Effects of an Inter-Row Reflective Ground Film on Technological Quality and Phenolic Composition of ‘Pinot Noir’ Grapes in Southern Chile
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Study Site
2.2. Reflective Film Treatments and Experimental Design
2.3. Canopy Photosynthetically Active Radiation Interception
2.4. Phenological Stages
2.5. Grape Berry Maturity
2.6. Grape Berry Quality at Harvest
2.7. Total Phenols Content in Berries
2.8. Total Anthocyanins Content in Berries
2.9. Experimental Design and Statistical Analysis
3. Results
3.1. Effect of Reflective Film on Canopy Light Conditions
3.2. Phenological Stage Occurrence
3.3. Monitoring of Berry Weight and Size
3.4. Total Soluble Solids and Total Acidity Content of Berries During Ripening
3.5. Grape Berry Quality at Harvest
3.6. Yield Variables
3.7. Analysis of Total Phenolics and Anthocyanins
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carvalho, L.C.; Ramos, M.J.N.; Faísca-Silva, D.; Marreiros, P.; Fernandes, J.C.; Egipto, R.; Lopes, C.M.; Amâncio, S. Modulation of the berry skin transcriptome of cv. Tempranillo induced by water stress levels. Plants 2023, 12, 1778. [Google Scholar] [CrossRef] [PubMed]
- Verdugo-Vásquez, N.; Orrego, R.; Gutiérrez-Gamboa, G.; Reyes, M.; Zurita-Silva, A.; Balbontín, C.; Gaete, N.; Salazar-Parra, C. Climate trends and variability in the Chilean viticultural production zones during 1985–2015. OENO One 2023, 57, 345–362. [Google Scholar] [CrossRef]
- SAG. Catastro Vitícola Nacional 2023. Available online: https://www.sag.gob.cl/noticias/sag-presenta-catastro-viticola-nacional-2023 (accessed on 16 December 2023).
- Gutiérrez-Gamboa, G.; Palacios-Peralta, C.; López-Olivari, R.; Castillo, P.; Almonacid, M.; Narváez, R.; Morales-Salinas, L.; Verdugo-Vásquez, N.; Hidalgo, M.; Ribera-Fonseca, A.; et al. Growing vines in the Mapuche heartland: The first report about the vitiviniculture of the Araucanía Region. In Latin American Viticulture Adaptation to Climate Change: Perspectives and Challenges of Viticulture Facing up Global Warming; Gutiérrez-Gamboa, G., Fourment, M., Eds.; Springer: Cham, Switzerland, 2024; pp. 197–214. ISBN 978-3-031-51325-1. [Google Scholar]
- Ribera-Fonseca, A.; Palacios-Peralta, C.; González-Villagra, J.; Reyes-Díaz, M.; Serra, I. How could cover crops and deficit irrigation improve water use efficiency and oenological properties of southern Chile vineyards? J. Soil Sci. Plant Nutr. 2023, 23, 6851–6865. [Google Scholar] [CrossRef]
- Biblioteca del Congreso Nacional (BCN). Decreto 464. Establece Zonificación Vitícola y Fija Normas para su Utilización. 2020. Available online: https://www.bcn.cl/leychile/navegar?idNorma=13601 (accessed on 23 January 2023).
- Winkler, A.J.; Cook, J.A.; Kliewer, W.M.; Lider, L.A. General Viticulture, 2nd ed.; Cerruti, L., Ed.; University of California Press: Berkeley, CA, USA, 1974; ISBN 978-0-520-02591-2. [Google Scholar]
- Montes, C.; Perez-Quezada, J.F.; Peña-Neira, A.; Tonietto, J. Climatic potential for viticulture in central Chile. Aust. J. Grape Wine Res. 2012, 18, 20–28. [Google Scholar] [CrossRef]
- Cabello-Pasini, A.; Macias-Carranza, V.; Mejía-Trejo, A. Efecto del mesoclima en la maduración de uva Nebbiolo (Vitis vinifera L.) en el Valle de Guadalupe, Baja California, México. Agrociencia 2017, 51, 617–633. [Google Scholar]
- Gutiérrez-Gamboa, G.; Vilanova, M.; Verdugo-Vásquez, N.; Pedneault, K. Effects of viticultural practices and edaphoclimatic conditions on grape and wine quality. Plants 2021, 10, 1–5. [Google Scholar]
- Downey, M.O.; Harvey, J.S.; Robinson, S.P. The effect of bunch shading on berry development and flavonoid accumulation in Shiraz grapes. Aust. J. Grape Wine Res. 2004, 10, 55–73. [Google Scholar] [CrossRef]
- Scharfetter, J.; Workmaster, B.A.; Atucha, A. Preveraison leaf removal changes fruit zone microclimate and phenolics in cold-climate interspecific hybrid grapes grown under cool climate conditions. Am. J. Enol. Vitic. 2019, 70, 297–307. [Google Scholar] [CrossRef]
- Chamkha, M.; Cathala, B.; Cheynier, V.; Douillard, R. Phenolic composition of Champagnes from Chardonnay and Pinot Noir vintages. J. Agric. Food Chem. 2003, 51, 3179–3184. [Google Scholar] [CrossRef] [PubMed]
- Maante-Kuljus, M.; Rätsep, R.; Moor, U.; Mainla, L.; Põldma, P.; Koort, A.; Karp, K. Effect of vintage and viticultural practices on the phenolic content of hybrid winegrapes in very cool climate. Agriculture 2020, 10, 169. [Google Scholar] [CrossRef]
- Lucarini, M.; Durazzo, A.; Lombardi-Boccia, G.; Souto, E.B.; Cecchini, F.; Santini, A. Wine polyphenols and health: Quantitative research literature analysis. Appl. Sci. 2021, 11, 4762. [Google Scholar] [CrossRef]
- Palacios-Peralta, C.; Ruiz, A.; Ercoli, S.; Reyes-Díaz, M.; Bustamante, M.; Muñoz, A.; Osorio, P.; Ribera-Fonseca, A. Plastic covers and potassium pre-harvest sprays and their influence on antioxidant properties, phenolic profile, and organic acids composition of sweet cherry (Prunus avium L.) fruits cultivated in southern Chile. Plants 2023, 12, 50. [Google Scholar] [CrossRef]
- Conde, C.; Fontes, N.; Dias, A.; Tavares, R.; Souza, M.; Delrot, S. Biochemical changes throughout grape berry development and fruit and wine quality. Food 2006, 1, 1–22. [Google Scholar]
- Ren, Y.; Sadeghnezhad, E.; Leng, X.; Pei, D.; Dong, T.; Zhang, P.; Gong, P.; Jia, H.; Fang, J. Assessment of ‘Cabernet Sauvignon’ grape quality half-véraison to maturity for grapevines grown in different regions. Int. J. Mol. Sci. 2023, 24, 4670. [Google Scholar] [CrossRef]
- Kennedy, J.A. Grape and wine phenolics: Observations and recent findings. Cienc. Investig. Agrar. 2008, 35, 107–120. [Google Scholar] [CrossRef]
- de Barros, M.I.L.F.; Frölech, D.B.; de Mello, L.L.; Manica-Berto, R.; Malgarim, M.B.; Costa, V.B.; Mello-Farias, P. Impact of cluster thinning on quality of ‘Malbec’ grapes in Encruzilhada do Sul-RS. Am. J. Plant Sci. 2018, 9, 495–506. [Google Scholar] [CrossRef]
- Yue, X.; Ju, Y.; Tang, Z.; Zhao, Y.; Jiao, X.; Zhang, Z. Effects of the severity and timing of basal leaf removal on the amino acids profiles of Sauvignon Blanc grapes and wines. J. Integr. Agric. 2019, 18, 2052–2062. [Google Scholar] [CrossRef]
- Todic, S.; Beslic, Z.; Vajic, A.; Tesic, D. The effect of reflective plastic foils on berry quality of Cabernet Sauvignon. Acta Hortic. 2008, 781, 165–170. [Google Scholar]
- Sandler, H.A.; Brock, P.E.; Van den Heuvel, J.E. Effects of three reflective mulches on yield and fruit composition of coastal New England winegrapes. Am. J. Enol. Vitic. 2009, 60, 332–338. [Google Scholar] [CrossRef]
- Ross, O. Reflective Mulch Effects on the Grapevine Environment, Pinot Noir Vine Performance, and Juice and Wine Characteristics. Master’s Thesis, Lincoln University, Canterbury, New Zealand, 2010. [Google Scholar]
- González-Chang, M.; Boyer, S.; Creasy, G.L. Mussel shell mulch can increase vineyard sustainability by changing scarab pest behaviour. Agron. Sustain. Dev. 2017, 37, 21. [Google Scholar] [CrossRef]
- Tian, M.-B.; Ma, W.-H.; Xia, N.-Y.; Peng, J.; Hu, R.-Q.; Duan, C.-Q.; He, F. Soil variables and reflected light revealed the plasticity of grape and wine composition: Regulation of the flavoromics under inter-row gravel covering. Food Chem. 2023, 414, 135659. [Google Scholar] [CrossRef]
- Kok, D.; Bal, E. A comparative study on effects of reflective mulch as an alternative to some other preharvest applications to improve phenolic compounds profile and anthocyanin accumulation of cv. Syrah wine grape (Vitis vinifera L.). Acta Sci. Pol. Hortorum Cultus 2020, 19, 87–93. [Google Scholar] [CrossRef]
- Song, J.; Zhang, A.; Gao, F.; Zhang, Y.; Li, M.; Zhang, J.; Wang, G.; Luan, L.; Qu, H.; Hou, Y.; et al. Post-veraison sunlight supplementation improved the phenolic profile of Cabernet Gernischt (Vitis vinifera L.) grape and wine in a temperate monsoon climate. J. Food Compos. Anal. 2024, 132, 106287. [Google Scholar] [CrossRef]
- Funke, K.; Blanke, M. Spatial and temporal enhancement of colour development in apples subjected to reflective material in the Southern Hemisphere. Horticulturae 2021, 7, 2. [Google Scholar] [CrossRef]
- Yuri, J.A.; Sepúlveda, Á.; Moya, M.; Simeone, D.; Fuentes, M. Shade netting and reflective mulches effect on yield and quality variables of ‘Gala Baigent’ and ‘Fuji Raku Raku’ apples. N. Z. J. Crop Hortic. Sci. 2024, 52, 105–124. [Google Scholar] [CrossRef]
- Lee, D.B.; Lee, G.J.; You, Y.J.; Ahn, S.Y.; Yun, H.K. Reflective film mulching before harvest promotes coloration and expression of ripening-related genes in peach fruits. Hortic. Sci. Technol. 2021, 39, 324–331. [Google Scholar] [CrossRef]
- Pliakoni, E.D.; Nanos, G.D. Deficit irrigation and reflective mulch effects on peach quality and storage performance. Acta Hortic. 2022, 1352, 517–524. [Google Scholar] [CrossRef]
- Muñoz-Alarcón, A.; Palacios-Peralta, C.; González-Villagra, J.; Carrasco-Catricura, N.; Osorio, P.; Ribera-Fonseca, A. Impact of reflective ground film on fruit quality, condition, and post-harvest of sweet cherry (Prunus avium L.) cv. Regina cultivated under plastic cover in southern Chile. Agronomy 2025, 15, 520. [Google Scholar] [CrossRef]
- Hess, P.; Kunz, A.; Blanke, M.M. Innovative strategies for the use of reflective foils for fruit colouration to reduce plastic use in orchards. Sustainability 2021, 13, 73. [Google Scholar] [CrossRef]
- Lorenz, D.H.; Eichhorn, K.W.; Bleiholder, H.; Klose, R.; Meier, U.; Weber, E. Growth stages of the grapevine: Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera)—Codes and descriptions according to the extended BBCH scale. Aust. J. Grape Wine Res. 1995, 1, 100–103. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Palacios-Peralta, C.; Verdugo-Vásquez, N.; Reyes-Díaz, M.; Muñoz, A.; Ribera-Fonseca, A. Could 101-14 Mgt rootstock affect post-spring frost vine developing? Preliminary findings. Horticulturae 2024, 10, 880. [Google Scholar] [CrossRef]
- Slinkard, K.; Singleton, V.L. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar] [CrossRef]
- Parada, J.; Valenzuela, T.; Gómez, F.; Tereucán, G.; García, S.; Cornejo, P.; Winterhalter, P.; Ruiz, A. Effect of fertilization and arbuscular mycorrhizal fungal inoculation on antioxidant profiles and activities in Fragaria ananassa fruit. J. Sci. Food Agric. 2019, 99, 1397–1404. [Google Scholar] [CrossRef] [PubMed]
- Ribera, A.E.; Reyes-Díaz, M.; Alberdi, M.; Zuñiga, G.E.; Mora, M.L. Antioxidant compounds in skin and pulp of fruits change among genotypes and maturity stages in highbush blueberry (Vaccinium corymbosum L.) grown in southern Chile. J. Soil Sci. Plant Nutr. 2010, 10, 509–536. [Google Scholar] [CrossRef]
- Coventry, J.M.; Fisher, K.H.; Strommer, J.N.; Reynolds, A.G. Reflective mulch to enhance berry quality in Ontario wine grapes. Acta Hortic. 2005, 689, 95–102. [Google Scholar] [CrossRef]
- Reynolds, A.G.; Pearson, E.G.; De Savigny, C.; Coventry, J.; Strommer, J. Interactions of vine age and reflective mulch upon berry, must, and wine composition of five Vitis vinifera cultivars. Int. J. Fruit Sci. 2008, 7, 85–119. [Google Scholar] [CrossRef]
- Bastías, R.M.; Corelli-Grappadelli, L. Light quality management in fruit orchards: Physiological and technological aspects. Chil. J. Agric. Res. 2012, 72, 574–581. [Google Scholar] [CrossRef]
- De Rosa, V.; Vizzotto, G.; Falchi, R. Cold hardiness dynamics and spring phenology: Climate-driven changes and new molecular insights into grapevine adaptive potential. Front. Plant Sci. 2021, 12, 644528. [Google Scholar] [CrossRef]
- Bergqvist, J.; Dokoozlian, N.; Ebisuda, N. Sunlight exposure and temperature effects on berry growth and composition of Cabernet Sauvignon and Grenache in the central San Joaquin Valley of California. Am. J. Enol. Vitic. 2001, 52, 1–7. [Google Scholar] [CrossRef]
- Sun, R.-Z.; Cheng, G.; Li, Q.; He, Y.-N.; Wang, Y.; Lan, Y.-B.; Li, S.-Y.; Zhu, Y.-R.; Song, W.-F.; Zhang, X.; et al. Light-induced variation in phenolic compounds in Cabernet Sauvignon grapes (Vitis vinifera L.) involves extensive transcriptome reprogramming of biosynthetic enzymes, transcription factors, and phytohormonal regulators. Front. Plant Sci. 2017, 8, 547. [Google Scholar] [CrossRef]
- Jamshidian, S.; Ghasemnezhad, M.; Bakhshi, D.; Sarikhani, H. Reflected light improves berry quality and phenolic content of Vitis vinifera cv. Askary. Hortic. Environ. Biotechnol. 2010, 51, 10–14. [Google Scholar]
- Biblioteca del Congreso Nacional (BCN). Ley Chile. Available online: https://www.bcn.cl/leychile (accessed on 23 January 2023).
- Lin, L.; Xuefeng, X.; Yi, W. Effect of different reflecting films on berry quality and sucrose metabolism of grape in greenhouse. J. Fruit Sci. 2008, 25, 178–181. [Google Scholar]
- Yuan, Y.; Xie, Y.; Li, B.; Wei, X.; Huang, R.; Liu, S.; Ma, L. To improve grape photosynthesis, yield and fruit quality by covering reflective film on the ground of a protected facility. Sci. Hortic. 2024, 327, 112792. [Google Scholar] [CrossRef]
- DeBolt, S.; Ristic, R.; Iland, P.G.; Ford, C.M. Altered light interception reduces grape berry weight and modulates organic acid biosynthesis during development. HortScience 2008, 43, 957–961. [Google Scholar] [CrossRef]
- Dokoozlian, N.K.; Kliewer, W.M. Influence of light on grape berry growth and composition varies during fruit development. J. Am. Soc. Hortic. Sci. 1996, 121, 869–874. [Google Scholar] [CrossRef]
- Wei, Z.; Yang, H.; Shi, J.; Duan, Y.; Wu, W.; Lyu, L.; Li, W. Effects of different light wavelengths on fruit quality and gene expression of anthocyanin biosynthesis in blueberry (Vaccinium corymbosum). Cells 2023, 12, 1225. [Google Scholar] [CrossRef]
- Hostetler, G.L.; Merwin, I.A.; Brown, M.G.; Padilla-Zakour, O. Influence of geotextile mulches on canopy microclimate, yield, and fruit composition of Cabernet Franc. Am. J. Enol. Vitic. 2007, 58, 431–442. [Google Scholar] [CrossRef]
- Giglio, C.; Yang, Y.; Kilmartin, P. Analysis of phenolics in New Zealand Pinot Noir wines using UV-visible spectroscopy and chemometrics. J. Food Compos. Anal. 2023, 117, 105106. [Google Scholar] [CrossRef]
- El Rayess, Y.; Nehme, N.; Azzi-Achkouty, S.; Julien, S.G. Wine phenolic compounds: Chemistry, functionality and health benefits. Antioxidants 2024, 13, 1312. [Google Scholar] [CrossRef]
- Yang, J.; Martinson, T.E.; Liu, R.H. Phytochemical profiles and antioxidant activities of wine grapes. Food Chem. 2009, 116, 332–339. [Google Scholar] [CrossRef]
- Jin, Z.-M.; He, J.-J.; Bi, H.-Q.; Cui, X.-Y.; Duan, C.-Q. Phenolic compound profiles in berry skins from nine red wine grape cultivars in Northwest China. Molecules 2009, 14, 4922–4935. [Google Scholar] [CrossRef]
- Duan, B.; Chen, G.; Jin, X.; Chang, W.; Lan, T.; Zhao, Y.; Sun, X.; Liu, X. Prediction of tannin profile in grape (Vitis vinifera L.) skins during berry maturation using a rapid mechanical puncture approach. Food Chem. 2022, 385, 132666. [Google Scholar] [CrossRef]
- Van Leeuw, R.; Kevers, C.; Pincemail, J.; Defraigne, J.O.; Dommes, J. Antioxidant capacity and phenolic composition of red wines from various grape varieties: Specificity of Pinot Noir. J. Food Compos. Anal. 2014, 36, 40–50. [Google Scholar] [CrossRef]
- Carrasco-Ríos, L. Efecto de la radiación ultravioleta-B en plantas. Idesia 2009, 27, 59–76. [Google Scholar] [CrossRef]
- Peirano-Bolelli, P.; Heller-Fuenzalida, F.; Cuneo, I.F.; Peña-Neira, Á.; Cáceres-Mella, A. Changes in the composition of flavonols and organic acids during ripening for three cv. Sauvignon Blanc clones grown in a cool-climate valley. Agronomy 2022, 12, 1357. [Google Scholar] [CrossRef]
- Bahr, C.; Schmidt, D.; Friedel, M.; Kahlen, K. Leaf removal effects on light absorption in virtual Riesling canopies (Vitis vinifera). Silico Plants 2021, 3, diab027. [Google Scholar] [CrossRef]
- Kok, D. Different treatment timings of basal leaf removal and reflective mulch affect biochemical and electrochemical characteristics of cv. Cabernet Sauvignon wine grapes (Vitis vinifera L.). Erwerbs-Obstbau 2021, 63, 23–30. [Google Scholar] [CrossRef]
Parameter | Control | FV | F80V | p-Value |
---|---|---|---|---|
TSS (°Brix) | 18.28 ± 0.35 b | 19.62 ± 0.38 a | 19.51 ± 0.33 a | 0.048 |
TA (g L−1) | 9.52 ± 0.32 a | 8.21 ± 0.87 a | 8.87 ± 0.71 a | 0.368 |
pH | 3.31 ± 0.03 a | 3.36 ± 0.03 a | 3.36 ± 0.04 a | 0.601 |
Treatment | Yield (kg Plant −1) | Weight of 100 Berry Grapes (g) | Clusters per Plant |
---|---|---|---|
Control | 1.9 ± 0.12 a | 127.7 ± 2.38 a | 31.9 ± 3.16 a |
FV | 2.0 ± 0.36 a | 135.7 ± 8.87 a | 31.4 ± 4.92 a |
F80V | 1.7 ± 0.10 a | 126.8 ± 9.13 a | 29.1 ± 2.11 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Alarcón, A.; Reyes-Díaz, M.; Serra, I.; González-Villagra, J.; Carrasco-Catricura, N.; Pirce, F.; Ribera-Fonseca, A. Effects of an Inter-Row Reflective Ground Film on Technological Quality and Phenolic Composition of ‘Pinot Noir’ Grapes in Southern Chile. Horticulturae 2025, 11, 1144. https://doi.org/10.3390/horticulturae11091144
Muñoz-Alarcón A, Reyes-Díaz M, Serra I, González-Villagra J, Carrasco-Catricura N, Pirce F, Ribera-Fonseca A. Effects of an Inter-Row Reflective Ground Film on Technological Quality and Phenolic Composition of ‘Pinot Noir’ Grapes in Southern Chile. Horticulturae. 2025; 11(9):1144. https://doi.org/10.3390/horticulturae11091144
Chicago/Turabian StyleMuñoz-Alarcón, Ariel, Marjorie Reyes-Díaz, Ignacio Serra, Jorge González-Villagra, Nicolás Carrasco-Catricura, Fanny Pirce, and Alejandra Ribera-Fonseca. 2025. "Effects of an Inter-Row Reflective Ground Film on Technological Quality and Phenolic Composition of ‘Pinot Noir’ Grapes in Southern Chile" Horticulturae 11, no. 9: 1144. https://doi.org/10.3390/horticulturae11091144
APA StyleMuñoz-Alarcón, A., Reyes-Díaz, M., Serra, I., González-Villagra, J., Carrasco-Catricura, N., Pirce, F., & Ribera-Fonseca, A. (2025). Effects of an Inter-Row Reflective Ground Film on Technological Quality and Phenolic Composition of ‘Pinot Noir’ Grapes in Southern Chile. Horticulturae, 11(9), 1144. https://doi.org/10.3390/horticulturae11091144