Postharvest Quality and Shelf Life of Three Thornless Blackberry Cultivars over Two Seasons
Abstract
1. Introduction
- Assess the progression of key physiological parameters, including fresh weight loss, leakiness, and red drupelet reversion, across multiple storage durations.
- Quantify changes in fruit biochemical composition, including soluble solids content (SSC), titratable acidity (TTA), SSC/TTA ratio, and ascorbic acid content.
- Determine cultivar-specific differences in postharvest performance over a 16-day cold storage period.
2. Materials and Methods
2.1. Material and Experimental Design
2.2. Cold Storage and Sampling Protocol
2.3. Visual and Physical Quality Assessments
2.4. Juice Extraction and Biochemical Analyses
2.5. Statistical Analysis
3. Results
3.1. Weight Loss During Storage
3.1.1. 2023 Season
3.1.2. 2024 Season
3.2. Leakiness Percentage
3.3. Red Drupelet Reversion (RDR)
3.4. Soluble Solids Content (SSC, °Brix)
3.5. SSC to TTA Ratio
3.6. Ascorbic Acid Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andersen, P.C. The Blackberry. Publication HS807; Horticultural Sciences Department, University of Florida, Institute of Food and Agricultural Sciences, Florida Cooperative Extension Service: Gainesville, FL, USA, 2020. [Google Scholar] [CrossRef]
- Carter, K.A.; Liston, A.; Bassil, N.V.; Alice, L.A.; Bushakra, J.M.; Sutherland, B.L.; Mockler, T.C.; Bryant, D.W.; Hummer, K.E. Target capture sequencing unravels Rubus evolution. Front. Plant Sci. 2019, 10, 1615. [Google Scholar] [CrossRef] [PubMed]
- Tumbarski, Y.; Petkova, N.; Todorova, M.; Ivanov, I.; Deseva, I.; Mihaylova, D.; Ibrahim, S. Effects of pectin-based edible coatings containing a bacteriocin of Bacillus methylotro phicus BM47 on the quality and storage life of fresh blackberries. Italian J. Food Sci. 2020, 32, 420–437. [Google Scholar]
- Clark, J.R. Changing times for eastern United States blackberries. HortTechnology 2005, 15, 491. [Google Scholar] [CrossRef]
- Clark, J.R.; Finn, C.E. Blackberry cultivation in the World. Rev. Bras. Frutic. 2014, 36, 46–57. [Google Scholar] [CrossRef]
- FAOSTAT. Crop Production, Yield, Harvested Area (Global-National-Annual). 2024. Available online: https://www.fao.org/faostat/en/#data (accessed on 4 March 2022).
- Oliveira, P.B.; Oliveira, C.M.; Machado, P.V.; Lopes-da-Fonseca, L.; Monteiro, A.A. Improving off-season production of primocane-fruiting red raspberry by altering summer-pruning intensity. HortScience 1998, 3, 31–33. [Google Scholar] [CrossRef]
- Rom, C.R.; Garcia, M.E.; Johnson, D.T.; Popp, J.; Friedrich, H.; McAfee, J. High tunnel production of organic blackberries and raspberries in Arkansas. ISHS Acta Horticulturae 2010, 873, 269–276. [Google Scholar] [CrossRef]
- Rodríguez, H.G.; Popp, J.; Thomsen, M.; Friedrich, H.; Rom, C.R. Economic analysis of investing in open-field or high tunnel primocane-fruiting blackberry production in Northwestern Arkansas. HortTechnology 2012, 22, 245–251. [Google Scholar] [CrossRef]
- Salgado, A.A.; Clark, J.R. “Crispy” blackberry genotypes: A breeding innovation of the University of Arkansas blackberry breeding program. HortScience 2016, 51, 468–471. [Google Scholar] [CrossRef]
- Segantini, D.M.; Threlfall, R.; Clark, J.R.; Brownmiller, C.R.; Howard, L.R.; Lawless, L.J.R. Changes in fresh-market and sensory attributes of blackberry genotypes after postharvest storage. J. Berry Res. 2017, 7, 129–145. [Google Scholar] [CrossRef]
- Brackmann, A.; Thewes, F.R.; de Oliveira Anese, R.; de Gasperin, A.R.; Fronza, D. Interaction between maturity stages and temperature on quality of ‘Guarani’ blackberries stored under controlled atmosphere. Cienc. Rural 2017, 47, e20150987. [Google Scholar] [CrossRef]
- Sabir, F.; Sabir, A.; Ozcelik, S.; Kucukbasmaci, A. Maintenance of postharvest quality of blackberry (Rubus fructicosus L.) fruits through salicylic acid and CaCl2 immersions. Acta Sci. Pol. Hortorum Cultus 2019, 18, 121–128. [Google Scholar] [CrossRef]
- Joo, M.; Lewandowski, N.; Auras, R.; Harte, J.; Almenar, E. Comparative shelf life study of blackberry fruit in bio-based and petroleum-based containers under retail storage conditions. Food Chem. 2011, 126, 1734–1740. [Google Scholar] [CrossRef] [PubMed]
- Perkins-Veazie, P.; Collins, J.; Clark, J. Cultivar and storage temperature effects on the shelf life of blackberry fruit. Proc. Fla. State Hortic. Soc. 1999, 53, 201–208. [Google Scholar]
- Lawrence, B.; Melgar, J.C. Harvest, handling, and storage recommendations for improving postharvest quality of blackberry cultivars. HortTechnology 2018, 28, 578–583. [Google Scholar] [CrossRef]
- Liu, M. Effect of Organic Production System and Harvest Date on the Quality of Blackberry Fruit for Fresh and Processed Markets. Master’s Thesis, University of Arkansas, Fayetteville, AR, USA, 2014. [Google Scholar]
- Clark, J.R.; Stafne, E.T.; Hall, H.K.; Finn, C.E. Blackberry breeding and genetics. Plant Breed. Rev. 2007, 29, 19. [Google Scholar]
- Finn, C.E.; Clark, J.R. Blackberry. In Fruit Breeding; Springer: Boston, MA, USA, 2012; pp. 151–190. [Google Scholar]
- Pérez-Pérez, G.A.; Fabela-Gallegos, M.J.; Vázquez-Barrios, M.E.; Rivera-Pastrana, D.M.; Palma-Tirado, L.; Mercado-Silva, E.; Escalona, V. Effect of the transport vibration on the generation of the color reversion in blackberry fruit. Acta Hortic. 2016, 1194, 1329–1336. [Google Scholar] [CrossRef]
- Edgley, M. Causes and Mechanisms of Red Drupelet Reversion in Blackberries. PhD Thesis, University of Tasmania, Hobart, Australia, 2019. [Google Scholar]
- McCoy, J.; Clarke, J.; Salgado, A.; Jecmen, A. Evaluation of harvest time/temperature and storage temperature on postharvest incidence of red drupelet reversion development and firmness of blackberry (Rubus L. subgenus Rubus Watson). Discov. Stud. J. Dale Bump. Coll. Agric. Food Life Sci. 2016, 17, 59–65. [Google Scholar]
- Cia, P.; Bron, I.U.; de Toledo Valentini, S.R.; Pio, R.; Chagas, E.A. Atmosfera modificada e refrigeração para conservação pós-colheita da amora-preta. Biosci. J. 2007, 23, 73–81. [Google Scholar]
- Bolda, M.; Cahn, M.D.; Gaskell, M.; Mitcham, E.J. Fresh Market Caneberry Production Manual; UCANR Publications: Oakland, CA, USA, 2012. [Google Scholar]
- Kader, A.A. Postharvest Technology of Horticultural Crops; University of California Agriculture and Natural Resources: Oakland, CA, USA, 2002. [Google Scholar]
- Clark, J.R.; Finn, C.E. New trends in blackberry breeding. Acta Hortic. 2008, 777, 41–48. [Google Scholar] [CrossRef]
- Talasila, U.; Vechalapu, R.R.; Shaik, K.B. Clarification, preservation, and shelf life evaluation of cashew apple juice. Food Sci. Biotechnol. 2012, 21, 709–714. [Google Scholar] [CrossRef]
- Terada, M.; Watanabe, Y.; Kunitomo, M.; Hayashi, E. Differential rapid analysis of ascorbic acid and ascorbic acid 2-sulfate by dinitrophenylhydrazine method. Anal. Biochem. 1978, 84, 604–608. [Google Scholar] [CrossRef]
- Lobos, G.; Retamales, J.; Moggia, C. Modified atmosphere packaging in blueberries: Effect of harvest time and moment of bag sealing. Acta Hortic. 2014, 1017, 153–158. [Google Scholar] [CrossRef]
- Edgley, M.; Close, D.; Measham, P.; Nichols, D. Physiochemistry of blackberries (Rubus L. subgenus Rubus Watson) affected by red drupelet reversion. Postharvest Biol. Technol. 2019, 153, 183–190. [Google Scholar] [CrossRef]
- Perkins-Veazie, P.; Collins, J.; Clark, J. Cultivar and maturity affect postharvest quality of fruit from erect blackberries. HortScience 1996, 31, 258–261. [Google Scholar] [CrossRef]
- Yin, M.H. Studies in Blackberry: Development and Implementation of a Phenotyping Protocol for Blackberry Seedling Populations and Impact of Time of Day of Harvest on Red Drupelet Reversion for University of Arkansas Blackberry Genotypes; University of Arkansas: Fayetteville, AR, USA, 2017. [Google Scholar]
- Edgley, M.; Close, D.; Measham, P. Red drupelet reversion in blackberries: A complex of genetic and environmental factors. Sci. Hortic. 2020, 272, 109555. [Google Scholar] [CrossRef]
- Perkins-Veazie, P.; Clark, J.; Huber, D.; Baldwin, E. Ripening physiology in ‘Navaho’ thornless blackberries: Color, respiration, ethylene production, softening, and compositional changes. J. Amer. Soc. Hortic. Sci. 2000, 125, 245–250. [Google Scholar] [CrossRef]
- Siriwoharn, T.; Wrolstad, R.E.; Finn, C.E.; Pereira, C.B. Influence of cultivar, maturity, and sampling on blackberry (Rubus L. hybrids) anthocyanins, polyphenolics, and antioxidant properties. J. Agric. Food Chem. 2004, 52, 8021–8030. [Google Scholar] [CrossRef]
- Ali, L. Pre-Harvest Factors Affecting Quality and Shelf-Life in Raspberries and Blackberries (Rubus spp. L.). PhD Thesis, Swedish University of Agricultural Sciences, Alnarp, Sweden, 2012. [Google Scholar]
- Kaume, L.; Howard, L.R.; Devareddy, L. The blackberry fruit: A review on its composition and chemistry, metabolism and bioavailability, and health benefits. J. Agric. Food Chem. 2012, 60, 5716–5727. [Google Scholar] [CrossRef]
- Wang, S.Y.; Lin, H.-S. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J. Agric. Food Chem. 2000, 48, 140–146. [Google Scholar] [CrossRef]
- Clark, J.R.; Demchak, K.; Finn, C.E.; Lowe, J.D.; Pomper, K.W.; Crabtree, S.B. ‘Black Magic’™ (APF-77) primocane-fruiting blackberry. HortScience 2014, 49, 1618–1620. [Google Scholar]
- Prange, R.K.; DeEll, J.R. Preharvest factors affecting postharvest quality of berry crops. HortScience 1997, 32, 824–830. [Google Scholar] [CrossRef]
- Demirsoy, L.; Demirsoy, H.; Uzun, S.; Ozturk, A. The effects of different periods of shading on growth and yield in ‘Sweet Charlie’ strawberry. Eur. J. Hortic. Sci. 2007, 72, 26–30. [Google Scholar] [CrossRef]
Variety | Day | Leakiness (%) | Reddening (%) | pH | Soluble Solids Content (°Brix) | Total Titratable Acids (%) |
---|---|---|---|---|---|---|
0 | 33.3 ± 0.0 b | 7.9 ± 1.59 a | 3.60 ± 0.03 d | 6.3 ± 0.30 b | 1.03 ± 0.075 ab | |
Freedom | 7 | 37.1 ± 2.06 ab | 16.0 ± 2.39 a | 3.92 ± 0.02 ab | 4.8 ± 1.06 b | 0.58 ± 0.034 e |
12 | 32.0 ± 2.46 b | 15.8 ± 3.36 a | 3.84 ± 0.07 abc | 6.8 ± 0.47 b | 0.78 ± 0.025 bcde | |
16 | - | - | 3.98 ± 0.02 a | 6.2 ± 0.24 b | 0.66 ± 0.014 de | |
0 | 35.4 ± 1.05 b | 4.3 ± 3.19 a | 3.57 ± 0.02 d | 11.4 ± 0.40 a | 1.06 ± 0.005 a | |
Osage | 7 | 36.6 ± 1.18 ab | 6.9 ± 1.67 a | 3.68 ± 0.03 cd | 11.2 ± 0.18 a | 0.99 ± 0.040 abc |
12 | 34.5 ± 1.0 b | 12.1 ± 3.52 a | 3.72 ± 0.02 bcd | 10.7 ± 0.5 a | 0.96 ± 0.037 abc | |
16 | - | - | 3.84 ± 0.04 abc | 11.0 ± 0.64 a | 0.86 ± 0.053 abcd | |
0 | 43.0 ± 1.54 a | 10.3 ± 1.33 a | 3.57 ± 0.00 d | 9.9 ± 0.42 a | 0.94 ± 0.088 abc | |
Ponca | 7 | 38.3 ± 1.54 ab | 10.9 ± 0.44 a | 3.71 ± 0.06 bcd | 10.6 ± 0.3 a | 0.90 ± 0.051 abcd |
12 | 38.6 ± 1.31 ab | 5.6 ± 2.80 a | 3.78 ± 0.09 abcd | 10.6 ± 0.32 a | 0.81 ± 0.086 abcde | |
16 | - | - | 3.84 ± 0.03 abc | 10.4 ± 0.18 a | 0.75 ± 0.047 cde |
Variety | Day | Leakiness (%) | Reddening (%) | pH | Soluble Solids Content (°Brix) | Total Titratable Acids (%) |
---|---|---|---|---|---|---|
0 | 6.6 ± 2.55 b | 22.5 ± 3.11 efg | 3.72 ± 0.04 de | 5.03 ± 0.32 c | 0.70 ± 0.097 cdef | |
7 | 10.0 ± 3.36 b | 34.0 ± 1.21 def | 3.86 ± 0.08 bcde | 4.33 ± 0.07 c | 0.52 ± 0.027 def | |
Freedom | 12 | 16.7 ± 3.49 b | 46.3 ± 4.24 bcd | 4.08 ± 0.04 ab | 5.27 ± 0.97 c | 0.38 ± 0.049 f |
16 | 25.5 ± 4.42 b | 65.0 ± 8.87 b | 4.13 ± 0.06 a | 4.67 ± 0.86 c | 0.40 ± 0.036 f | |
0 | 2.3 ± 1.38 b | 4.4 ± 0.23 g | 3.65 ± 0.05 de | 9.63 ± 0.26 a | 1.18 ± 0.032 a | |
7 | 5.3 ± 1.66 b | 18.7 ± 2.84 efg | 3.73 ± 0.03 cde | 9.10 ± 0.21 ab | 1.13 ± 0.064 ab | |
Osage | 12 | 6.7 ± 0.34 b | 33.7 ± 4.35 def | 3.98 ± 0.02 abc | 9.20 ± 0.06 ab | 0.85 ± 0.087 bc |
16 | 12.4 ± 0.80 b | 59.6 ± 6.21 bc | 4.07 ± 0.06 ab | 8.23 ± 0.89 ab | 0.56 ± 0.082 cdef | |
0 | 0.0 ± 0.0 b | 0.0 ± 0.0 g | 3.63 ± 0.01 e | 9.17 ± 0.14 ab | 0.81 ± 0.054 cd | |
7 | 4.5 ± 3.24 b | 10.5 ± 2.31 fg | 3.74 ± 0.07 cde | 8.13 ± 0.47 ab | 0.72 ± 0.083 cde | |
Ponca | 12 | 11.9 ± 7.61 b | 39.3 ± 6.01 cde | 3.90 ± 0.05 abcd | 6.73 ± 0.27 bc | 0.49 ± 0.024 ef |
16 | 69.5 ± 13.70 a | 89.6 ± 6.45 a | 4.02 ± 0.04 ab | 8.30 ± 0.67 ab | 0.48 ± 0.040 ef |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sriti, N.; Sargent, S.; Deng, Z.; Williamson, J.; Liu, G. Postharvest Quality and Shelf Life of Three Thornless Blackberry Cultivars over Two Seasons. Horticulturae 2025, 11, 1071. https://doi.org/10.3390/horticulturae11091071
Sriti N, Sargent S, Deng Z, Williamson J, Liu G. Postharvest Quality and Shelf Life of Three Thornless Blackberry Cultivars over Two Seasons. Horticulturae. 2025; 11(9):1071. https://doi.org/10.3390/horticulturae11091071
Chicago/Turabian StyleSriti, Nurjahan, Steven Sargent, Zhanao Deng, Jeffrey Williamson, and Guodong Liu. 2025. "Postharvest Quality and Shelf Life of Three Thornless Blackberry Cultivars over Two Seasons" Horticulturae 11, no. 9: 1071. https://doi.org/10.3390/horticulturae11091071
APA StyleSriti, N., Sargent, S., Deng, Z., Williamson, J., & Liu, G. (2025). Postharvest Quality and Shelf Life of Three Thornless Blackberry Cultivars over Two Seasons. Horticulturae, 11(9), 1071. https://doi.org/10.3390/horticulturae11091071