Projected Shifts in Colombian Sweet Potato Germplasm Under Climate Change
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data Compilation
2.2. Compilation and Prioritization of Bioclimatic Variables
2.3. Potential Niche Distribution Modeling
3. Results
3.1. Current Distribution Ranges of Wild Sweet Potato and Landraces
3.2. Prioritization of Bioclimatic Variables
3.3. Model Accuracy
3.4. Forecasted Spatial Distribution of Wild Sweet Potato Under Climate Change
3.5. Forecasted Spatial Distribution of Sweet Potato Landraces Under Climate Change
3.6. Altitudinal Shifts During Climate Change
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shakoor, A.; Albasher, G.; Farooq, T.H. Climate change on the brink: Time for urgent action. Ecol. Inform. 2023, 78, 102286. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2024; FAO: Rome, Italy, 2024; ISBN 978-92-5-138882-2. [Google Scholar]
- Abbas, G.; Ahmed, M.; Fatima, Z.; Hussain, S.; Kheir, A.M.S.; Ercişli, S.; Ahmad, S. Modeling the potential impact of climate change on maize-maize cropping system in semi-arid environment and designing of adaptation options. Agric. For. Meteorol. 2023, 341, 109674. [Google Scholar] [CrossRef]
- Pardi, F.; Ruziman, H.H.; Suratman, M.N. The vulnerability of forest resources to climate change. In Land and Environmental Management Through Forestry; Wiley: Hoboken, NJ, USA, 2023; pp. 103–131. ISBN 9781119910527. [Google Scholar]
- Anderson, R.P.; Martínez-Meyer, E.; Nakamura, M.; Araújo, M.B.; Peterson, A.T.; Soberón, J.; Pearson, R.G. Ecological Niches and Geographic Distributions (MPB-49); Princeton University Press: Princeton, NJ, USA, 2011; ISBN 9781400840670. [Google Scholar]
- Soberon, J.; Peterson, A.T. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Inform. 2005, 2. [Google Scholar] [CrossRef]
- Woolfe, J. Sweet Potato an Untapped Food Resource; Cambridge University Press: Cambridge, UK, 1992; ISBN 0521402956. [Google Scholar]
- Bovell-Benjamin, A.C. Sweet potato: A review of its past, present, and future role in human nutrition. Adv. Food Nutr. Res. 2007, 52, 1–59. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Yao, Z.; Yang, Y.; Wang, Z.; Zou, H.; Zhang, X.; Chen, J.; Fang, B.; Huang, L. Genetic fingerprint construction and genetic diversity analysis of sweet potato (Ipomoea batatas) germplasm resources. BMC Plant Biol. 2023, 23, 355. [Google Scholar] [CrossRef] [PubMed]
- Galvao, A.C.; Nicoletto, C.; Zanin, G.; Vargas, P.F.; Sambo, P. nutraceutical content and daily value contribution of sweet potato accessions for the european market. Horticulturae 2021, 7, 23. [Google Scholar] [CrossRef]
- Velumani, R.; Raju, S.; Gangadharan, B.; Pallavi Nair, K.; George, J. Photosynthetic response of sweet potato (Ipomoea batatas) to photon flux density and elevated carbon dioxide. Indian J. Agric. Sci. 2017, 87, 1231–1237. [Google Scholar] [CrossRef]
- Van Heerden, P.D.R.; Laurie, R. Effects of prolonged restriction in water supply on photosynthesis, shoot development and storage root yield in sweet potato. Physiol. Plant. 2008, 134, 99–109. [Google Scholar] [CrossRef]
- Alemu, T.; Amsalu, R. Ultraviolet-B, end of day light and exclusion effect on photosynthetic efficiency of sweet potato (Ipomoea batatas L.) based on altitude. J. Hortic. Postharvest Res. 2020, 3, 1–10. [Google Scholar] [CrossRef]
- Adebola, P.O.; Shegro, A.; Laurie, S.M.; Zulu, L.N.; Pillay, M. Genotype x environment interaction and yield stability estimate of some sweet potato [Ipomoea batatas (L.) Lam] breeding lines in South Africa. J. Plant Breed. Crop Sci. 2013, 5, 182–186. [Google Scholar] [CrossRef]
- Byrne, P.F.; Volk, G.M.; Gardner, C.; Gore, M.A.; Simon, P.W.; Smith, S. Sustaining the future of plant breeding: The critical role of the USDA-ARS national plant germplasm system. Crop Sci. 2018, 58, 451–468. [Google Scholar] [CrossRef]
- Rosero, A.; Rodríguez, E.; Aguilera-Arango, G.; Rosero, M.; Granda, L.; Pastrana, I.; Martínez, R.; Perez, J.; Espitia, L.; Gomez, E.; et al. Assessment of the current state of in situ conservation and use of sweet potato (Ipomoea batatas L.) in Colombia. Cult. Agric. Food Environ. 2022, 44, 76–89. [Google Scholar] [CrossRef]
- Pérez-Pazos, J.V.; Rosero, A.; Martínez, R.; Pérez, J.; Morelo, J.; Araujo, H.; Burbano-Erazo, E. Influence of morpho-physiological traits on root yield in sweet potato (Ipomoea batatas Lam.) genotypes and its adaptation in a sub-humid environment. Sci. Hortic. 2021, 275, 109703. [Google Scholar] [CrossRef]
- Sulistiani, R.; Rosmayati; Siregar, L.A.M.; Harahap, F. Differences in morphology and sugar content of purple sweet potato (Ipomoea batatas L.) with potassium treatment at several altitudes. IOP Conf. Ser. Earth Environ. Sci. 2018, 122, 012050. [Google Scholar] [CrossRef]
- Booth, T.H. Perspective: Home and Away: The bioclimatology of acacia species in Australia and overseas. For. Ecol. Manag. 2024, 565, 122042. [Google Scholar] [CrossRef]
- Booth, T.H. Forestry trials and species adaptability to climate change. Glob. Change Biol. 2024, 30, 122042. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Huaccho, L.; Zhang, D.P. Global Distribution of Sweetpotato. Available online: https://cgspace.cgiar.org/items/2f01885b-7533-4596-9cc1-73e03fe5cf75 (accessed on 17 April 2025).
- Huaccho Huatuco, L.D.; Hijmans, R.J. A Geo-Referenced Database of Global Sweetpotato Distribution: Production Systems and Natural Resource Management Department. Available online: https://cipotato.org/wp-content/uploads/2014/10/cip_psnrmd_wp_no4.pdf (accessed on 27 July 2025).
- Khoury, C.K.; Heider, B.; Castañeda-Álvarez, N.P.; Achicanoy, H.A.; Sosa, C.C.; Miller, R.E.; Scotland, R.W.; Wood, J.R.I.; Rossel, G.; Eserman, L.A.; et al. Distributions, ex situ conservation priorities, and genetic resource potential of crop wild relatives of sweetpotato [Ipomoea batatas (L.) Lam., I. Series Batatas]. Front. Plant Sci. 2015, 6, 251. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Bedoya-Canas, L.E.; López-Hernández, F.; Cortés, A.J. Climate change responses of high-elevation polylepis forests. Forests 2024, 15, 811. [Google Scholar] [CrossRef]
- Carnaval, A.C.; Moritz, C. Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J. Biogeogr. 2008, 35, 1187–1201. [Google Scholar] [CrossRef]
- Williams, J.N.; Seo, C.; Thorne, J.; Nelson, J.K.; Erwin, S.; O’Brien, J.M.; Schwartz, M.W. Using species distribution models to predict new occurrences for rare plants. Divers. Distrib. 2009, 15, 565–576. [Google Scholar] [CrossRef]
- Zhao, Z.; Xiao, N.; Shen, M.; Li, J. Comparison between optimized maxent and random forest modeling in predicting potential distribution: A case study with Quasipaa Boulengeri in China. Sci. Total Environ. 2022, 842, 156867. [Google Scholar] [CrossRef] [PubMed]
- Tong, R.; Yesson, C.; Yu, J.; Luo, Y.; Zhang, L. Key Factors for species distribution modeling in benthic marine environments. Front. Mar. Sci. 2023, 10, 1222382. [Google Scholar] [CrossRef]
- Qiao, H.; Soberón, J.; Peterson, A.T. No silver bullets in correlative ecological niche modelling: Insights from testing among many potential algorithms for niche estimation. Methods Ecol. Evol. 2015, 6, 1126–1136. [Google Scholar] [CrossRef]
- Enquist, B.J.; Condit, R.; Peet, R.K.; Schildhauer, M.; Thiers, B.M. Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. PeerJ Preprints 2016. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Müller, W.A.; Jungclaus, J.H.; Mauritsen, T.; Baehr, J.; Bittner, M.; Budich, R.; Bunzel, F.; Esch, M.; Ghosh, R.; Haak, H.; et al. A higher-resolution version of the Max Planck Institute Earth system model (MPI-ESM1.2-HR). J. Adv. Model. Earth Syst. 2018, 10, 1383–1413. [Google Scholar] [CrossRef]
- Arias, P.A.; Ortega, G.; Villegas, L.D.; Martínez, J.A. Colombian climatology in CMIP5/CMIP6 models: Persistent biases and improvements. Rev. Fac. Ing. Univ. 2021, 100, 75–96. [Google Scholar] [CrossRef]
- Tovar, C.; Arnillas, C.A.; Cuesta, F.; Buytaert, W. Diverging responses of tropical Andean biomes under future climate conditions. PLoS ONE 2013, 8, e63634. [Google Scholar] [CrossRef]
- Zeng, Y.; Low, B.W.; Yeo, D.C.J. Novel methods to select environmental variables in maxent: A case study using invasive crayfish. Ecol. Model. 2016, 341, 5–13. [Google Scholar] [CrossRef]
- Feng, X.; Park, D.S.; Liang, Y.; Pandey, R.; Papeş, M. Collinearity in ecological niche modeling: Confusions and challenges. Ecol. Evol. 2019, 9, 10365–10376. [Google Scholar] [CrossRef]
- Syfert, M.M.; Smith, M.J.; Coomes, D.A. The effects of sampling bias and model complexity on the predictive performance of maxent species distribution models. PLoS ONE 2013, 8, e55158. [Google Scholar] [CrossRef]
- Cobos, M.E.; Peterson, A.T.; Osorio-Olvera, L.; Jiménez-García, D. An exhaustive analysis of heuristic methods for variable selection in ecological niche modeling and species distribution modeling. Ecol. Inform. 2019, 53, 100983. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Chatterjee, S.; Hadi, A.S. Regression Analysis by Example; Wiley: Hoboken, NJ, USA, 2006; ISBN 9780.470905845. [Google Scholar]
- Guisan, A.; Thuiller, W.; Zimmermann, N.E. Habitat Suitability and Distribution Models; Cambridge University Press: Cambridge, UK, 2017; ISBN 9781139028271. [Google Scholar]
- Naimi, B.; Hamm, N.A.S.; Groen, T.A.; Skidmore, A.K.; Toxopeus, A.G. Where is positional uncertainty a problem for species distribution modelling? Ecography 2014, 37, 191–203. [Google Scholar] [CrossRef]
- Liu, C.; White, M.; Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 2013, 40, 778–789. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander, J.A. A Practical guide to maxent for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Olivas-Aguirre, F.; Quintero-Vargas, J.; Escobar-Puentes, A.; Wall-Medrano, A. Bioactive Compounds and Biological Activities of Sweet Potato (Ipomoea batatas (L.) Lam.); Springer: Berlin/Heidelberg, Germany, 2024; pp. 877–900. ISBN 978-3-031-44746-4. [Google Scholar]
- Nimmakayala, P.; Vajja, G.; Reddy, U.K. Wild Crop Relatives: Genomic and Breeding Resources; Springer: Berlin/Heidelberg, Germany, 2011; pp. 123–132. ISBN 978-3-642-21102-7. [Google Scholar]
- Mbayaki, C.W.; Kinama, J.M. More crop per drop: The magic of sweet potato (Ipomoea batatas L.). Trop. Subtrop. Agroecosystems 2021, 25. [Google Scholar] [CrossRef]
- Motsa, N.M.; Modi, A.T.; Mabhaudhi, T. Sweet potato (Ipomoea batatas L.) as a drought tolerant and food security crop. S. Afr. J. Sci. 2015, 111, 8. [Google Scholar] [CrossRef]
- Yagaso, Z.S.; Bayu, T.Y.; Bedane, M.D. Assessing the current status of food security under climate variability and the role of household-level adaption strategies near Ghibe III Hydroelectric Dam, Ethiopia. Discov. Food 2024, 4, 77. [Google Scholar] [CrossRef]
- Xiao, S.; Xu, P.; Deng, Y.; Dai, X.; Zhao, L.; Heider, B.; Zhang, A.; Zhou, Z.; Cao, Q. Comparative analysis of chloroplast genomes of cultivars and wild species of sweetpotato (Ipomoea batatas [L.] Lam). BMC Genomics 2021, 22, 262. [Google Scholar] [CrossRef] [PubMed]
- Vásquez Hernández, L.; Paredes, D.; Otero González, J.C.; Tapia, C.; Pabón Garcés, G.J. Diversidad de morfotipos de camote Ipomoea batatas (Convolvulaceae), y determinación de áreas óptimas para su conservación en Ecuador. Rev. Cuba. De Cienc. Biológicas 2019, 7, 1–11. [Google Scholar]
- Konko, Y.; Umaru, E.T.; Adjoussi, P.; Okhimamhe, A. Climate change and coastal population dynamics in Togo (West Africa). J. Coast. Conserv. 2023, 27, 47. [Google Scholar] [CrossRef]
- Zapata-Caldas, E.; Jarvis, A.; Ramirez, J.; Lau, C. Análisis de los impactos de cambio climático sobre cultivos andinos. Available online: https://ambienteycomercio.org/impacto-del-cambio-climatico-sobre-cultivos-andinos/ (accessed on 20 April 2025).
- Raymundo, R.; Asseng, S.; Cammarano, D.; Quiroz, R. Potato, sweet potato, and yam models for climate change: A review. Field Crop Res. 2014, 166, 173–185. [Google Scholar] [CrossRef]
- Khalil, T.; Asad, S.A.; Khubaib, N.; Baig, A.; Atif, S.; Umar, M.; Kropp, J.P.; Pradhan, P.; Baig, S. climate change and potential distribution of potato (Solanum Tuberosum) crop cultivation in Pakistan using maxent. AIMS Agric. Food 2021, 6, 663–676. [Google Scholar] [CrossRef]
- Cortés, A.J.; López-Hernández, F.; Blair, M.W. Genome–environment associations, an innovative tool for studying heritable evolutionary adaptation in orphan crops and wild relatives. Front. Genet. 2022, 13, 910386. [Google Scholar] [CrossRef]
- Cortés, A.J. Unlocking genebanks for climate adaptation. Nat. Clim. Change 2025, 15, 590–592. [Google Scholar] [CrossRef]
- Campbell, Q.; Castañeda-Álvarez, N.; Domingo, R.; Bishop-von Wettberg, E.; Runck, B.; Nandkangré, H.; Halpin-McCormick, A.; Fumia, N.; Neyhart, J.; Kilian, B.; et al. Prioritizing parents from global genebanks to breed climate-resilient crops. Nat. Clim. Chang. 2025, 15, 673–681. [Google Scholar] [CrossRef]
- Cortés, A.J.; López-Hernández, F.; Osorio-Rodriguez, D. Predicting thermal adaptation by looking into populations’ genomic past. Front. Genet. 2020, 11, 564515. [Google Scholar] [CrossRef] [PubMed]
- McCouch, S.; Navabi, Z.K.; Abberton, M.; Anglin, N.L.; Barbieri, R.L.; Baum, M.; Bett, K.; Booker, H.; Brown, G.L.; Bryan, G.J.; et al. Mobilizing crop biodiversity. Mol. Plant 2020, 13, 1341–1344. [Google Scholar] [CrossRef] [PubMed]
- Kholová, J.; Urban, M.O.; Bavorová, M.; Ceccarelli, S.; Cosmas, L.; Desczka, S.; Grando, S.; Lensink, R.; Nchanji, E.; Pavlík, J.; et al. Promoting new crop cultivars in low-income countries requires a transdisciplinary approach. Nat. Plants 2024, 10, 1610–1613. [Google Scholar] [CrossRef]
- López-Hernández, F.; Cortés, A.J. Last-generation genome–environment associations reveal the genetic basis of heat tolerance in Common Bean (Phaseolus vulgaris L.). Front. Genet. 2019, 10, 954. [Google Scholar] [CrossRef]
- Buitrago-Bitar, M.A.; Cortés, A.J.; López-Hernández, F.; Londoño-Caicedo, J.M.; Muñoz-Florez, J.E.; Muñoz, L.C.; Blair, M.W. Allelic diversity at abiotic stress responsive genes in relationship to ecological drought indices for cultivated tepary bean, Phaseolus acutifolius A. Gray, and its wild relatives. Genes 2021, 12, 556. [Google Scholar] [CrossRef] [PubMed]
- Frank, A.; Oddou-Muratorio, S.; Lalagüe, H.; Pluess, A.R.; Heiri, C.; Vendramin, G.G. Genome-environment association study suggests local adaptation to climate at the regional scale in Fagus Sylvatica. New Phytol. 2016, 210, 589–601. [Google Scholar] [CrossRef]
- Cortés, A.J.; López-Hernández, F. Harnessing crop wild diversity for climate change adaptation. Genes 2021, 12, 783. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Hernández, F.; Rosero-Alpala, M.G.; Rosero, A.; Cortés, A.J. Projected Shifts in Colombian Sweet Potato Germplasm Under Climate Change. Horticulturae 2025, 11, 1080. https://doi.org/10.3390/horticulturae11091080
López-Hernández F, Rosero-Alpala MG, Rosero A, Cortés AJ. Projected Shifts in Colombian Sweet Potato Germplasm Under Climate Change. Horticulturae. 2025; 11(9):1080. https://doi.org/10.3390/horticulturae11091080
Chicago/Turabian StyleLópez-Hernández, Felipe, Maria Gladis Rosero-Alpala, Amparo Rosero, and Andrés J. Cortés. 2025. "Projected Shifts in Colombian Sweet Potato Germplasm Under Climate Change" Horticulturae 11, no. 9: 1080. https://doi.org/10.3390/horticulturae11091080
APA StyleLópez-Hernández, F., Rosero-Alpala, M. G., Rosero, A., & Cortés, A. J. (2025). Projected Shifts in Colombian Sweet Potato Germplasm Under Climate Change. Horticulturae, 11(9), 1080. https://doi.org/10.3390/horticulturae11091080