione S-Transferase 1 Gene (PxGSTs1) in the Resistance Evolution to Multiple Insecticides. J. Agric. Food Chem. 2024, 72, 2560–2572. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, H.; Li, H.; Miao, X. Second-generation sequencing supply an effective way to screen RNAi targets in large scale for potential application in pest insect control. PLoS ONE 2011, 6, e18644. [Google Scholar] [CrossRef] [PubMed]
- San Miguel, K.; Scott, J.G. The next generation of insecticides: dsRNA is stable as a foliar-applied insecticide. Pest. Manag. Sci. 2016, 72, 801–809. [Google Scholar] [CrossRef]
- Hunter, W.B.; Glick, E.; Paldi, N.; Bextine, B.R. Advances in RNA interference: dsRNA treatment in trees and grapevines for insect pest suppression. Southwest. Entomol. 2012, 37, 85–87. [Google Scholar] [CrossRef]
- Gogoi, A.; Sarmah, N.; Kaldis, A.; Perdikis, D.; Voloudakis, A. Plant insects and mites uptake double-stranded RNA upon its exogenous application on tomato leaves. Planta 2017, 246, 1233–1241. [Google Scholar] [CrossRef]
- De Schutter, K.; Taning, C.N.T.; Van Daele, L.; Van Damme, E.J.M.; Dubruel, P.; Smagghe, G. RNAi-Based biocontrol products: Market status, regulatory aspects, and risk assessment. Front. Insect Sci. 2021, 1, 818037. [Google Scholar] [CrossRef]
- Bramlett, M.; Plaetinck, G.; Maienfisch, P. RNA-based biocontrols—A new paradigm in crop protection. Engineering 2020, 6, 522–527. [Google Scholar] [CrossRef]
- Zhu, Q.; Arakane, Y.; Beeman, R.W.; Kramer, K.J.; Muthukrishnan, S. Functional specialization among insect chitinase family genes revealed by RNA interference. Proc. Natl. Acad. Sci. USA 2008, 105, 6650–6655. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, X.; Wang, X.; Yu, D.; Chen, B.; Kang, L. Differential responses of migratory locusts to systemic RNA interference via double-stranded RNA injection and feeding. Insect Mol. Biol. 2013, 22, 574–583. [Google Scholar] [CrossRef]
- Miller, S.C.; Miyata, K.; Brown, S.J.; Tomoyasu, Y. Dissecting systemic RNA interference in the red flour beetle Tribolium castaneum: Parameters affecting the efficiency of RNAi. PLoS ONE 2012, 7, e47431. [Google Scholar] [CrossRef] [PubMed]
- Terenius, O.; Papanicolaou, A.; Garbutt, J.S.; Eleftherianos, I.; Huvenne, H.; Kanginakudru, S.; Albrechtsen, M.; An, C.; Aymeric, J.L.; Barthel, A.; et al. RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design. J. Insect Physiol. 2011, 57, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Zhang, J.; Li, D.; Cooper, A.M.W.; Silver, K.; Li, T.; Liu, X.; Ma, E.; Zhu, K.Y.; Zhang, J. A double-stranded RNA degrading enzyme reduces the efficiency of oral RNA interference in migratory locust. Insect Biochem. Mol. Biol. 2017, 86, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Guan, R.B.; Li, H.C.; Fan, Y.J.; Hu, S.R.; Christiaens, O.; Smagghe, G.; Miao, X.X. A nuclease specific to lepidopteran insects suppresses RNAi. J. Biol. Chem. 2018, 293, 6011–6021. [Google Scholar] [CrossRef]
- Prentice, K.; Smagghe, G.; Gheysen, G.; Christiaens, O. Nuclease activity decreases the RNAi response in the sweetpotato weevil Cylas puncticollis. Insect Biochem. Mol. Biol. 2019, 110, 80–89. [Google Scholar] [CrossRef]
- Christiaens, O.; Swevers, L.; Smagghe, G. DsRNA degradation in the pea aphid (Acyrthosiphon pisum) associated with lack of response in RNAi feeding and injection assay. Peptides 2014, 53, 307–314. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, K.; Fu, W.; Sheng, C.; Han, Z. Biochemical comparison of dsRNA degrading nucleases in four different insects. Front. Physiol. 2018, 9, 624. [Google Scholar] [CrossRef]
- Cooper, A.M.; Silver, K.; Zhang, J.; Park, Y.; Zhu, K.Y. Molecular mechanisms influencing efficiency of RNA interference in insects. Pest. Manag. Sci. 2019, 75, 18–28. [Google Scholar] [CrossRef]
- Friedhoff, P.; Kolmes, B.; Gimadutdinow, O.; Wende, W.; Krause, K.L.; Pingoud, A. Analysis of the mechanism of the Serratia nuclease using site-directed mutagenesis. Nucleic Acids Res. 1996, 24, 2632–2639. [Google Scholar] [CrossRef]
- Friedhoff, P.; Meiss, G.; Kolmes, B.; Pieper, U.; Gimadutdinow, O.; Urbanke, C.; Pingoud, A. Kinetic analysis of the cleavage of natural and synthetic substrates by the Serratia nuclease. Eur. J. Biochem. 1996, 241, 572–580. [Google Scholar] [CrossRef]
- Arimatsu, Y.; Kotani, E.; Sugimura, Y.; Furusawa, T. Molecular characterization of a cDNA encoding extracellular dsRNase and its expression in the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 2007, 37, 176–183. [Google Scholar] [CrossRef]
- Zheng, H.; Hua, M.; Jiang, M.; Jiang, C.; Xi, Y.; Deng, J.; Xu, H.; Zeng, B.; Zhou, S. Transgenic expression of mAChR-C dsRNA in maize confers efficient locust control. Plant Commun. 2025, 6, 101316. [Google Scholar] [CrossRef]
- Tan, J.; Sheng, C.-W.; Karthi, S.; Jiang, N.; Zhang, C.; Du, H.; Zhao, K.; Liu, S.; Li, M.-Y.; Chen, J. New Insights into expanding the insecticidal spectrum of dsRNA mediated by the high sequence identity between dsRNA and nontarget mRNA. J. Agric. Food Chem. 2025, 73, 4605–4616. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Fan, Y.; Zhang, J.; Cooper, A.M.; Silver, K.; Li, D.; Li, T.; Ma, E.; Zhu, K.Y.; Zhang, J. Contributions of dsRNases to differential RNAi efficiencies between the injection and oral delivery of dsRNA in Locusta migratoria. Pest. Manag. Sci. 2019, 75, 1707–1717. [Google Scholar] [CrossRef] [PubMed]
- Bucher, G.; Scholten, J.; Klingler, M. Parental RNAi in Tribolium (Coleoptera). Curr. Biol. 2002, 12, R85–R86. [Google Scholar] [CrossRef] [PubMed]
- Tomoyasu, Y.; Miller, S.C.; Tomita, S.; Schoppmeier, M.; Grossmann, D.; Bucher, G. Exploring systemic RNA interference in insects: A genome-wide survey for RNAi genes in Tribolium. Genome Biol. 2008, 9, R10. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, X.; Yu, D.; Kang, L. The SID-1 double-stranded RNA transporter is not required for systemic RNAi in the migratory locust. RNA Biol. 2012, 9, 663–671. [Google Scholar] [CrossRef]
- Saleh, M.C.; van Rij, R.P.; Hekele, A.; Gillis, A.; Foley, E.; O’Farrell, P.H.; Andino, R. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nat. Cell Biol. 2006, 8, 793–802. [Google Scholar] [CrossRef]
- Ulvila, J.; Parikka, M.; Kleino, A.; Sormunen, R.; Ezekowitz, R.A.; Kocks, C.; Ramet, M. Double-stranded RNA is internalized by scavenger receptor-mediated endocytosis in Drosophila S2 cells. J. Biol. Chem. 2006, 281, 14370–14375. [Google Scholar]
- Wu, K.; Hoy, M.A. Clathrin heavy chain is important for viability, oviposition, embryogenesis and, possibly, systemic RNAi response in the predatory mite Metaseiulus occidentalis. PLoS ONE 2014, 9, e110874. [Google Scholar] [CrossRef]
- Wynant, N.; Santos, D.; Van Wielendaele, P.; Vanden Broeck, J. Scavenger receptor-mediated endocytosis facilitates RNA interference in the desert locust, Schistocerca gregaria. Insect Mol. Biol. 2014, 23, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Gao, X.; Xu, J.; Liang, X.; Li, Q.; Yao, J.; Zhu, K.Y. Clathrin-dependent endocytosis plays a predominant role in cellular uptake of double-stranded RNA in the red flour beetle. Insect Biochem. Mol. Biol. 2015, 60, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Cappelle, K.; de Oliveira, C.F.; Van Eynde, B.; Christiaens, O.; Smagghe, G. The involvement of clathrin-mediated endocytosis and two Sid-1-like transmembrane proteins in double-stranded RNA uptake in the Colorado potato beetle midgut. Insect Mol. Biol. 2016, 25, 315–323. [Google Scholar] [CrossRef] [PubMed]
- He, Z.B.; Cao, Y.Q.; Xia, Y.X. Optimization of parental RNAi conditions for hunchback gene in Locusta migratoria manilensis (Meyen). Insect Sci. 2010, 17, 1–6. [Google Scholar] [CrossRef]
- Li, X.; Fu, L.; Lu, Y.; Wu, Q.; Qiao, X.; Wan, F.; Liu, B.; Qian, W.; Li, Z. A Targeted RNAi-of-RNAi Strategy to Overcome Nuclease-Mediated RNAi Suppression and Enhance RNAi Efficacy in Lepidoptera Pest, Cydia pomonella. J. Agric. Food Chem. 2025, 73, 28788–28801. [Google Scholar] [CrossRef]
- Cedden, D.; Güney, G. Small RNAs in insects: Emerging classes and functions. Curr. Opin. Insect Sci. 2026, 73, 101458. [Google Scholar] [CrossRef]
- Castellanos, N.L.; Smagghe, G.; Sharma, R.; Oliveira, E.E.; Christiaens, O. Liposome encapsulation and EDTA formulation of dsRNA targeting essential genes increase oral RNAi-caused mortality in the Neotropical stink bug Euschistus heros. Pest. Manag. Sci. 2019, 75, 537–548. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Zhu, K.Y. Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol. Biol. 2010, 19, 683–693. [Google Scholar] [CrossRef]
- Avila, L.A.; Chandrasekar, R.; Wilkinson, K.E.; Balthazor, J.; Heerman, M.; Bechard, J.; Brown, S.; Park, Y.; Dhar, S.; Reeck, G.R.; et al. Delivery of lethal dsRNAs in insect diets by branched amphiphilic peptide capsules. J. Control Release 2018, 273, 139–146. [Google Scholar] [CrossRef]
- Ma, Z.; Zheng, Y.; Chao, Z.; Chen, H.; Zhang, Y.; Yin, M.; Shen, J.; Yan, S. Visualization of the process of a nanocarrier-mediated gene delivery: Stabilization, endocytosis and endosomal escape of genes for intracellular spreading. J. Nanobiotechnol. 2022, 20, 124. [Google Scholar] [CrossRef]
- Christiaens, O.; Tardajos, M.G.; Martinez Reyna, Z.L.; Dash, M.; Dubruel, P.; Smagghe, G. Increased RNAi Efficacy in Spodoptera exigua via the formulation of dsRNA with guanylated polymers. Front. Physiol. 2018, 9, 316. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.H.; Huang, J.H.; Liu, Y.; Belles, X.; Lee, H.J. Oral delivery of dsRNA lipoplexes to German cockroach protects dsRNA from degradation and induces RNAi response. Pest. Manag. Sci. 2017, 73, 960–966. [Google Scholar] [PubMed]
- Su, C.; Liu, S.; Sun, M.; Yu, Q.; Li, C.; Graham, R.I.; Wang, X.; Wang, X.; Xu, P.; Ren, G. Delivery of methoprene-tolerant dsRNA to improve RNAi efficiency by modified liposomes for pest control. ACS Appl. Mater. Interfaces 2023, 15, 13576–13588. [Google Scholar] [CrossRef] [PubMed]
- Ramesh Kumar, D.; Saravana Kumar, P.; Gandhi, M.R.; Al-Dhabi, N.A.; Paulraj, M.G.; Ignacimuthu, S. Delivery of chitosan/dsRNA nanoparticles for silencing of wing development vestigial (vg) gene in Aedes aegypti mosquitoes. Int. J. Biol. Macromol. 2016, 86, 89–95. [Google Scholar] [CrossRef]
- Kolge, H.; Kadam, K.; Galande, S.; Lanjekar, V.; Ghormade, V. New frontiers in pest control: Chitosan nanoparticles-shielded dsRNA as an effective topical RNAi spray for gram podborer biocontrol. ACS Appl. Bio Mater. 2021, 4, 5145–5157. [Google Scholar] [CrossRef]
- Kolge, H.; Kadam, K.; Ghormade, V. Chitosan nanocarriers mediated dsRNA delivery in gene silencing for Helicoverpa armigera biocontrol. Pestic. Biochem. Physiol. 2023, 189, 105292. [Google Scholar] [CrossRef]
- Dhandapani, R.K.; Gurusamy, D.; Howell, J.L.; Palli, S.R. Development of CS-TPP-dsRNA nanoparticles to enhance RNAi efficiency in the yellow fever mosquito, Aedes aegypti. Sci. Rep. 2019, 9, 8775. [Google Scholar]
- Lyu, Z.; Xiong, M.; Mao, J.; Li, W.; Jiang, G.; Zhang, W. A dsRNA delivery system based on the rosin-modified polyethylene glycol and chitosan induces gene silencing and mortality in Nilaparvata lugens. Pest. Manag. Sci. 2023, 79, 1518–1527. [Google Scholar] [CrossRef]
- He, B.; Chu, Y.; Yin, M.; Mullen, K.; An, C.; Shen, J. Fluorescent nanoparticle delivered dsRNA toward genetic control of insect pests. Adv. Mater. 2013, 25, 4580–4584. [Google Scholar] [CrossRef]
- Zheng, Y.; Hu, Y.; Yan, S.; Zhou, H.; Song, D.; Yin, M.; Shen, J. A polymer/detergent formulation improves dsRNA penetration through the body wall and RNAi-induced mortality in the soybean aphid Aphis glycines. Pest. Manag. Sci. 2019, 75, 1993–1999. [Google Scholar] [CrossRef]
- Gillet, F.X.; Garcia, R.A.; Macedo, L.L.P.; Albuquerque, E.V.S.; Silva, M.C.M.; Grossi-de-Sa, M.F. Investigating engineered ribonucleoprotein particles to Improve oral RNAi delivery in crop insect pests. Front. Physiol. 2017, 8, 256. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.G.; Fletcher, S.J.; Manzie, N.; Robinson, K.E.; Li, P.; Lu, E.; Brosnan, C.A.; Xu, Z.P.; Mitter, N. Foliar application of clay-delivered RNA interference for whitefly control. Nat. Plants 2022, 8, 535–548. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Zhang, T.; Ni, X.; Zhu, Y.; Chen, Q.; Bamu, A.; Dai, H.; Lin, X. Engineered RNA nanostructures for scalable and efficient RNAi-based pesticides. Trends Biotechnol. 2025, 43, 3172–3195. [Google Scholar] [CrossRef] [PubMed]
- DeWitte-Orr, S.J.; Mehta, D.R.; Collins, S.E.; Suthar, M.S.; Gale, M., Jr.; Mossman, K.L. Long double-stranded RNA induces an antiviral response independent of IFN regulatory factor 3, IFN-beta promoter stimulator 1, and IFN. J. Immunol. 2009, 183, 6545–6553. [Google Scholar] [CrossRef]
- Whitehead, K.A.; Dahlman, J.E.; Langer, R.S.; Anderson, D.G. Silencing or stimulation? siRNA delivery and the immune system. Annu. Rev. Chem. Biomol. Eng. 2011, 2, 77–96. [Google Scholar] [CrossRef]
- Dávalos, A.; Henriques, R.; Latasa, M.J.; Laparra, M.; Coca, M. Literature review of baseline information on non-coding RNA (ncRNA) to support the risk assessment of ncRNA-based genetically modified plants for food and feed. EFSA Support. Publ. 2019, 16, 1688E. [Google Scholar] [CrossRef]
- Dubelman, S.; Fischer, J.; Zapata, F.; Huizinga, K.; Jiang, C.; Uffman, J.; Levine, S.; Carson, D. Environmental fate of double-stranded RNA in agricultural soils. PLoS ONE 2014, 9, e93155. [Google Scholar] [CrossRef]
- Fischer, J.R.; Zapata, F.; Dubelman, S.; Mueller, G.M.; Jensen, P.D.; Levine, S.L. Characterizing a novel and sensitive method to measure dsRNA in soil. Chemosphere 2016, 161, 319–324. [Google Scholar] [CrossRef]
- Bakhat, N.; Jiménez-Sánchez, A.; Ruiz-Jiménez, L.; Padilla-Roji, I.; Velasco, L.; Pérez-García, A.; Fernández-Ortuño, D. Fungal effector genes involved in the suppression of chitin signaling as novel targets for the control of powdery mildew disease via a nontransgenic RNA interference approach. Pest. Manag. Sci. 2025, 81, 3452–3463. [Google Scholar] [CrossRef]
- Mitter, N.; Worrall, E.A.; Robinson, K.E.; Li, P.; Jain, R.G.; Taochy, C.; Fletcher, S.J.; Carroll, B.J.; Lu, G.Q.; Xu, Z.P. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 2017, 3, 16207. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, G.; He, L.; Liu, Z.; Yang, J.; Gao, Y.; Fan, R.; Du, F. Mineral Oil Encapsulation Enhances dsRNA-Based Acaricidal Activity against Amphitetranychus viennensis. ACS Appl. Bio Mater. 2025, 8, 11155–11166. [Google Scholar] [CrossRef]
- Hunter, W. RNA Interference—Natural gene-based technology for highly specific pest control (HiSPeC). In RNA Interference; IntechOpen: Rijeka, Croatia, 2016. [Google Scholar]
- Taracena, M.L.; Oliveira, P.L.; Almendares, O.; Umana, C.; Lowenberger, C.; Dotson, E.M.; Paiva-Silva, G.O.; Pennington, P.M. Genetically modifying the insect gut microbiota to control Chagas disease vectors through systemic RNAi. PLoS Negl. Trop. Dis. 2015, 9, e0003358. [Google Scholar] [CrossRef] [PubMed]
- Niehl, A.; Soininen, M.; Poranen, M.M.; Heinlein, M. Synthetic biology approach for plant protection using dsRNA. Plant Biotechnol. J. 2018, 16, 1679–1687. [Google Scholar] [CrossRef] [PubMed]
- Zotti, M.; Dos Santos, E.A.; Cagliari, D.; Christiaens, O.; Taning, C.N.T.; Smagghe, G. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Pest. Manag. Sci. 2018, 74, 1239–1250. [Google Scholar] [CrossRef]
- Yu, X.D.; Liu, Z.C.; Huang, S.L.; Chen, Z.Q.; Sun, Y.W.; Duan, P.F.; Ma, Y.Z.; Xia, L.Q. RNAi-mediated plant protection against aphids. Pest. Manag. Sci. 2016, 72, 1090–1098. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.G.; Michel, K.; Bartholomay, L.C.; Siegfried, B.D.; Hunter, W.B.; Smagghe, G.; Zhu, K.Y.; Douglas, A.E. Towards the elements of successful insect RNAi. J. Insect Physiol. 2013, 59, 1212–1221. [Google Scholar] [CrossRef]
- Khajuria, C.; Ivashuta, S.; Wiggins, E.; Flagel, L.; Moar, W.; Pleau, M.; Miller, K.; Zhang, Y.; Ramaseshadri, P.; Jiang, C.; et al. Development and characterization of the first dsRNA-resistant insect population from western corn rootworm, Diabrotica virgifera virgifera LeConte. PLoS ONE 2018, 13, e0197059. [Google Scholar] [CrossRef]
- Liu, S.; Jaouannet, M.; Dempsey, D.A.; Imani, J.; Coustau, C.; Kogel, K.H. RNA-based technologies for insect control in plant production. Biotechnol. Adv. 2020, 39, 107463. [Google Scholar] [CrossRef]
- Szekacs, A.; Ammour, A.S.; Mendelsohn, M.L. Editorial: RNAi based pesticides. Front. Plant Sci. 2021, 12, 714116. [Google Scholar] [CrossRef]
- Naito, Y.; Yamada, T.; Matsumiya, T.; Ui-Tei, K.; Saigo, K.; Morishita, S. dsCheck: Highly sensitive off-target search software for double-stranded RNA-mediated RNA interference. Nucleic Acids Res. 2005, 33, W589–W591. [Google Scholar] [CrossRef]
- Kunte, N.; McGraw, E.; Bell, S.; Held, D.; Avila, L.A. Prospects, challenges and current status of RNAi through insect feeding. Pest. Manag. Sci. 2020, 76, 26–41. [Google Scholar] [CrossRef]
| Target Gene | Species | Mode of Action | Action Effect | Reference |
|---|---|---|---|---|
| Category 1. Insect-specific target genes | ||||
| CHSA1 | Nilaparvata lugens | Injection | High mortality rate under low-dosage treatment | [36] |
| TPS | Nilaparvata lugens | Feeding | The survival rate decreased by about 30% | [29] |
| CHSA | Sitobion avanae | Genetically modified plants | The number of aphids on host plants decreased by half | [37] |
| Cht9 | Musca domestica | Injection | The expression level of target genes significantly decreased, resulting in a mortality rate of over half and accompanied by wing deformities | [38] |
| Cht2 | Musca domestica | Injection | Abnormal emergence accompanied by increased mortality rate | [39] |
| Chts | Leptinotarsa decemlineata | Feeding | The metamorphosis and development of larvae were significantly inhibited, accompanied by an increase in mortality rate | [40] |
| EcR | Helicoverpa armigera | Genetically modified plants | The harm to the host was significantly reduced and about 40% of developmental abnormalities occured | [41] |
| CHSA | Helicoverpa armigera | Genetically modified plants | The pupation rate decreased to 46.7% | [42] |
| Cht5/7/10 | Plutella xylostella | Injection | The emergence rate significantly decreased | [43] |
| Cht5/6/8 | Chilo suppressalis | Injection | The emergence rate significantly decreased | [44] |
| TPS | Spodoptera exigua | Injection | The survival rate on the 2nd day after treatment was only 49.1% | [45] |
| CHSB | Spodoptera exigua | Feeding | The expression level of target genes was significantly reduced, leading to developmental disorders and increased mortality rates | [46] |
| Chts | Agrotis ipsilon | Injection | Obstructive molting and increased mortality rate | [47] |
| Category 2. Efficient housekeeping genes | ||||
| Snf7 | Diabrotica virgifera virgifera | Feeding | Significant lethality at low doses | [48] |
| Snf7 | Diabrotica virgifera virgifera | Feeding | The target gene level was significantly reduced and produced a systematic RNAi effect, which not only achieved a high mortality rate but also had a lethal effect on non-target pest Diabrotica undecimpunctata howardi | [49] |
| V-ATPase A | Holotrichia parallela | Feeding | Damage to the cuticle and midgut structures, hindered development, and increased mortality rate | [50] |
| V-ATP-E | Diaphorina citri | Feeding | Significant increases in mortality, weight loss, and midgut cell apoptosis | [51] |
| V-ATP | Helicoverpa armigera | Genetically modified plants | The vitality and pupation rate of larvae were significantly reduced | [42] |
| V-ATPase A | Chilo suppressalis | Genetically modified plants | Interacting with Bt toxins (Cry1Ca and Cry2Aa) | [52] |
| V-ATP | Phenacoccus solenopsis | Genetically modified plants | After consuming genetically modified tobacco, the corrected mortality rate reached 30% | [53] |
| V-ATPase A | Amphitetranychus viennensis | Feeding | The mortality rate has increased to around 90%, and the reproductive capacity has decreased by over 90% | [54] |
| Category 3. Resistance-associated genes | ||||
| CYP6ER1 | Nilaparvata lugens | Injection | The mortality rate of imidacloprid increased by 34.42% compared to the control group | [55] |
| CYP6EM1 | Bemisia tabaci | Feeding | Enhancing the sensitivity of Bemisia tabaci to dinotefuran, resulting in a significant increase in mortality rate | [56] |
| CYP6CY22 | Aphis gossypii | Feeding | The mortality rate of Aphis gossypii exposed to cyantraniliprole increased by 2.08 times | [57] |
| CYP9A3 | Locusta migratoria | Injection | The mortality rate of nymphs was greatly increased by deltamethyrin and permethrin | [58] |
| CYP9AQ1 | Locusta migratoria | Injection | The lethality of tau-fluvalinate to nymphs increased by 29.8–53.0% | [58] |
| CYP6AE14 | Helicoverpa armigera | Genetically modified plants | Reducing tolerance to gossypol, leading to an increased mortality rate | [59] |
| CYP321A1 | Helicoverpa armigera | Injection | Significantly reducing the tolerance to flavonoids | [60] |
| CYP321B1 | Spodoptera litura | Injection | The mortality rates of chlorpyrifos and deltamethrin increased by 25.6% and 38.9%, respectively | [61] |
| GSTs1 | Plutella xylostella | Feeding | Reducing the tolerance to four insecticides | [62] |
| Nanocarrier Material | Test dsRNA | Target Insect | Action Effect | Reference |
|---|---|---|---|---|
| Lipofectamine | dsTub | Blattella germanica | Effectively preventing the degradation of dsTub in the midgut, resulting in an RNAi efficiency of 60% and increased lethal effect | [102] |
| Lipofectamine 2000 | dsact-2 and dsvATPaseA | Euschistus heros | Increasing lethality and extending the effective period of dsRNA | [97] |
| Nanoliposome | dsMet | Spodoptera frugiperda | Reducing the use of dsRNA and improving the effectiveness of RNAi | [103] |
| Chitosan | dsCHS1 | Anopheles gambiae | Improving the efficiency of RNAi | [98] |
| dsVg | Aedes aegypti | Improving RNAi efficiency, leading to higher mortality and teratogenicity rates | [104] | |
| dsJHAMT, dsACHE, dsHaLipn001, dsCHS1 | Helicoverpa armigera | Improving the silencing efficiency and efficacy of dsRNAs; Preventing the degradation of dsRNA under the action of intestinal nucleases | [105,106] | |
| CS-TPP nanoparticles | dsIAP | Aedes aegypti | Forming a complex loaded with dsRNA with a particle size less than 200 nm and doubled the lethality rate | [107] |
| ROPE@C | dsCHSA | Nilaparvata lugens | Reducing the relative expression of CHSA by 54.3% and causing a 65.8% mortality rate of BPH | [108] |
| Fluorescent nanoparticle | dsCHT10 | Ostrinia furnacalis | Causing significant weight loss, molting defects, and death of larvae by feeding mothed | [109] |
| Star polycation | dsvATPaseD dsCHS1 | Aphis glycines | The silencing efficiency was 58.87%~86.86% and the mortality rate of Aphis glycines reached 78.5% by directly spraying on soybean seedlings | [110] |
| PAG87L | dsChSB | Spodoptera exigua | The mortality rate was as high as 53.3%, significantly higher than the control group (16.7%) | [101] |
| Branched amphiphilic peptide capsule | dsBiP and dsArmet | Tribolium castaneum, Acyrthosiphon pisum | Significantly inhibiting the expression of target genes and greatly enhancing the lethal effect | [99] |
| Cell-membrane penetrating peptide | dsChSII | Anthonomus grandis | Reducing the transcription level of target genes by 80%, significantly higher than naked dsRNA treatment (30%) | [111] |
| Layered double hydroxide | dsSuc, dsDuox, dsSyx | Bemisia tabaci | Effective controling of Bemisia tabaci at all stages through foliar spraying | [112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Li, X.; Lu, H.; Zhao, C.; Tang, Q. Spray-Applied RNA Interference Biopesticides: Mechanisms, Technological Advances, and Challenges Toward Sustainable Pest Management. Horticulturae 2026, 12, 137. https://doi.org/10.3390/horticulturae12020137
Li X, Lu H, Zhao C, Tang Q. Spray-Applied RNA Interference Biopesticides: Mechanisms, Technological Advances, and Challenges Toward Sustainable Pest Management. Horticulturae. 2026; 12(2):137. https://doi.org/10.3390/horticulturae12020137
Chicago/Turabian StyleLi, Xiang, Hang Lu, Chenchen Zhao, and Qingbo Tang. 2026. "Spray-Applied RNA Interference Biopesticides: Mechanisms, Technological Advances, and Challenges Toward Sustainable Pest Management" Horticulturae 12, no. 2: 137. https://doi.org/10.3390/horticulturae12020137
APA StyleLi, X., Lu, H., Zhao, C., & Tang, Q. (2026). Spray-Applied RNA Interference Biopesticides: Mechanisms, Technological Advances, and Challenges Toward Sustainable Pest Management. Horticulturae, 12(2), 137. https://doi.org/10.3390/horticulturae12020137

