Mechanism of High-Voltage Electrostatic Field Treatment in Maintaining the Postharvest Quality of Agaricus bisporus
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Equipment
2.1.1. A. Bisporus Samples
2.1.2. High-Voltage Electrostatic Field Apparatus
2.2. Sample Treatment in the High-Voltage Electrostatic Field and Sampling Protocol
2.3. Selection of Parameters for High-Voltage Electrostatic Field Treatment
2.3.1. Colorimetric
2.3.2. Weight Loss Rate
2.3.3. Respiratory Intensity
2.3.4. Soluble Solids Content
2.3.5. Hardness Assessment
2.4. RNA-Seq
2.4.1. Total RNA Extraction
2.4.2. cDNA Synthesis
2.4.3. Transcriptome Sequencing
2.5. Measurement of Respiratory Metabolism-Related Indicators
2.5.1. ATP Content
2.5.2. 6-Phosphogluconate Dehydrogenase Activity
2.6. Determination of Antioxidant Properties and Browing Related Indicators
2.6.1. Ascorbic Acid (AsA) Content
2.6.2. Glutathione Content
2.6.3. Cell Membrane Relative Conductivity
2.6.4. Malondialdehyde (MDA)
2.6.5. Enzymatic Activity of Polyphenol Oxidase (PPO)
2.6.6. Enzymatic Activity of Peroxidase (POD)
2.7. Statistical Analyses
3. Results
3.1. Identification of Optimal Parameters for High-Voltage Electrostatic Field Treatment
3.1.1. Lightness
3.1.2. Weight Loss and Respiratory Intensity
3.2. GO and KEGG Enrichment via Treatment with 30 kV m−1 HVEF
3.3. Effect of HVEF on Respiratory Metabolism of A. bisporus
3.4. Effect of HVEF on Antioxidant Properties and Browning of A. bisporus
3.5. Effect of HVEF on Cold Resistance of A. bisporus
4. Discussion
4.1. Comparative Evaluation of HVEF-Refrigeration Synergy in A.bisporus Preservation
4.2. Energy Metabolism as One of the Core Mechanisms of HVEF in the Preservation of A.bisporus
4.3. Antioxidants as One of the Core Mechanisms of HVEF in the Preservation of A. bisporus
4.4. Delaying Browning as One of the Core Mechanisms of HVEF in the Preservation of A. bisporus
4.5. Cold Resistance as One of the Core Mechanisms of HVEF in the Preservation of A. bisporus
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HVEF | high-voltage electrostatic field |
MDA | malondialdehyde |
PPO | polyphenol oxidase |
POD | peroxidase |
GSH | glutathione |
AsA | ascorbic acid |
LOX | lipoxygenase |
PME | pectin methylesterase |
PG | polygalacturonase |
Cel | cellulase |
CO2 | carbon dioxide |
H2O2 | hydrogen peroxide |
References
- Yang, Q.; Fan, S.; Wang, M.; Li, Y.; Zhao, Y.; Tan, W.; Zhou, J.; Luo, C.; Peng, X.; Huang, Z.; et al. Extraction techniques, structural characteristics, and biological functions of Agaricus bisporus polysaccharides: A review. Int. J. Biol. Macromol. 2025, 313, 144229. [Google Scholar] [CrossRef]
- Valverde, M.E.; Hernández-Pérez, T.; Paredes-López, O. Edible mushrooms: Improving human health and promoting quality life. Int. J. Microbiol. 2015, 2015, 376387. [Google Scholar] [CrossRef]
- Analysis of the Results of the National Edible Fungi Statistical Survey in 2023. 2024. Tridge. Available online: https://www.tridge.com/news/analysis-of-the-results-of-the-national-edib-fxovru (accessed on 2 September 2025).
- Dong, S.; Guo, J.; Yu, J.; Bai, J.; Xu, H.; Li, M. Effects of electron-beam generated X-ray irradiation on the postharvest storage quality of Agaricus bisporus. Innov. Food Sci. Emerg. Technol. 2022, 80, 103079. [Google Scholar] [CrossRef]
- Lin, X.; Sun, D.-W. Research advances in browning of button mushroom (Agaricus bisporus): Affecting factors and controlling methods. Trends Food Sci. Technol. 2019, 90, 63–75. [Google Scholar] [CrossRef]
- Xiong, Z.J. The Research on Technical Barriers to Trade and Export of China’s Edible Fungus. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2010. [Google Scholar]
- Zheng, B.; Kou, X.; Liu, C.; Wang, Y.; Yu, Y.; Ma, J.; Liu, Y.; Xue, Z. Effect of nanopackaging on the quality of edible mushrooms and its action mechanism: A review. Food Chem. 2023, 407, 135099. [Google Scholar] [CrossRef]
- Zhang, K.; Pu, Y.-Y.; Sun, D.-W. Recent advances in quality preservation of postharvest mushrooms (Agaricus bisporus): A review. Trends Food Sci. Technol. 2018, 78, 72–82. [Google Scholar] [CrossRef]
- Cai, Z.; Zeng, Z.; Chen, W.; Guo, Z.; Zheng, H.; Lu, Y.; Zeng, H.; Chen, M. Comprehensive Metabolomic and Transcriptomic Analysis Revealed the Molecular Basis of the Effects of Different Refrigeration Durations on the Metabolism of Agaricus bisporus Cultivation Spawn. J. Fungi 2025, 11, 415. [Google Scholar] [CrossRef]
- Gong, M.; Zhang, T.; Wu, Y.; Shang, J.; Su, E.; Cao, Y.; Zhang, J. Synergizing postharvest physiology and nanopackaging for edible mushroom preservation. Food Chem. 2025, 463, 141099. [Google Scholar] [CrossRef]
- Dalvi-Isfahan, M.; Havet, M.; Hamdami, N.; Le-Bail, A. Recent advances of high voltage electric field technology and its application in food processing: A review with a focus on corona discharge and static electric field. J. Food Eng. 2023, 353, 111551. [Google Scholar] [CrossRef]
- Dalvi-Isfahan, M.; Hamdami, N.; Le-Bail, A.; Xanthakis, E. The principles of high voltage electric field and its application in food processing: A review. Food Res. Int. 2016, 89, 48–62. [Google Scholar] [CrossRef]
- Chang, X.; Liang, Y.; Shi, F.; Guo, T.; Wang, Y. Biochemistry behind firmness retention of jujube fruit by combined treatment of acidic electrolyzed water and high-voltage electrostatic field. Food Chem. X 2023, 19, 100812. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, M.; Mujumdar, A.S.; Ma, Y. Intermittent high voltage electrostatic field and static magnetic field assisted modified atmosphere packaging alleviate mildew of postharvest strawberries after simulated transportation by activating the phenylpropanoid pathway. Food Chem. 2024, 434, 137444. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, L.; Gao, S.; Wang, S.; Li, X.; Xiong, X. Postharvest storage properties and quality kinetic models of cherry tomatoes treated by high-voltage electrostatic fields. LWT 2023, 176, 114497. [Google Scholar] [CrossRef]
- Li, T.; An, G.; Sun, Q.; Xu, T.; Du, D.; Zhang, Y.; Chen, H.; Xia, G. Effects of high voltage electrostatic field and weak magnetic field assisted refrigeration on preservation of spinach. Food Meas. 2023, 17, 6484–6502. [Google Scholar] [CrossRef]
- Kao, N.-Y.; Tu, Y.-F.; Sridhar, K.; Tsai, P.-J. Effect of a high voltage electrostatic field (HVEF) on the shelf-life of fresh-cut broccoli (Brassica oleracea var. italica). LWT 2019, 116, 108532. [Google Scholar] [CrossRef]
- Valdez-Miranda, J.I.; Guitiérrez-López, G.F.; La Robles-de Torre, R.R.; Hernández-Sánchez, H.; Robles-López, M.R. Health Benefits of High Voltage Electrostatic Field Processing of Fruits and Vegetables. Plant Foods Hum. Nutr. 2024, 79, 260–269. [Google Scholar] [CrossRef]
- Yan, M.; Yuan, B.; Xie, Y.; Cheng, S.; Huang, H.; Zhang, W.; Chen, J.; Cao, C. Improvement of postharvest quality, enzymes activity and polyphenoloxidase structure of postharvest Agaricus bisporus in response to high voltage electric field. Postharvest Biol. Technol. 2020, 166, 111230. [Google Scholar] [CrossRef]
- Liu, J.; Liu, S.; Zhang, X.; Kan, J.; Jin, C. Effect of gallic acid grafted chitosan film packaging on the postharvest quality of white button mushroom (Agaricus bisporus). Postharvest Biol. Technol. 2019, 147, 39–47. [Google Scholar] [CrossRef]
- Adibian, M.; Mami, Y. Mushroom supplement added to casing to improve postharvest quality of white button mushroom. Eur. J. Hortic. Sci. 2015, 80, 240–248. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, C.; Shen, C.; Ran, B.; Yang, Z.; Zhou, L.; Xu, H.; Tang, Y. The impact of high voltage electrostatic field on the storage quality and metabolism of Chinese kale. Food Meas. 2024, 18, 3405–3424. [Google Scholar] [CrossRef]
- Nie, X.; Zuo, Z.; Zhou, L.; Gao, Z.; Cheng, L.; Wang, X.; Nie, L.; Huang, P.-H. Investigating the Effect of High-Voltage Electrostatic Field (HVEF) Treatment on the Physicochemical Characteristics, Bioactive Substances Content, and Shelf Life of Tomatoes. Foods 2024, 13, 2823. [Google Scholar] [CrossRef]
- Helland, H.; Leufvèn, A.; Bengtsson, G.B.; Larsen, H.; Nicolaisen, E.M.; Thomsen, M.; Hermansen, A.; Wold, A.B.; Berge, L. Respiration rate and changes in composition of volatiles during short-term storage of minimally processed root vegetables. Acta Hortic. 2018, 1209, 365–370. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Zhang, X.; Shi, Q.; Xin, L.; Fu, H.; Wang, Y. Effects of radio frequency assisted blanching on polyphenol oxidase, weight loss, texture, color and microstructure of potato. Food Chem. 2018, 248, 173–182. [Google Scholar] [CrossRef]
- Kusuma, R.A.; Eko Nugroho, L.P.; Wulandani, D. Effect of High Electrostatic Field Pre-treatment on Quality of Cherry Tomato during Storage. J. Keteknikan Pertan. 2018, 6, 31–38. [Google Scholar] [CrossRef]
- Ko, W.-C.; Yang, S.-Y.; Chang, C.-K.; Hsieh, C.-W. Effects of adjustable parallel high voltage electrostatic field on the freshness of tilapia (Orechromis niloticus) during refrigeration. LWT 2016, 66, 151–157. [Google Scholar] [CrossRef]
- Pérez-Gálvez, A.; Viera, I.; Roca, M. Carotenoids and Chlorophylls as Antioxidants. Antioxidants 2020, 9, 505. [Google Scholar] [CrossRef]
- NavaneethaKrishnan, S.; Rosales, J.L.; Lee, K.-Y. ROS-Mediated Cancer Cell Killing through Dietary Phytochemicals. Oxidative Med. Cell. Longev. 2019, 2019, 9051542. [Google Scholar] [CrossRef]
- Lei, J.; Li, B.; Zhang, N.; Yan, R.; Guan, W.; Brennan, C.S.; Gao, H.; Peng, B. Effects of UV-C treatment on browning and the expression of polyphenol oxidase (PPO) genes in different tissues of Agaricus bisporus during cold storage. Postharvest Biol. Technol. 2018, 139, 99–105. [Google Scholar] [CrossRef]
- Cao, J.; Ma, S.; Zhang, L.; Wang, R.; Shi, J. Browning inhibition on fresh-cut potatoes by high voltage electrostatic field (HVEF) pre-treatment. Acta Hortic. 2021, 1319, 153–162. [Google Scholar] [CrossRef]
- Gupta, N.; Thind, S.K.; Bains, N.S. Glycine betaine application modifies biochemical attributes of osmotic adjustment in drought stressed wheat. Plant Growth Regul. 2014, 72, 221–228. [Google Scholar] [CrossRef]
- Yin, H.; Yang, F.; He, X.; Du, X.; Mu, P.; Ma, W. Advances in the functional study of glutamine synthetase in plant abiotic stress tolerance response. Crop J. 2022, 10, 917–923. [Google Scholar] [CrossRef]
- Patel, S.N.; Graether, S.P. Structures and ice-binding faces of the alanine-rich type I antifreeze proteins. Biochem. Cell Biol. 2010, 88, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Wang, T.; Chen, D.; Shen, L.; Zhang, G.; Qian, Q.; Li, Z. Leucine-Rich Repeat Protein Family Regulates Stress Tolerance and Development in Plants. Rice Sci. 2025, 32, 32–43. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, J.; Francis, F. The role and pathway of VQ family in plant growth, immunity, and stress response. Planta 2023, 259, 16. [Google Scholar] [CrossRef]
- Lu, Y.; Li, Y.; Peng, Q.; Sun, X.; Yang, Q.; Song, Z.; Tian, F.; Yan, Y.; Liu, M. Enhancing maize seed resistance to chilling stress through seed germination and surface morphological changes using high voltage electrostatic field. Sci. Rep. 2025, 15, 3972. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, B.; Jia, C.; Jia, W.; Li, Y.; Chang, M.; Zhang, H. Mechanism of High-Voltage Electrostatic Field Treatment in Maintaining the Postharvest Quality of Agaricus bisporus. Horticulturae 2025, 11, 1129. https://doi.org/10.3390/horticulturae11091129
Deng B, Jia C, Jia W, Li Y, Chang M, Zhang H. Mechanism of High-Voltage Electrostatic Field Treatment in Maintaining the Postharvest Quality of Agaricus bisporus. Horticulturae. 2025; 11(9):1129. https://doi.org/10.3390/horticulturae11091129
Chicago/Turabian StyleDeng, Bing, Chenlin Jia, Wanting Jia, Yunzhi Li, Mingchang Chang, and Hongyan Zhang. 2025. "Mechanism of High-Voltage Electrostatic Field Treatment in Maintaining the Postharvest Quality of Agaricus bisporus" Horticulturae 11, no. 9: 1129. https://doi.org/10.3390/horticulturae11091129
APA StyleDeng, B., Jia, C., Jia, W., Li, Y., Chang, M., & Zhang, H. (2025). Mechanism of High-Voltage Electrostatic Field Treatment in Maintaining the Postharvest Quality of Agaricus bisporus. Horticulturae, 11(9), 1129. https://doi.org/10.3390/horticulturae11091129