Effects of Chemotherapy on the Elimination of Various Viruses and Viroids from Grapevine
Abstract
1. Introduction
2. Materials and Methods
2.1. Establishment of In Vitro Cultures
2.2. Small RNA HTS-Based Detection of the Viromes in Mother Plants
2.3. RT-PCR-Based Detection of Viroids and Viruses
2.4. Treatments with Different Antiviral Agents
3. Results
3.1. Small RNA HTS-Based Detection of the Viromes in Mother Plants
3.2. Establishment of In Vitro Cultures
3.3. Effect of Chemotherapy on Shoot Survival
3.4. Effect of Chemotherapy on the Grape Viruses/Viroids Studied
3.5. The Effect of Pre-Rooted Shoots on Phytotoxicity and Chemotherapeutic Efficacy
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| GFkV | grapevine fleck virus, Maculavirus vitis |
| GFLV | grapevine fanleaf virus, Nepovirus foliumflabelli |
| GLRaV-1 | grapevine leafroll associated virus 1, Ampelovirus univitis |
| GLRaV-4 | grapevine leafroll associated virus 4, Ampelovirus tetravitis |
| GPGV | grapevine Pinot gris virus, Trichovirus pinovitis |
| GRSPaV | grapevine rupestris stem pitting associated virus, Foveavirus rupestris |
| GVA | grapevine virus A, Vitivirus alphavitis |
| GYSVd-1 | grapevine yellow speckled viroid 1, Apscaviroid alphaflavivitis |
| HSVd | hop stunt viroid, Hostuviroid impedihumuli |
References
- Fuchs, M. Grapevine viruses: Did you say more than a hundred? J. Plant Pathol. 2025, 107, 217–227. [Google Scholar] [CrossRef]
- Miljanić, V.; Rusjan, D.; Škvarč, A.; Chatelet, P.; Štajner, N. Elimination of Eight Viruses and Two Viroids from Preclonal Candidates of Six Grapevine Varieties (Vitis vinifera L.) through In Vivo Thermotherapy and In Vitro Meristem Tip Micrografting. Plants 2022, 11, 1064. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, F.; Moine, A.; Nerva, L.; Pagliarani, C.; Perrone, I.; Boccacci, P.; Gribaudo, I.; Chitarra, W.; Gambino, G. Grapevine virome and production of healthy plants by somatic embryogenesis. Microb. Biotechnol. 2022, 15, 1357–1373. [Google Scholar] [CrossRef]
- Turcsan, M.; Demian, E.; Varga, T.; Jaksa-Czotter, N.; Szegedi, E.; Olah, R.; Varallyay, E. Hts-based monitoring of the efficiency of somatic embryogenesis and meristem cultures used for virus elimination in grapevine. Plants 2020, 9, 1782. [Google Scholar] [CrossRef] [PubMed]
- Skiada, F.G.; Maliogka, V.I.; Katis, N.I.; Eleftheriou, E.P. Elimination of Grapevine rupestris stem pitting-associated virus (GRSPaV) from two Vitis vinifera cultivars by in vitro chemotherapy. Eur. J. Plant Pathol. 2013, 135, 407–414. [Google Scholar] [CrossRef]
- Wambugu, F.M.; Secor, G.A.; Gudmestad, N.C. Eradication of potato virus Y and S from potato by chemotherapy of cultured axillary bud tips. Am. Potato J. 1985, 62, 667–672. [Google Scholar] [CrossRef]
- Kudell, A.R.; Buchenauer, H. Elimination of raspberry bushy dwarf virus from axillary bud cultures of red raspberry cv. Lloyd George by antiviral compounds. J. Phytopathol. 1989, 124, 332–336. [Google Scholar] [CrossRef]
- Cieslinska, M.; Zawadzka, B. Preliminary results of investigation on elimination of viruses from apple, pear and raspberry using thermotherapy and chemotherapy in vitro. Phytopathol. Pol. 1999, 17, 41–48. [Google Scholar]
- Sedlák, J.; Paprštein, F.; Suchá, J. Influence of chemotherapy on development and production of virus free in vitro strawberry plants. Hort. Sci. 2019, 46, 53–56. [Google Scholar] [CrossRef]
- Modarresi Chahardehi, A.; Rakhshandehroo, F.; Mozafari, J.; Mousavi, L. Efficiency of a chemo-thermotherapy technique for eliminating Arabis mosaic virus (ArMV) and Prunus necrotic ringspot virus (PNRSV) from in vitro rose plantlets. J. Crop Prot. 2016, 5, 497–506. [Google Scholar] [CrossRef]
- Magyar-Tábori, K.; Mendler-Drienyovszki, N.; Hanász, A.; Zsombik, L.; Dobránszki, J. Phytotoxicity and Other Adverse Effects on the in Vitro Shoot Cultures Caused by Virus Elimination Treatments: Reasons and Solutions. Plants 2021, 10, 670. [Google Scholar] [CrossRef] [PubMed]
- Olah, K.; Turcsán, M.; Jahnke, G.; Deak, T.; Olah, R.; Sardy, D.Á.N. The use of pre-rooted in vitro grapevine shoot segments for elimination of Arabis mosaic virus with chemotherapy. Mitt. Klosterneuburg. 2023, 73, 168–175. [Google Scholar]
- Aiter, N.; Lehad, A.; Haddad, B.; Taibi, A.; Meziani, S.; Rabhi, M.L.; Khelifi, L.; Chaouia, C. Sanitation of autochthonous grapevine varieties from Algeria by chemotherapy. Acta Phytopathol. Entomol. Hung. 2020, 55, 43–50. [Google Scholar] [CrossRef]
- Eichmeier, A.; Kominkova, M.; Pecenka, J.; Kominek, P. High-throughput small RNA sequencing for evaluation of grapevine sanitation efficacy. J. Virol. Methods 2019, 267, 66–70. [Google Scholar] [CrossRef]
- Guta, I.C.; Buciumeanu, E.C. Grapevine chemotherapy for elimination of multiple virus infection. Rom. Biotechnol. Lett. 2011, 16, 6535–6539. [Google Scholar]
- Hu, G.J.; Dong, Y.F.; Zhang, Z.P.; Fan, X.D.; Fang, R.E.N. Elimination of grapevine fleck virus and grapevine rupestris stem pitting-associated virus from Vitis vinifera 87-1 by ribavirin combined with thermotherapy. J. Integr. Agric. 2021, 20, 2463–2470. [Google Scholar] [CrossRef]
- Komínek, P.; Komínková, M.; Jandová, B. Effect of repeated Ribavirin treatment on grapevine viruses. Acta. Virol. 2016, 60, 400–403. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Chen, Q.; Pan, B.; Sun, Y.; Xu, Y.; Chen, D.; Liu, H.; Luo, C.; Chen, X.; Li, H.; et al. Current Achievements and Future Prospects in Virus Elimination Technology for Functional Chrysanthemum. Viruses 2023, 15, 1770. [Google Scholar] [CrossRef]
- Szabó, L.K.; Desiderio, F.; Kirilla, Z.; Hegedűs, A.; Várallyay, É.; Preininger, É. A mini-review on in vitro methods for virus elimination from Prunus sp. fruit trees. Plant Cell Tissue Organ Cult. 2024, 156, 42. [Google Scholar] [CrossRef]
- Jakab-Ilyefalvi, Z.; Pamfil, D.; Clapa, D.; Fira, A. The effect of heat treatment and in vitro chemotherapy mediated by 2-thiouracil on plum pox virus (PPV) content in meristem regenerated plum plants. Ann. Rom. Soc. Cell Biol. 2012, 17, 101–110. [Google Scholar]
- Gong, H.; Igiraneza, C.; Dusengemungu, L. Major in vitro techniques for potato virus elimination and post eradication detection methods. A review. Am. J. Potato Res. 2019, 96, 379–389. [Google Scholar] [CrossRef]
- Xu, P.S.; Niimi, Y. Evaluation of virus-free bulblet production by antiviral and/or heat treatment in in vitro scale cultures of Lilium longiflorum ‘Georgia’ and L. X ‘Casablanca’. J. Jpn. Soc. Hortic. Sci. 1999, 68, 640–647. [Google Scholar] [CrossRef]
- Woo, J.H.; Nam, H.H.; Lee, H.S.; Choi, K.B.; Yoon, J.T.; Kim, K.W. Effect of Antivirals on the Elimination of Lily Symptomless Virus in Lilium Oriental Hybrid ‘Casa Blanca’. HortScience 2004, 39, 822–823. [Google Scholar] [CrossRef]
- Asghar, A.; Singh, G. Production of Indian citrus ringspot virus free plants of Kinnow employing chemotherapy coupled with shoot tip grafting. J. Cent. Eur. Agric. 2007, 8, 1–8. [Google Scholar]
- Singh, B. Effect of antiviral chemicals on in vitro regeneration response and production of PLRV-free plants of potato. J. Crop Sci. Biotechnol. 2015, 18, 341–348. [Google Scholar] [CrossRef]
- Verma, N.; Ram, R.; Zaidi, A.A. In vitro production of Prunus necrotic ringspot virus-free begonias through chemo-and thermotherapy. Sci. Hort. 2005, 103, 239–247. [Google Scholar] [CrossRef]
- Pavelkova, R.; Kudelkova, M.; Ondrusikova, E.; Eichmeier, A. Virus Elimination in Peach cv. ‘Red Haven’ by Chemotherapy. Agric. Commun. 2015, 3, 16–20. [Google Scholar]
- Sedlák, J.; Přibylová, J.; Koloňuk, I.; Špak, J.; Lenz, O.; Semerák, M. Elimination of Solanum nigrum ilarvirus 1 and Apple hammerhead viroid from apple cultivars using antivirals ribavirin, rimantadine, and zidovudine. Viruses 2023, 15, 1684. [Google Scholar] [CrossRef] [PubMed]
- Ohta, S.; Kuniga, T.; Nishikawa, F.; Yamasaki, A.; Endo, T.; Iwanami, T.; Yoshioka, T. Evaluation of novel antiviral agents in the elimination of satsuma dwarf virus (SDV) by semi-micrografting in citrus. J. Jpn. Soc. Hortic. Sci. 2011, 80, 145–149. [Google Scholar] [CrossRef]
- Kudelková, M.; Cechová, J.; Ondrusiková, E.; Baránek, M. Use of antivirals for Carlavirus elimination in Allium sativum L. In: VIII International Symposium on In Vitro Culture and Horticultural Breeding. Acta Hort. 2013, 1083, 589–594. [Google Scholar]
- Gambino, G.; Perrone, I.; Gribaudo, I. A Rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem. Anal. 2008, 19, 520–525. [Google Scholar] [CrossRef]
- Jaksa-Czotter, N.; Nagyné Galbács, Z.; Jahan, A.; Demian, E.; Várallyay, É. Viromes of Plants Determined by High-Throughput Sequencing of Virus-Derived siRNAs. In Viral Metagenomics: Methods and Protocols; Springer: New York, NY, USA, 2023; pp. 179–198. [Google Scholar]
- Xu, Q.; Wen, X.; Deng, X. A simple protocol for isolating genomic DNA from chestnut rose (Rosa roxburghii Tratt) for RFLP and PCR analyses. Plant Mol. Biol. Rep. 2004, 22, 301–302. [Google Scholar] [CrossRef]
- Szegedi, E.; Deak, T.; Turcsan, M.; Szenasi, M.; Borde, A.; Olah, R. Evaluation of intron containing potential reference gene-specific primers to validate grapevine nucleic acid samples prepared for conventional PCR and RT-PCR. Vitis 2018, 57, 69–73. [Google Scholar]
- Osman, F.; Rowhani, A. Application of a spotting sample preparation technique for the detection of pathogens in woody plants by RT-PCR and real-time PCR (TaqMan). J. Virol. Methods 2006, 133, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Engel, E.A.; Escobar, P.F.; Rojas, L.A.; Rivera, P.A.; Fiore, N.; Valenzuela, P.D. A diagnostic oligonucleotide microarray for simultaneous detection of grapevine viruses. J. Virol. Method. 2010, 163, 445–451. [Google Scholar] [CrossRef]
- Olah, R.; Turcsan, M.; Jaksa-Czotter, N.; Galbacs, Z.N.; Olah, K.; Sardi, D.N.; Plesko, I.M.; Varallyay, E. First Report of Grapevine Leafroll-Associated Virus 4 Infecting Grapevine in Hungary. Plant Dis. 2024, 108, 2245. [Google Scholar] [CrossRef]
- Nakaune, R.; Nakano, M. Efficient methods for sample processing and cDNA synthesis by RT-PCR for the detection of grapevine viruses and viroids. J. Virol. Methods 2006, 134, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Osman, F.; Leutenegger, C.; Golino, D.; Rowhani, A. Comparison of low-density arrays, RT-PCR and real-time TaqMan® RT-PCR in detection of grapevine viruses. J. Virol. Methods 2008, 149, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.F.; Alkowni, R.; Uyemoto, J.K.; Golino, D.; Osman, F.; Rowhani, A. Molecular analysis of a California strain of Rupestris stem pitting-associated virus isolated from declining Syrah grapevines. Arch. Virol. 2006, 151, 1889–1894. [Google Scholar] [CrossRef]
- Glasa, M.; Predajňa, L.; Komínek, P.; Nagyová, A.; Candresse, T.; Olmos, A. Molecular characterization of divergent grapevine Pinot gris virus isolates and their detection in Slovak and Czech grapevines. Arch. Virol. 2014, 159, 2103–2107. [Google Scholar] [CrossRef]
- Farkas, E.M.; Czotter, N.; Lózsa, R.; Dula, T.; Ember, I.; Várallyay, E.; Szegedi, E. Conventional PCR primers for the detection of grapevine pathogens disseminated by propagating material. Int. J. Hort. Sci. 2014, 20, 69–80. [Google Scholar]
- Czotter, N.; Molnár, J.; Pesti, R.; Demián, E.; Baráth, D.; Varga, T.; Várallyay, É. Use of siRNAs for Diagnosis of Viruses Associated to Woody Plants in Nurseries and Stock Collections. Methods Mol. Biol. 2018, 1746, 115–130. [Google Scholar]
- Atallah, S.S.; Gómez, M.I.; Fuchs, M.F.; Martinson, T.E. Economic impact of grapevine leafroll disease on Vitis vinifera cv. Cabernet franc in Finger Lakes vineyards of New York. Am. J. Enol. Vitic. 2012, 63, 73–79. [Google Scholar] [CrossRef]
- Weiland, C.M.; Cantos, M.; Troncoso, A.; Perez-Camacho, F. Regeneration of virus-free plants by in vitro chemotherapy of GFLV (Grapevine fanleaf virus) infected explants of Vitis vinifera L. Cv’Zalema’. In I International Symposium on Grapevine Growing, Commerce and Research. Acta Hort. 2003, 652, 463–466. [Google Scholar]
- Dolatabadi, K.; Davarynejad, G.; Safarnejad, M.R.; Ghayoor, Z. Developing virus-free grapevine explants by using silver-nanoparticles and its comparison with chemo and thermotherapy-based approaches. J. Crop Prot. 2023, 12, 15–27. [Google Scholar]
- Panattoni, A.; Luvisi, A.; Triolo, E. Selective chemotherapy on Grapevine leafroll-associated virus-1 and-3. Phytoparasitica 2011, 39, 503–508. [Google Scholar] [CrossRef]
- Guta, I.C.; Buciumeanu, E.C.; VIȘOIU, E. Elimination of Grapevine fleck virus by in vitro Chemotherapy. Not. Bot. Horti Agrobo. 2014, 42, 115–118. [Google Scholar] [CrossRef]
- Panattoni, A.; D’Anna, F.; Cristani, C.; Triolo, E. Grapevine vitivirus A eradication in Vitis vinifera explants by antiviral drugs and thermotherapy. J. Virol. Methods 2007, 146, 129–135. [Google Scholar] [CrossRef]
- Yu, S.; Kan, Q.; Huang, H.; Wang, J.; Xie, Y.; Li, H.; Zhang, X.; Liu, C.; Cheng, Y. Grapevine cultivar Shine Muscat in China: Occurrence of viruses and attempts to produce certified propagation material. J. Plant Pathol. 2023, 105, 1609–1616. [Google Scholar] [CrossRef]
- Hu, G.; Dong, Y.; Zhang, Z.; Fan, X.; Ren, F. Inefficiency of ribavirin to eliminate apple scar skin viroid from apple plants. Plant Cell Tissue Organ Cult. 2022, 151, 189–197. [Google Scholar] [CrossRef]
| Virus | Primer Name | Primer Sequence (5′-3′) | Annealing Temperature | Reference |
|---|---|---|---|---|
| GFLV | GFLV CP 433V | GAACTGGCAAGCTGTCGTAGAAC | 58 °C | [35] |
| GFLV CP 912C | GCTCATGTCTCTCTGACTTTGACC | |||
| GLRaV-1 | LR1CPF1 | CTAGCGTTATATCTCAAAATGA | 50 °C | [36] |
| LR1CPR1 | CCCATCACTTCAGCACATAAA | |||
| GLRaV-4 | GLRaV456_13268F | TGGACAATTTAGGTAATGTAGTAGC | 50 °C | [37] |
| GLRaV456_13722R | TCACAGATGCCTGACATGGTT | |||
| GVA | GVA 6540U | TTTGGGTACATCGCGTTGGT | 54 °C | [38] |
| GVA 6880D | TCTAAGCCCGACGCGAAGT | |||
| GFkV | GFk V1/F | GGTCCTCGGCCCAGTGAAAAAGTA | 58 °C | [39] |
| GFk C1/R | GGCCAGGTTGTAGTCGGTGTTGTC | |||
| GRSPaV | 48V | AGCTGGGATTATAAGGGAGGT | 50 °C | [40] |
| 49C | CCAGCCGTTCCACCACTAAT | |||
| GPGV | GPG-6609F | GAGATCAACAGTCAGGAGAG | 50 °C | [41] |
| GPG-7020R | GACTTCTGGTGCCTTATCAC | |||
| HSVd | HSVd-F | CTGGGGAATTCTCGAGTTGCC | 60 °C | [42] |
| HSVd-R | AGGGGCTCAAGAGAGGATCCG | |||
| GYSVd-1 | GYSVd-1-F | TCACCTCGGAAGGCCGCCGCGG | 60 °C | [43] |
| GYSVd-1-R | GTGAAACCACAGGAACCACAGG | |||
| tubulin | tub-fw2 | CACGATGCTTTCAACACCTTC | 50 °C | [34] |
| tub-rev2 | CTTCATTGTCCAAGAGCACAG |
| Antiviral Chemical(s) | Applied Concentration(s) | Treated Genotype(s) |
|---|---|---|
| Ribavirin | 25 mg/L | Kadarka P131 A1, Sárfehér A1, Furmint P51 ÜH2, Kékfrankos Kt 1/2 A1, Furmint P51 A1 |
| Zidovudine | 10, 20, 30, 40, 80, 100, 120 mg/L | Sárfehér A1 |
| 50 mg/L | Kadarka P131 A1 | |
| 100 mg/L | Kékfrankos Kt 1/2 A1 | |
| 2-thiouracil | 5, 10, 15, 20 mg/L | Sárfehér A1 |
| 10 mg/L | Kadarka P131 A1, Kékfrankos Kt. 1/2 A1 | |
| 20 mg/L | Furmint P51 ÜH2, Furmint P51 A1 | |
| Ribavirin + zidovudine | 25 mg/L + 50 mg/L | Furmint P51 ÜH2, Furmint P51 A1 |
| Ribavirin + 2-thiouracil | 25 mg/L + 10 mg/L | Kékfrankos Kt 1/2 A1 |
| Nepoviruses | Ampeloviruses | Viti-Virus | Macula-Virus | Marafiviruses | Fovea-Virus | Tricho-Virus | Viroids | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| GFLV | ArMV | GDefV | GLRaV-1 | GLRaV-4 | GLRaV-5 | GLRaV-6 | GVA | GFKV | GRVFV | GSyV-1 | GRSPaV | GPGV | HSVd | GYSVd-1 | ||
| 1 | Kadarka P131 A1 | 0 | 0 | 0 | 113 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 4 | 4 |
| 2 | Sárfehér A1 | 0 | 0 | 0 | 0 | 9 | 2 | 6 | 0 | 0 | 1 | 0 | 2 | 10 | 4 | 7 |
| 3 | Furmint P51 ÜH2 | 61 | 19 | 55 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 1 | 4 |
| 4 | Kékfrankos Kt. 1/2 A1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 32 | 1 | 0 | 53 | 4 | 7 |
| 5 | Furmint P51 A1 | 0 | 0 | 0 | 155 | 0 | 0 | 0 | 31 | 138 | 5 | 0 | 3 | 13 | 3 | 3 |
| Regeneration Efficiency | Elimination Efficiency % | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| cultivar and clone | plant number | GFLV | GLRaV-1 | GLRaV-4 | GVA | GFkV | GRSPaV | GPGV | HSVd | GYSVd-1 | ||
| (a) Ribavirin 25 mg/L | Kadarka P131 A1 | survived | 30/104 | x | 5.50 | x | x | x | 50.0 | x | 0.0 | 0.0 |
| regenerated | 18/50 | |||||||||||
| virus free % | 0 | |||||||||||
| Kadarka P131 A1 pre-rooted | survived | 40/50 | x | 3.4 | x | x | x | 50.0 | x | 0.0 | 0.0 | |
| regenerated | 61/89 | |||||||||||
| virus free % | 5.5 | |||||||||||
| Sárfehér A1 | survived | 36/76 | x | x | 78.3 | x | x | 77.9 | 97.1 | 0.0 | 0.0 | |
| regenerated | 69/81 | |||||||||||
| virus free % | 76.5 | |||||||||||
| Furmint P51 ÜH2 | survived | 34/69 | 0.0 | x | x | x | x | 68.3 | x | x | 0.0 | |
| regenerated | 47/84 | |||||||||||
| virus free % | 0 | |||||||||||
| Furmint P51 ÜH2 pre-rooted | survived | 9/10 | 0.0 | x | x | x | x | 87.5 | x | x | 0.0 | |
| regenerated | 8/8 | |||||||||||
| virus free % | 0 | |||||||||||
| Kékfrankos Kt. 1/2 A1 | survived | 19/48 | x | x | x | x | x | 82.0 | 100.0 | 0.0 | 0.0 | |
| regenerated | 11/29 | |||||||||||
| virus free % | 82 | |||||||||||
| Kékfrankos Kt. 1/2 A1 pre-rooted | survived | 69/86 | x | x | x | x | x | 51.0 | 100.0 | 0.0 | 0.0 | |
| regenerated | 127/162 | |||||||||||
| virus free % | 51 | |||||||||||
| Furmint P51 A1 | survived | 28/66 | x | 4.3 | x | 6.5 | 78.3 | 69.6 | 100.0 | 0.0 | 0.0 | |
| regenerated | 47/75 | |||||||||||
| virus free % | 1.7 | |||||||||||
| Furmint P51 A1 pre-rooted | survived | 8/10 | x | 0.0 | x | 0.0 | 50.0 | 25.0 | 75.0 | 0.0 | 0.0 | |
| regenerated | 8/8 | |||||||||||
| virus free % | 0 | |||||||||||
| (b) Ribavirin—Zidovudine 25 + 50 mg/L | Furmint P51 A1 pre-rooted | survived | 8/10 | x | 0.0 | x | 0.0 | 62.5 | 0.0 | 62.5 | 0.0 | 12.5 |
| regenerated | 8/8 | |||||||||||
| virus free % | 0 | |||||||||||
| Furmint P51 ÜH2 pre-rooted | survived | 8/10 | 12.5 | x | x | x | x | 25.0 | x | x | 0.0 | |
| regenerated | 8/8 | |||||||||||
| virus free % | 12.5 | |||||||||||
| (c) Ribavirin -2-thiouracil 25 + 10 mg/L | Kékfrankos Kt. 1/2 A1 | survived | 4/8 | x | x | x | x | x | 100.0 | 100.0 | 0.0 | 0.0 |
| regenerated | 4/4 | |||||||||||
| virus free % | 100.0 | |||||||||||
| Kékfrankos Kt. 1/2 A1 pre-rooted | survived | 6/8 | x | x | x | x | x | 66.0 | 100.0 | 0.0 | 0.0 | |
| regenerated | 21/23 | |||||||||||
| virus free % | 66.0 | |||||||||||
| Regeneration Efficiency | Elimination Efficiency % | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| cultivar and clone | plant number | GFLV | GLRaV-1 | GLRaV-4 | GVA | GFkV | GRSPaV | GPGV | HSVd | GYSVd-1 | |||
| Zidovudine | 10 mg/L | Sárfehér A1 | survived | 7/7 | x | x | 0.0 | x | x | 0.0 | 0.0 | 0.0 | 0.0 |
| regenerated | 5/5 | ||||||||||||
| virus free % | 0 | ||||||||||||
| 20 mg/L | Sárfehér A1 | survived | 7/7 | x | x | 0.0 | x | x | 0.0 | 0.0 | 0.0 | 0.0 | |
| regenerated | 5/5 | ||||||||||||
| virus free % | 0 | ||||||||||||
| 30 mg/L | Sárfehér A1 | survived | 7/7 | x | x | 0.0 | x | x | 0.0 | 0.0 | 0.0 | 0.0 | |
| regenerated | 5/5 | ||||||||||||
| virus free % | 0 | ||||||||||||
| 40 mg/L | Sárfehér A1 | survived | 7/7 | x | x | 0.0 | x | x | 0.0 | 0.0 | 0.0 | 0.0 | |
| regenerated | 5/5 | ||||||||||||
| virus free % | 0 | ||||||||||||
| 50 mg/L | Kadarka P131 A1 | survived | 10/10 | x | 0.0 | x | x | x | 0.0 | x | 0.0 | 0.0 | |
| regenerated | 4/5 | ||||||||||||
| virus free % | 0 | ||||||||||||
| 80 mg/L | Sárfehér A1 | survived | 10/10 | x | x | 0.0 | x | x | 0.0 | 0.0 | 0.0 | 0.0 | |
| regenerated | 5/5 | ||||||||||||
| virus free % | 0 | ||||||||||||
| 100 mg/mL | Kékfrankos Kt. 1/2 A1 | survived | 6/20 | x | x | x | x | x | 0.0 | 0.0 | 0.0 | 0.0 | |
| regenerated | 16/25 | ||||||||||||
| virus free % | 0 | ||||||||||||
| 100 mg/mL | Kékfrankos Kt. 1/2 A1 pre-rooted | survived | 8/8 | x | x | x | x | x | 0.0 | 0.0 | 0.0 | 0.0 | |
| regenerated | 35/44 | ||||||||||||
| virus free % | 0 | ||||||||||||
| 120 mg/L | Sárfehér A1 | survived | 10/10 | x | x | 0.0 | x | x | 0.0 | 0.0 | 0.0 | 0.0 | |
| regenerated | 5/5 | ||||||||||||
| virus free % | 0 | ||||||||||||
| Regeneration Efficiency | Elimination Efficiency % | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| cultivar and clone | plant number | GFLV | GLRaV-1 | GLRaV-4 | GVA | GFkV | GRSPaV | GPGV | HSVd | GYSVd-1 | |||
| 2-thiouracil | 10 mg/L | Kadarka P131 A1 | survived | 2/12 | x | 0.0 | x | x | x | 0.0 | x | 0.0 | 0.0 |
| regenerated | 2/2 | ||||||||||||
| virus free % | 0 | ||||||||||||
| 10 mg/L | Kadarka P131 A1 pre-rooted | survived | 8/12 | x | 0.0 | x | x | x | 0.0 | x | 0.0 | 0.0 | |
| regenerated | 7/8 | ||||||||||||
| virus free % | 0 | ||||||||||||
| 10 mg/L | Kékfrankos Kt. 1/2 A1 | survived | 0/11 | x | x | x | x | x | not tested | not tested | not tested | not tested | |
| regenerated | x | ||||||||||||
| virus free % | x | ||||||||||||
| 10 mg/L | Kékfrankos Kt. 1/2 A1 pre-rooted | survived | 10/10 | x | x | x | x | x | 0.0 | 0.0 | 0.0 | 0.0 | |
| regenerated | 14/14 | ||||||||||||
| virus free % | 0 | ||||||||||||
| 10 mg/L | Sárfehér A1 | survived | 0/12 | x | x | not tested | x | x | not tested | not tested | not tested | not tested | |
| regenerated | x | ||||||||||||
| virus free % | x | ||||||||||||
| 10 mg/L | Sárfehér A1 pre-rooted | survived | 10/12 | x | x | 25.0 | x | x | 0.0 | 0.0 | 0.0 | 0.0 | |
| regenerated | 8/10 | ||||||||||||
| virus free % | 0 | ||||||||||||
| 20 mg/L | Sárfehér A1 pre-rooted | survived | 8/10 | x | x | 25.0 | x | x | 0.0 | 0.0 | 0.0 | 0.0 | |
| regenerated | 8/8 | ||||||||||||
| virus free % | 0 | ||||||||||||
| 20 mg/L | Furmint P51 ÜH2 pre-rooted | survived | 9/12 | 0.0 | x | x | x | x | 0.0 | x | x | 0.0 | |
| regenerated | 5/9 | ||||||||||||
| virus free % | 0 | ||||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Turcsan, M.; Jaksa-Czotter, N.; Nagyne Galbacs, Z.; Olah, K.; Olah, R.; Varallyay, E.; Nyitraine Sardy, D.A. Effects of Chemotherapy on the Elimination of Various Viruses and Viroids from Grapevine. Horticulturae 2026, 12, 46. https://doi.org/10.3390/horticulturae12010046
Turcsan M, Jaksa-Czotter N, Nagyne Galbacs Z, Olah K, Olah R, Varallyay E, Nyitraine Sardy DA. Effects of Chemotherapy on the Elimination of Various Viruses and Viroids from Grapevine. Horticulturae. 2026; 12(1):46. https://doi.org/10.3390/horticulturae12010046
Chicago/Turabian StyleTurcsan, Mihaly, Nikoletta Jaksa-Czotter, Zsuzsanna Nagyne Galbacs, Krisztina Olah, Robert Olah, Eva Varallyay, and Diana Agnes Nyitraine Sardy. 2026. "Effects of Chemotherapy on the Elimination of Various Viruses and Viroids from Grapevine" Horticulturae 12, no. 1: 46. https://doi.org/10.3390/horticulturae12010046
APA StyleTurcsan, M., Jaksa-Czotter, N., Nagyne Galbacs, Z., Olah, K., Olah, R., Varallyay, E., & Nyitraine Sardy, D. A. (2026). Effects of Chemotherapy on the Elimination of Various Viruses and Viroids from Grapevine. Horticulturae, 12(1), 46. https://doi.org/10.3390/horticulturae12010046

