Long-Term Manure Application in Urban Gardens: Impacts on Soil Fertility, Mineral Composition, and Variability
Abstract
1. Introduction
- Quantify elemental nutrients and PTEs in multiple plots managed under different practices, using both pXRF and conventional wet-chemistry analysis;
- Evaluate the analytical performance of pXRF for determining soil elemental composition of soils;
- Characterize spatial variations in elemental composition and soil properties and analyze the relationships among these variables;
- Identify key variables driving the soil variability and develop models capable of predicting plant available-P and -K.
2. Materials and Methods
2.1. Study Site and Soil Sampling
2.2. Soil and Organic Amendment Analyses
2.3. Pollution Indices
2.4. Statistical Analysis
3. Results
3.1. Evaluation of the Performance of the X-Ray Fluorescence Instrument
3.2. Element Concentration and Inter-Plot Variability
3.3. Composition of Manures
3.4. Principal Component Analysis
3.5. Prediction of Available-K and Available-P
3.6. Intra-Plot Variability
4. Discussion
4.1. Evaluation of the Performance of the X-Ray Fluorescence Instrument
4.2. Variability of Elements in the Soil of the Plots
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| UA | Urban and peri-urban agriculture |
| PTE | potentially toxic element |
| pXRF | portable X-ray fluorescence |
| SOC | Soil organic carbon |
References
- Fei, S.; Wu, R.; Liu, H.; Yang, F.; Wang, N. Technological Innovations in Urban and Peri-Urban Agriculture: Pathways to Sustainable Food Systems in Metropolises. Horticulturae 2025, 11, 212. [Google Scholar] [CrossRef]
- Kafle, A.; Hopeward, J.; Myers, B. Modelling the Benefits and Impacts of Urban Agriculture: Employment, Economy of Scale and Carbon Dioxide Emissions. Horticulturae 2023, 9, 67. [Google Scholar] [CrossRef]
- Orsini, F.; Pennisi, G.; Michelon, N.; Minelli, A.; Bazzocchi, G.; Gianquinto, G. Features and Functions of Multifunctional Urban Agriculture in the Global North: A Review. Front. Sustain. Food Syst. 2020, 4, 562513. [Google Scholar] [CrossRef]
- FAO. Urban and Peri-Urban Agriculture. Available online: https://www.fao.org/urban-peri-urban-agriculture/en (accessed on 10 December 2025).
- Algert, S.; Diekmann, L.; Renvall, M.; Gray, L. Community and home gardens increase vegetable intake and food security of residents in San Jose, California. Calif. Agric. 2016, 70, 77–82. [Google Scholar] [CrossRef]
- Junta de Andalucía. Redes de Huertos Urbanos. Available online: https://www.juntadeandalucia.es/export/drupaljda/DECO21_Presentaci%C3%B3n_Lucena_web.pdf (accessed on 10 December 2025).
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. A/RES/70/1. Available online: https://sdgs.un.org/publications/transforming-our-world-2030-agenda-sustainable-development-17981 (accessed on 10 December 2025).
- Dange, P.; Lawande, N. Evaluating research trends in urban agricultural indicators through bibliometrics. Discov. Sustain. 2025, 6, 1348. [Google Scholar] [CrossRef]
- Pickles, S.; Stefoska-Needham, A.; Charlton, K. Factors influencing the economic sustainability and viability of soil-based urban and peri-urban agricultural enterprises in OECD countries: A scoping review. Renew. Agric. Food Syst. 2025, 40, e27. [Google Scholar] [CrossRef]
- Mhlanga, P.F.; Wesch, N.S.; Moseri, M.E.; Neumann, F.H.; Ngobese, N.Z. Greening African Cities for Sustainability: A Systematic Review of Urban Gardening’s Role in Biodiversity and Socio-Economic Resilience. Plants 2025, 14, 3187. [Google Scholar] [CrossRef]
- Ni, M.; Yan, S.; Li, T.; Zhou, Z.; Liu, X.; Zhang, S.; Wang, G.; Xu, X.; Pu, Y.; Jia, Y.; et al. Identifying priority control factors for heavy metal pollution in urban agricultural soils of the Chengdu Plain: An integrated multi-model approach. Ecotoxicol. Environ. Saf. 2025, 303, 118945. [Google Scholar] [CrossRef]
- Kinoshita, R.; Takahashi, H.; Kato, T.; Sila, D.; Koaze, H.; Tani, M. Peri-urban agricultural management impacts the soil nutrient status of Nitisols in the central highlands of Kenya. Soil Sci. Plant Nutr. 2025, 71, 604–615. [Google Scholar] [CrossRef]
- Stein, S.; Hartung, J.; Zikeli, S.; Möller, K.; Reents, H.J. Status quo of fertilization strategies and nutrient farm gate budgets on stockless organic vegetable farms in Germany. Org. Agric. 2024, 14, 199–212. [Google Scholar] [CrossRef]
- Reimer, M.; Oelofse, M.; Müller-Stöver, D.; Möller, K.; Bünemann, E.K.; Bianchi, S.; Vetemaa, A.; Drexler, D.; Trugly, B.; Raskin, B.; et al. Sustainable growth of organic farming in the EU requires a rethink of nutrient supply. Nutr. Cycl. Agroecosyst. 2024, 129, 299–315. [Google Scholar] [CrossRef]
- Badagliacca, G.; Testa, G.; La Malfa, S.G.; Cafaro, V.; Lo Presti, E.; Monti, M. Organic Fertilizers and Bio-Waste for Sustainable Soil Management to Support Crops and Control Greenhouse Gas Emissions in Mediterranean Agroecosystems: A Review. Horticulturae 2024, 10, 427. [Google Scholar] [CrossRef]
- Huygens, D.; Orveillon, G.; Lugato, E.; Tavazzi, S.; Comero, S.; Jones, A.; Gawlik, B.; Saveyn, H.G.M. Technical Proposals for the Safe Use of Processed Manure Above the Threshold Established for Nitrate Vulnerable Zones by the Nitrates Directive (91/676/EEC), EUR 30363 EN; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar] [CrossRef]
- Lal, R. Soil organic matter: The heart of soil health. J. Soil Water Conserv. 2025, 80, 320–326. [Google Scholar] [CrossRef]
- Hossain, M.; Islam, S.; Ali, I.; Rahimi, M. Assessing the potential and limitations of organic farming for sustainable agriculture in Bangladesh. Environ. Chall. 2025, 21, 101346. [Google Scholar] [CrossRef]
- Schreinemachers, P.; Kumar, S.S.; Uddin, N.M. Impact of home gardens promoted among urban residents in Dhaka, Bangladesh. Food Sec. 2025, 17, 1039–1052. [Google Scholar] [CrossRef]
- Meharg, A.A. Perspective: City farming needs monitoring. Nature 2016, 531, S60. [Google Scholar] [CrossRef]
- Rossini-Oliva, S.; López-Núñez, R. Potential Toxic Elements Accumulation in Several Food Species Grown in Urban and Rural Gardens Subjected to Different Conditions. Agronomy 2021, 11, 2151. [Google Scholar] [CrossRef]
- Rossini-Oliva, S.; López-Núñez, R. Is it healthy urban agriculture? Human exposure to potentially toxic elements in urban gardens from Andalusia, Spain. Environ. Sci. Pollut. Res. 2024, 31, 36626–36642. [Google Scholar] [CrossRef]
- Alloway, B.J. Contamination of soils in domestic gardens and allotments: A brief overview. Land Contam. Reclam. 2004, 12, 179–187. [Google Scholar] [CrossRef]
- Bidar, G.; Pelfrêne, A.; Schwartz, C.; Waterlot, C.; Sahmer, K.; Maro, F.; Doua, F. Urban kitchen gardens: Effect of the soil contamination and parameters on the trace element accumulation in vegetables—A review. Sci. Total Environ. 2020, 738, 139569. [Google Scholar] [CrossRef]
- Rodríguez-Declet, A.; Rodinò, M.T.; Praticò, S.; Gelsomino, A.; Rombolà, A.D.; Modica, G.; Messina, G. Spatial and Temporal Variability of C Stocks and Fertility Levels After Repeated Compost Additions: A Case Study in a Converted Mediterranean Perennial Cropland. Soil. Syst. 2025, 9, 86. [Google Scholar] [CrossRef]
- Lin, H.; Wheeler, D.; Bell, J.; Wilding, L. Assessment of soil spatial variability at multiple scales. Ecol. Model. 2005, 182, 271–290. [Google Scholar] [CrossRef]
- Bechet, B.; Joimel, S.; Jean-Soro, L.; Hursthouse, A.; Agboola, A.; Leitão, T.E.; Costa, H.; Cameira, M.D.R.; Le Guern, C.; Schwartz, C.; et al. Spatial variability of trace elements in allotment gardens of four European cities: Assessments at city, garden, and plot scale. J. Soils Sediments 2018, 18, 391–406. [Google Scholar] [CrossRef]
- Latimer, J.C.; Van Halen, D.; Speer, J.; Krull, S.; Weaver, P.; Pettit, J.; Foxx, H. Soil Lead Testing at a High Spatial Resolution in an Urban Community Garden: A Case Study in Relic Lead in Terre Haute, Indiana. J. Environ. Health 2016, 79, 28–35. [Google Scholar]
- Bugdalski, L.; Lemke, L.D.; McElmurry, S.P. Spatial Variation of Soil Lead in an Urban Community Garden: Implications for Risk-Based Sampling. Risk Anal. 2014, 34, 17–27. [Google Scholar] [CrossRef]
- Romzaykina, O.N.; Slukovskaya, M.V.; Paltseva, A.A.; Losev, A.I.; Korneykova, M.V.; Vasenev, V.I. Rapid assessment of soil contamination by potentially toxic metals in the green spaces of Moscow megalopolis using the portable X-ray analyzer. J. Soils Sediments 2025, 25, 539–556. [Google Scholar] [CrossRef]
- Stevenson, A.; Hartemink, A.E. Chapter Two—Sampling soils in urban ecosystems—A review. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2025; Volume 189, pp. 63–136. [Google Scholar] [CrossRef]
- Gozukara, G.; Hartemink, A.E.; Huang, J.; Demattê, J.A.M. Prediction accuracy of pXRF, MIR, and Vis-NIR spectra for soil properties—A review. Soil Sci. Soc. Am. J. 2025, 89, e70028. [Google Scholar] [CrossRef]
- Sanz de Galdeano, C.; Vera, J.A. Stratigraphic record and palaeogeographical context of the Neogene basins in the Betic Cordillera, Spain. Basin Res. 1992, 4, 21–36. [Google Scholar] [CrossRef]
- Mayoral, E.; Abad, M. Geología de la Cuenca del Guadalquivir. In Geología de Huelva, Lugares de Interés Geológico, 2nd ed.; Universidad de Huelva: Huelva, Spain, 2009; pp. 20–27. [Google Scholar]
- López, R.; Hallat, J.; Castro, A.; Miras, A.; Burgos, P. Heavy metal pollution in soils and urban-grown organic vegetables in the province of Sevilla, Spain. Biol. Agric. Hortic. 2019, 35, 219–237. [Google Scholar] [CrossRef]
- RECICOMP-HUERTOS. Available online: https://www.irnas.csic.es/en/unit-of-scientific-culture/citizen-science-recicomphuertos/ (accessed on 13 October 2025).
- USEPA (United States Environmental Protection Agency). Method 6200: Field Portable X-Ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment: Rev 0. 2007. Available online: https://www.epa.gov/sites/default/files/2015-12/documents/6200.pdf (accessed on 10 October 2025).
- López-Núñez, R.; Bello-López, M.A.; Santana-Sosa, M.; Bellido-Través, C.; Burgos-Doménech, P. Effect of Particle Size on Compost Analysis by Portable X-ray Fluorescence. Appl. Sci. 2022, 12, 11579. [Google Scholar] [CrossRef]
- International Association of Geoanalysts. Reference Material Data Sheet SdAR-M2 Metal-Rich Sediment; International Association of Geoanalysts: Nottingham, UK, 2015. [Google Scholar]
- ISO 10694; Soil Quality—Determination of Organic and Total Carbon After Dry Combustion (Elementary Analysis). International Organization for Standardization: Geneva, Switzerland, 1995.
- CSN EN 13650; Soil Improvers and Growing Media—Extraction of Aqua Regia Soluble Elements. CEN (European Committee for Standardization): Brussels, Belgium, 2001.
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol. Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef]
- Aguilar-Ruíz, J.; Galán-Huertos, E.; Gómez-Ariza, J. Estudio de Elementos Traza en Suelos de Andalucía; Junta de Andalucía: Seville, Spain, 2002. [Google Scholar]
- REDIAM. Available online: https://portalrediam.cica.es/descargas/index.php/s/descargas?dir=/04_RECURSOS_NATURALES/02_GEODIVERSIDAD/04_SUELOS/05_FONDO_GEOQUIMICO/Elementos_traza/Documentos/Cartografia/SEVILLA (accessed on 10 October 2025).
- European Union. Commission Decision (EU) 2022/1244 of 13 July 2022 Establishing the EU Ecolabel Criteria for Growing Media and Soil Improvers (Notified Under Document C(2022) 4758) (Text with EEA Relevance); Official Journal of the European Union: Luxembourg, 2022; pp. 141–165. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32022D1244 (accessed on 10 October 2025).
- Jenkins, E.M.; Galbraith, J.; Paltseva, A.A. Portable X-ray fluorescence as a tool for urban soil contamination analysis: Accuracy, precision, and practicality. Soil 2025, 11, 565–582. [Google Scholar] [CrossRef]
- Qu, M.; Chen, J.; Huang, B.; Zhao, Y. Resampling with in situ field portable X-ray fluorescence spectrometry (FPXRF) to reduce the uncertainty in delineating the remediation area of soil heavy metals. Environ. Pollut. 2021, 271, 116310. [Google Scholar] [CrossRef] [PubMed]
- Heckman, J.R.; Besançon, T.; Rabinovich, A. Equine Manure Composition, Soil Fertility and Forage Response. Commun. Soil Sci. Plant Anal. 2025, 56, 1348–1355. [Google Scholar] [CrossRef]
- García-Serrano, P.; Lucena-Marotta, J.J.; Ruano-Criado, S.; Nogales-García, M. Fertilización fosfatada. In Guía Práctica de la Fertilización Racional de los Cultivos en España (Practical Guide to the Rational Fertilization of Crops in Spain); Ministerio de Medio Ambiente y Medio Rural y Marino: Madrid, Spain, 2010; Volume 1, pp. 75–79. [Google Scholar]
- Ramos Mompó, C.; Pomares García, F. Abonado de los cultivos hortícolas. In Guía Práctica de la Fertilización Racional de los Cultivos en España (Practical Guide to the Rational Fertilization of Crops in Spain); Ministerio de Medio Ambiente y Medio Rural y Marino: Madrid, Spain, 2010; Volume 2, pp. 181–192. [Google Scholar]
- Madrid, L.; Díaz-Barrientos, E.; Madrid, F. Distribution of heavy metal contents of urban soils in parks of Seville. Chemosphere 2002, 49, 1301–1308. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants, 3rd ed.; CRC Press LLC: Boca Raton, FL, USA, 2001. [Google Scholar]
- Delbecque, N.; Van Ranst, E.; Dondeyne, S.; Mouazen, A.M.; Vermeir, P.; Verdoodt, A. Geochemical fingerprinting and magnetic susceptibility to unravel the heterogeneous composition of urban soils. Sci. Total Environ. 2022, 847, 157502. [Google Scholar] [CrossRef]
- Kenny, L.B.; Westendorf, M.; Willians, C. Managing manure, erosion, and water quality in and around horse pastures. In Horse Pasture Management, 2nd ed.; Sharpe, P.H., Ed.; Academic Press: Cambridge, MA, USA, 2025; pp. 277–295. [Google Scholar]
- Janovský, M.P.; Karlík, P.; Horák, J.; Šmejda, L.; Opare, M.A.; Beneš, J.; Hejcman, M. Historical land-use in an abandoned mountain village in the Czech Republic is reflected by the Mg, P, K, Ca, V, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Zr, and Sr content in contemporary soils. CATENA 2020, 187, 104347. [Google Scholar] [CrossRef]
- Hesse, P.R. A Textbook of Soil Chemical Analysis; John Murray: London, UK, 1971; p. 275. [Google Scholar]
- Chang, C.W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef]
- Tavares, T.R.; Molin, J.P.; Javadi, S.H.; Carvalho, H.W.P.d.; Mouazen, A.M. Combined Use of Vis-NIR and XRF Sensors for Tropical Soil Fertility Analysis: Assessing Different Data Fusion Approaches. Sensors 2021, 21, 148. [Google Scholar] [CrossRef]
- González-García, F. Estudio Agrobiologico de la Provincia de Sevilla; Centro de Edafologia y Biologia Aplicada del Cuarto. CSIC: Sevilla, Spain, 1962. [Google Scholar]
- San-Emeterio, L.M.; De la Rosa, J.M.; Knicker, H.; López-Núñez, R.; González-Pérez, J.A. Evolution of Maize Compost in a Mediterranean Agricultural Soil: Implications for Carbon Sequestration. Agronomy 2023, 13, 769. [Google Scholar] [CrossRef]
- Wang, H.S.; Zhao, Y.G.; Man, Y.-B.; Wong, C.K.C.; Wong, M.-H. Oral bioaccessibility and human risk assessment of organochlorine pesticides (OCPs) via fish consumption, using an in vitro gastrointestinal model. Food Chem. 2011, 127, 1673–1679. [Google Scholar] [CrossRef]
- Gebrekidan, A.; Weldegebriel, Y.; Hadera, A.; Van der Bruggen, B. Toxicological assessment of heavy metals accumulated in vegetables and fruits grown in Ginfel river near Sheba Tannery, Tigray, Northern Ethiopia. Ecotoxicol. Environ. Saf. 2013, 95, 171–178. [Google Scholar] [CrossRef]
- Lin, H.-J.; Sung, T.-I.; Chen, C.-Y.; Guo, H.-R. Arsenic levels in drinking water and mortality of liver cancer in Taiwan. J. Hazard. Mater. 2013, 262, 1132–1138. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, Y.; Cao, Y.; Chen, A.; Ren, M.; Ge, Y.; Yu, Z.; Wan, S.; Hu, A.; Bo, Q.; et al. Potential health risks of heavy metals in cultivated topsoil and grain, including correlations with human primary liver, lung and gastric cancer, in Anhui province, Eastern China. Sci. Total Environ. 2014, 470–471, 340–347. [Google Scholar] [CrossRef]






| Certified Value mg kg−1 | Average Value mg kg−1 | Standard Deviation | CV % | Recovery % | Minimum Recovery % | Maximum Recovery % | |
|---|---|---|---|---|---|---|---|
| Ag | 15 | 19.1 | 2.3 | 12.0 | 127.2 | 105.9 | 148.2 |
| As | 76 | 79.7 | 9.3 | 11.7 | 104.9 | 86.1 | 117.1 |
| Ba | 990 | 871 | 13.7 | 1.6 | 88.0 | 86.1 | 90.2 |
| Cr | 49.6 | 61.1 | 12.2 | 19.9 | 123.2 | 84.6 | 149.6 |
| Cu | 236 | 219 | 13.3 | 6.1 | 92.9 | 86.3 | 99.7 |
| Mn | 1038 | 844 | 28.8 | 3.4 | 81.3 | 76.0 | 84.8 |
| Ni | 48.8 | 76.4 | 6.1 | 8.0 | 156.6 | 134.7 | 177.2 |
| Pb | 808 | 796 | 17.9 | 2.2 | 98.5 | 93.6 | 99.9 |
| Rb | 149 | 133 | 3.2 | 2.4 | 89.5 | 85.5 | 91.6 |
| S | 970 | 1068 | 98.9 | 9.3 | 110.1 | 94.0 | 121.1 |
| Sb | 107 | 103 | 3.2 | 3.1 | 95.9 | 91.8 | 100.1 |
| Sr | 144 | 142 | 3.1 | 2.2 | 98.5 | 95.1 | 101.4 |
| Th | 14.2 | 16.9 | 3.1 | 18.1 | 119.0 | 87.5 | 145.7 |
| Ti | 1798 | 1407 | 97.1 | 6.9 | 78.3 | 67.2 | 83.1 |
| Zn | 760 | 716 | 17.5 | 2.4 | 94.2 | 90.6 | 98.2 |
| K × 10−3 | 41.5 | 37.6 | 2.5 | 6.8 | 90.7 | 78.4 | 96.4 |
| 1 Fe × 10−3 | 18.4 | 18.5 | 0.2 | 1.0 | 100.7 | 99.2 | 101.7 |
| 1 Ca × 10−3 | 6.00 | 5.88 | 0.14 | 2.4 | 98.0 | 94.1 | 101.5 |
| 1 Mg × 10−3 | 2.96 | 4.63 | 1.24 | 26.9 | 156.4 | 92.9 | 205.7 |
| 1 Al × 10−3 | 66.0 | 37.5 | 2.43 | 6.5 | 56.8 | 53.5 | 63.3 |
| 1 Si × 10−3 | 343 | 292 | 13.0 | 4.4 | 85.1 | 79.9 | 90.7 |
| 1 P | 345 | 549 | 91 | 16.8 | 159.1 | 129.9 | 183.8 |
| Control Soil mg kg−1 | Average Value mg kg−1 | Standard Deviation mg kg−1 | CV 1 % | Minimum mg kg−1 | Maximum mg kg−1 | N 2 | |
|---|---|---|---|---|---|---|---|
| S | 396 | 1337 | 769 | 57.5 | 598 | 5146 | 46 |
| Zn | 22.0 | 66.2 | 31.1 | 47.0 | 36.0 | 244.3 | 46 |
| 3 Ca × 10−3 | 14.3 | 62.7 | 23.6 | 37.6 | 20.1 | 123.4 | 46 |
| Pb | 22.3 | 20.8 | 6.9 | 33.4 | 10.8 | 51.8 | 46 |
| P | 1390 | 2485 | 689 | 27.7 | 1009 | 3961 | 46 |
| Sr | 20.7 | 60.0 | 16.3 | 27.2 | 29.0 | 90.2 | 46 |
| Cu | 19.7 | 33.2 | 8.4 | 25.4 | 18.6 | 51.0 | 44 |
| Zr | 164 | 140 | 34.1 | 24.3 | 76.9 | 233 | 46 |
| As | BLD 4 | 7.85 | 1.74 | 22.2 | 5.48 | 11.64 | 25 |
| Ba | 215 | 202 | 43.6 | 21.5 | 104 | 291 | 46 |
| 3 Fe × 10−3 | 10.7 | 12.6 | 2.4 | 18.7 | 8.85 | 19.4 | 46 |
| Sb | 23.2 | 18.6 | 3.4 | 18.5 | 12.7 | 26.4 | 38 |
| V | 35.7 | 37.6 | 6.9 | 18.3 | 28.7 | 57.2 | 44 |
| Mn | 166 | 169 | 29.1 | 17.2 | 110 | 257 | 46 |
| 3 Al × 10−3 | 19.1 | 15.3 | 2.55 | 16.6 | 10.9 | 21.3 | 46 |
| Ni | 29.7 | 32.8 | 4.9 | 15.0 | 25.6 | 44.2 | 27 |
| 3 Mg × 10−3 | bd | 5.13 | 0.76 | 14.7 | 4.47 | 6.30 | 5 |
| Rb | 19.3 | 23.9 | 3.5 | 14.6 | 18.0 | 31.1 | 46 |
| 3 K × 10−3 | 7.01 | 7.48 | 1.09 | 14.5 | 5.42 | 10.9 | 46 |
| Ti | 2020 | 1607 | 227 | 14.2 | 1198 | 2172 | 46 |
| 3 Si × 10−3 | 245.5 | 208.7 | 24.6 | 11.8 | 157.0 | 274.4 | 46 |
| Control Soil mg kg−1 | Average Value mg kg−1 | Standard Deviation mg kg−1 | CV 1 % | Minimum mg kg−1 | Maximum mg kg−1 | N 2 | ||
|---|---|---|---|---|---|---|---|---|
| Sector 1 and 2 | ||||||||
| pH | 7.36 | 7.41 | 0.40 | 5.50 | 6.33 | 8.21 | 41 | |
| EC 3 | dS m−1 | 0.05 | 0.59 | 0.49 | 83.0 | 0.12 | 2.60 | 41 |
| CaCO3 | % | 1.93 | 9.86 | 5.48 | 55.6 | 1.50 | 25.80 | 41 |
| SOC 4 | % | 1.23 | 3.57 | 1.18 | 33.2 | 1.86 | 5.83 | 41 |
| total-N | % | 0.073 | 0.355 | 0.116 | 32.7 | 0.203 | 0.605 | 41 |
| C/N | 16.6 | 10.1 | 1.2 | 12.2 | 8.3 | 13.2 | 41 | |
| avail-P 5 | mg kg−1 | 26 | 264 | 108 | 41.0 | 97 | 523 | 46 |
| avail-K 6 | mg kg−1 | 113 | 375 | 294 | 78.4 | 116 | 1755 | 41 |
| Sector 1 | ||||||||
| pH | 7.36 | 7.39 | 0.44 | 5.9 | 6.33 | 8.21 | 33 | |
| EC | dS m−1 | 0.05 | 0.57 | 0.39 | 67.7 | 0.12 | 1.67 | 33 |
| CaCO3 | % | 1.93 | 10.64 | 5.8 | 54.3 | 1.5 | 25.8 | 33 |
| SOC | % | 1.23 | 3.78 | 1.20 | 31.7 | 1.99 | 5.83 | 33 |
| total-N | % | 0.073 | 0.377 | 0.118 | 31.3 | 0.203 | 0.605 | 33 |
| C/N | 16.6 | 10.1 | 1.18 | 11.7 | 8.3 | 13.2 | 33 | |
| avail-P | mg kg−1 | 26 | 276 | 110 | 40.0 | 97 | 523 | 38 |
| avail-K | mg kg−1 | 113 | 412 | 315 | 76.4 | 142 | 1755 | 33 |
| Sector 2 | ||||||||
| pH | 7.36 | 7.49 | 0.23 | 3.1 | 7.22 | 7.84 | 8 | |
| EC | dS m−1 | 0.05 | 0.66 | 0.82 | 125 | 0.16 | 2.60 | 8 |
| CaCO3 | % | 1.93 | 6.64 | 2.09 | 31.5 | 3.9 | 9.5 | 8 |
| SOC | % | 1.23 | 2.72 | 0.66 | 24.3 | 1.86 | 3.70 | 8 |
| total-N | % | 0.073 | 0.264 | 0.045 | 17.1 | 0.208 | 0.344 | 8 |
| C/N | 16.6 | 10.2 | 1.52 | 14.9 | 8.6 | 12.4 | 8 | |
| avail-P | mg kg−1 | 26 | 208 | 83 | 39.8 | 113 | 370 | 8 |
| avail-K | mg kg−1 | 113 | 221 | 81 | 36.7 | 116 | 339 | 8 |
| Control Soil | Zone 1 | Zone 2 | ||
|---|---|---|---|---|
| pH | 7.36 | 7.39 | 7.49 | |
| EC 1 | dS m−1 | 0.05 a | 0.57 b | 0.66 ab |
| CaCO3 | % | 1.93 a | 10.64 b | 6.64 a |
| SOC 2 | % | 1.23 a | 3.78 b | 2.72 c |
| total-N | % | 0.073 a | 0.377 b | 0.264 c |
| C/N | 16.6 | 10.1 | 10.2 | |
| avail-P 3 | mg kg−1 | 26 a | 276 b | 208 b |
| avail-K 4 | mg kg−1 | 113 a | 412 b | 221 c |
| HM1 | HM2 | HM3 | CD | CC | BC | ||
|---|---|---|---|---|---|---|---|
| Moisture | % | 53.0 | 26.0 | 72.0 | 20.9 | 23.5 | 11.7 |
| pH | 8.85 | 7.88 | 8.14 | 7.58 | 9.05 | 8.51 | |
| E.C. 1 | dS m−1 | 1.40 | 1.84 | 1.86 | 4.08 | 1.52 | 3.45 |
| Inorg-C | g kg−1 | 2.25 | 4.48 | 2.29 | 5.94 | 5.95 | 15.0 |
| Org-C | g kg−1 | 404 | 99.6 | 365 | 356 | 121 | 328 |
| OM 2 | g kg−1 | 768 | 189 | 693 | 676 | 229 | 607 |
| N | g kg−1 | 13.9 | 9.34 | 14.0 | 22.5 | 12.9 | 32.6 |
| C/N ratio | 29.1 | 10.7 | 26.0 | 15.8 | 9.0 | 10.1 | |
| Ca | g kg−1 | 19.1 | 24.3 | 12.6 | 23.8 | 19.4 | 83.2 |
| K | g kg−1 | 12.0 | 5.68 | 19.4 | 15.1 | 11.3 | 11.4 |
| Mg | g kg−1 | 2.83 | 2.33 | 3.66 | 4.42 | 6.69 | 7.79 |
| Na | g kg−1 | 7.62 | 1.70 | 4.26 | 6.58 | 3.14 | 6.43 |
| S | g kg−1 | 2.66 | 1.55 | 2.53 | 3.90 | 2.55 | 5.52 |
| P | g kg−1 | 3.95 | 2.74 | 3.78 | 4.70 | 5.20 | 6.99 |
| Al | g kg−1 | 1.55 | 7.19 | 2.96 | 2.22 | 8.57 | 5.07 |
| As | mg kg−1 | <1.0 | <1.0 | <1.0 | <1.0 | 21.9 | 1.02 |
| B | mg kg−1 | 11.9 | 10.7 | 12.2 | 13.8 | 20.7 | 34.4 |
| Ba | mg kg−1 | 39.8 | 53.0 | 69.0 | 34.4 | 67.0 | 49.9 |
| Cd | mg kg−1 | 0.24 | 0.32 | 0.30 | 0.16 | 0.23 | 0.19 |
| Co | mg kg−1 | 0.55 | 2.39 | 0.87 | 1.44 | 3.80 | 1.31 |
| Cr | mg kg−1 | 10.1 | 38.2 | 10.9 | 12.9 | 92.8 | 40.2 |
| Cu | mg kg−1 | 10.8 | 23.6 | 8.1 | 22.1 | 46.6 | 56.7 |
| Fe | mg kg−1 | 1697 | 8286 | 2687 | 2546 | 9297 | 7097 |
| Li | mg kg−1 | 2.01 | 7.70 | 4.09 | 3.31 | 28.3 | 4.57 |
| Mn | mg kg−1 | 95.0 | 123 | 90.0 | 159 | 343 | 207 |
| Mo | mg kg−1 | 1.43 | 0.79 | 2.38 | 1.87 | 2.80 | 3.44 |
| Ni | mg kg−1 | 5.70 | 8.66 | 5.39 | 7.30 | 44.7 | 26.1 |
| Pb | mg kg−1 | 8.0 | 9.5 | 14.5 | 1.9 | 14.9 | 24.1 |
| Sn | mg kg−1 | 0.91 | 0.84 | 0.58 | 0.48 | 1.9 | 13.8 |
| Sr | mg kg−1 | 48.0 | 58.6 | 101.4 | 56.6 | 84.8 | 193 |
| V | mg kg−1 | 4.2 | 14.6 | 6.3 | 5.0 | 16.3 | 10.9 |
| Zn | mg kg−1 | 41.1 | 68.5 | 49.6 | 155.1 | 153.5 | 167 |
| Predictor | t | Sig. | Importance | |||
|---|---|---|---|---|---|---|
| Available-K | Training Set | Validation Set | ||||
| K | 13.39 | 0.000 | 0.688 | R2 | 0.919 | 0.091 |
| Al | −6.10 | 0.000 | 0.143 | RMSE | 233 | 217 |
| Mn | −5.47 | 0.000 | 0.115 | RMSE % | 14 | 101 |
| pH | −3.29 | 0.003 | 0.042 | RPD | 1.26 | 1.36 |
| Available-P | Training Set | Validation Set | ||||
| Sr | 7.39 | 0.000 | 0.640 | R2 | 0.787 | 0.863 |
| P | 4.32 | 0.000 | 0.219 | RMSE | 192 | 40 |
| Mn | −2.60 | 0.015 | 0.079 | RMSE % | 40 | 10 |
| Al | 2.29 | 0.030 | 0.062 | RPD | 0.56 | 2.72 |
| Plot | 35 | 34 | 45 | Zone 1 |
|---|---|---|---|---|
| EC | 56.3 (6) | 16.5 (3) | 57.3 (4) | 67.7 (33) |
| CaCO3 | 21.0 (6) | 32.3 (3) | 15.0 (4) | 54.3 (33) |
| SOC | 14.2 (6) | 16.0 (3) | 32.6 (4) | 31.7 (33) |
| Total-N | 12.8 (6) | 9.1 (3) | 27.3 (4) | 31.3 (33) |
| Available-P | 7.7 (6) | 8.9 (4) | 14.3 (4) | 40.0 (38) |
| Available-K | 55.1 (6) | 34.5 (3) | 40.6 (4) | 76.4 (33) |
| S | 11.3 (6) | 6.9 (4) | 6.4 (4) | 40.8 (38) |
| Zn | 12.1 (6) | 6.4 (4) | 5.5 (4) | 47.8 (38) |
| Ca | 10.3 (6) | 5.8 (4) | 7.3 (4) | 37.1 (38) |
| Pb | 9.1 (6) | 18 (4) | 18.0 (4) | 17.2 (38) |
| Cu | 26.1 (6) | 7.6 (4) | 2.1 (4) | 26.0 (37) |
| Ni | 24.0 (4) | 7.8 (3) | -- | 15.9 (23) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
López-Núñez, R.; Madejón-Rodríguez, P.; Molina-Vega, J.; Rossini-Oliva, S. Long-Term Manure Application in Urban Gardens: Impacts on Soil Fertility, Mineral Composition, and Variability. Horticulturae 2026, 12, 40. https://doi.org/10.3390/horticulturae12010040
López-Núñez R, Madejón-Rodríguez P, Molina-Vega J, Rossini-Oliva S. Long-Term Manure Application in Urban Gardens: Impacts on Soil Fertility, Mineral Composition, and Variability. Horticulturae. 2026; 12(1):40. https://doi.org/10.3390/horticulturae12010040
Chicago/Turabian StyleLópez-Núñez, Rafael, Paula Madejón-Rodríguez, José Molina-Vega, and Sabina Rossini-Oliva. 2026. "Long-Term Manure Application in Urban Gardens: Impacts on Soil Fertility, Mineral Composition, and Variability" Horticulturae 12, no. 1: 40. https://doi.org/10.3390/horticulturae12010040
APA StyleLópez-Núñez, R., Madejón-Rodríguez, P., Molina-Vega, J., & Rossini-Oliva, S. (2026). Long-Term Manure Application in Urban Gardens: Impacts on Soil Fertility, Mineral Composition, and Variability. Horticulturae, 12(1), 40. https://doi.org/10.3390/horticulturae12010040

