Synergistic Regulation of Growth and Quality in Substrate-Grown Spinach by LED Light Quality and Intensity in PFALs
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Design
2.3. Measurement Methods
2.3.1. Measurement of Morphological Growth
2.3.2. Measurement of Photosynthetic Characteristics
2.3.3. Measurement of Biological Accumulation
2.3.4. Measurement of Nutritional Quality
2.4. Data Processing and Statistical Analysis
3. Results
3.1. Effects of LED Light Quality and Intensity on Morphological Characteristics of Spinach
3.2. Effects of LED Light Quality and Intensity on Photosynthetic Characteristics of Spinach
3.3. Effects of LED Light Quality and Intensity on Biomass Accumulation of Spinach
3.4. Effects of LED Light Quality and Intensity on Nutritional Quality of Spinach
3.5. Correlation Analysis and Principal Component Analysis of Spinach Traits Under Different LED Light Quality and Intensities
4. Discussion
4.1. Leaf Morphological Characteristics
4.2. Photosynthetic Characteristics
4.3. Biomass Accumulation
4.4. Nutritional Quality
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, H.; Yu, H.; Zhang, B.; Chen, M.; Liu, Y.; Sui, Y. Quantitative perturbation analysis of plant factory LED heat dissipation on crop microclimate. Horticulturae 2023, 9, 660. [Google Scholar] [CrossRef]
- Chen, X.; Hou, T.; Liu, S.; Guo, Y.; Hu, J.; Xu, G.; Ma, G.; Liu, W. Design of a micro-plant factory using a validated CFD model. Agriculture 2024, 14, 2227. [Google Scholar] [CrossRef]
- Kozai, T. Current Status of Plant Factories with Artificial Lighting (PFALs) and Smart PFALs; Springer: Singapore, 2018; pp. 3–13. [Google Scholar]
- Goto, E. Plant production in a closed plant factory with artificial lighting. Acta Hortic. 2012, 956, 37–49. [Google Scholar] [CrossRef]
- Lu, N. Light environment and plant growth in plant factories. IOP Conf. Ser. Earth Environ. Sci. 2021, 686, 012002. [Google Scholar] [CrossRef]
- Da Luz, C.; Diógenes, A. Plant factories with artificial lighting: Prospects for achieving sustainable development goals. MOJ Ecol. Environ. Sci. 2025, 10, 8–13. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, M.; Xu, B.; Mujumdar, A.S.; Guo, Z. Light-emitting diodes (below 700 nm): Improving the preservation of fresh foods during postharvest handling, storage, and transportation. Compr. Rev. Food Sci. Food Saf. 2021, 21, 106–126. [Google Scholar] [CrossRef]
- Si, C.; Lin, Y.; Luo, S.; Yu, Y.; Liu, R.; Naz, M.; Dai, Z. Effects of LED light quality combinations on growth and leaf colour of tissue culture-generated plantlets in Sedum rubrotinctum. Hortic. Sci. Technol. 2024, 42, 53–67. [Google Scholar] [CrossRef]
- Zhou, J.; Li, P.; Wang, J. Effects of light intensity and temperature on the photosynthesis characteristics and yield of lettuce. Horticulturae 2022, 8, 178. [Google Scholar] [CrossRef]
- Chen, Z.; Jahan, M.; Mao, P.; Wang, M.; Liu, X.; Guo, S. Functional growth, photosynthesis and nutritional property analyses of lettuce grown under different temperature and light intensity. J. Hortic. Sci. Biotechnol. 2021, 96, 53–61. [Google Scholar] [CrossRef]
- Das, P.; Del Moro, D.; Givens, S.; Armstrong, S.; Walters, K. Propagation light intensity influences yield, morphology, and phytochemistry of purple-leaf butterhead lettuce (Lactuca sativa). J. Agric. Food Res. 2024, 16, 101210. [Google Scholar] [CrossRef]
- Huang, J.; D’Souza, C.; Tan, M.; Zhou, W. Light intensity plays contrasting roles in regulating metabolite compositions in choy sum (Brassica rapa var. parachinensis). J. Agric. Food Chem. 2021, 69, 5318–5331. [Google Scholar] [CrossRef] [PubMed]
- Hang, T.; Lu, N.; Takagaki, M.; Mao, H. Leaf area model based on thermal effectiveness and photosynthetically active radiation in lettuce grown in mini-plant factories under different light cycles. Sci. Hortic. 2019, 252, 113–120. [Google Scholar] [CrossRef]
- Flores, M.; Urrestarazu, M.; Amorós, A.; Escalona, V. High intensity and red enriched LED lights increased growth of lettuce and endive. Ital. J. Agron. 2021, 17, 1915. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, X.; Mao, H.; Wu, X.; Zhang, X.; Gao, H. Identification of pesticide residues in lettuce leaves based on near infrared transmission spectroscopy. J. Food Process Eng. 2018, 41, e12816. [Google Scholar] [CrossRef]
- Modarelli, G.; Paradiso, R.; Arena, C.; De Pascale, S.; Van Labeke, M. High light intensity from blue-red LEDs enhance photosynthetic performance, plant growth, and optical properties of red lettuce in controlled environment. Horticulturae 2022, 8, 114. [Google Scholar] [CrossRef]
- Jones-Baumgardt, C.; Llewellyn, D.; Ying, Q.; Zheng, Y. Intensity of sole-source light-emitting diodes affects growth, yield, and quality of Brassicaceae microgreens. HortScience 2019, 54, 1168–1174. [Google Scholar] [CrossRef]
- Miao, C.; Yang, S.; Xu, J.; Wang, H.; Zhang, Y.; Cui, J.; Zhang, H.; Jin, H.; Lu, P.; He, L.; et al. Effects of light intensity on growth and quality of lettuce and spinach cultivars in a plant factory. Plants 2023, 12, 3337. [Google Scholar] [CrossRef]
- Ahmed, H.; Tong, Y.; Yang, Q. Optimal control of environmental conditions affecting lettuce plant growth in a controlled environment with artificial lighting: A review. S. Afr. J. Bot. 2020, 130, 75–89. [Google Scholar] [CrossRef]
- Martínez-Moreno, A.; Frutos-Tortosa, A.; Díaz-Mula, H.; Mestre, T.; Martínez, V. Effect of the intensity and spectral quality of led light on growth and quality of spinach indoors. Horticulturae 2024, 10, 411. [Google Scholar] [CrossRef]
- Paradiso, R.; Proietti, S. Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: The state of the art and the opportunities of modern LED systems. J. Plant Growth Regul. 2021, 41, 742–780. [Google Scholar] [CrossRef]
- Ohtake, N.; Ishikura, M.; Suzuki, H.; Yamori, W.; Goto, E. Continuous irradiation with alternating red and blue light enhances plant growth while keeping nutritional quality in lettuce. HortScience 2018, 53, 1804–1809. [Google Scholar] [CrossRef]
- Naznin, M.; Lefsrud, M.; Gravel, V.; Azad, M. Blue light added with red LEDs enhance growth characteristics, pigments content, and antioxidant capacity in lettuce, spinach, kale, basil, and sweet pepper in a controlled environment. Plants 2019, 8, 93. [Google Scholar] [CrossRef]
- Bian, Z.; Yang, Q.; Liu, W. Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: A review. J. Sci. Food Agric. 2015, 95, 869–877. [Google Scholar] [CrossRef]
- Samuolienė, G.; Sirtautas, R.; Brazaitytė, A.; Duchovskis, P. LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chem. 2012, 134, 1494–1499. [Google Scholar] [CrossRef]
- Yu, H.; Wang, P.; Zhu, L.; Liu, Y.; Chen, M.; Zhang, S.; Sui, Y. Optimizing light intensity and airflow for improved lettuce growth and reduced tip burn disease in a plant factory. Sci. Hortic. 2024, 338, 113693. [Google Scholar] [CrossRef]
- Zhou, J.; Li, P.; Wang, J.; Fu, W. Growth, photosynthesis, and nutrient uptake at different light intensities and temperatures in lettuce. HortScience 2019, 54, 1925–1933. [Google Scholar] [CrossRef]
- Kitazaki, K.; Fukushima, A.; Nakabayashi, R.; Okazaki, Y.; Kobayashi, M.; Mori, T.; Nishizawa, T.; Reyes-Chin-Wo, S.; Michelmore, R.; Saito, K.; et al. Metabolic reprogramming in leaf lettuce grown under different light quality and intensity conditions using narrow-band LEDs. Sci. Rep. 2018, 8, 7914. [Google Scholar] [CrossRef]
- Le, T.; Sago, Y.; Ibaraki, Y.; Harada, K.; Arai, K.; Ishizaki, Y.; Aoki, H.; Abdelrahman, M.; Kik, C.; Van Treuren, R.; et al. Effect of LED irradiation with different red-to-blue light ratios on growth and functional compound accumulations in spinach (Spinacia oleracea L.) accessions and wild relatives. Plants 2025, 14, 700. [Google Scholar] [CrossRef]
- Okonkwo, C.E.; Olaniran, A.F.; Esua, O.J.; Elijah, A.O.; Erinle, O.C.; Afolabi, Y.T.; Olajide, O.P.; Iranloye, Y.M.; Zhou, C. Synergistic effect of drying methods and ultrasonication on natural deep eutectic solvent extraction of phytochemicals from African spinach (Amaranthus hybridus) stem. J. Food Sci. 2024, 89, 7115–7131. [Google Scholar] [CrossRef]
- Waseem, M.; Akhtar, S.; Manzoor, M.F.; Mirani, A.A.; Ali, Z.; Ismail, T.; Ahmad, N.; Karrar, E. Nutritional characterization and food value addition properties of dehydrated spinach powder. Food Sci. Nutr. 2021, 9, 1213–1221. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Meng, Q.; Du, W.; He, D. Effects of light quality on growth and development of cucumber seedlings in a controlled environment. Int. J. Agric. Biol. Eng. 2017, 10, 312–318. [Google Scholar]
- Lakhiar, I.A.; Gao, J.; Xu, X.; Syed, T.N.; Chandio, F.A.; Zhou, J.; Buttar, N.A. Effects of various aeroponic atomizers (droplet sizes) on growth, polyphenol content, and antioxidant activity of leaf lettuce (Lactuca sativa L.). Trans. ASABE 2019, 62, 1475–1487. [Google Scholar] [CrossRef]
- Tunio, M.H.; Gao, J.M.; Qureshi, W.A.; Sheikh, S.A.; Chen, J.D.; Chandio, F.A.; Lakhiar, I.A.; Solangi, K.A. Effects of droplet size and spray interval on root-to-shoot ratio, photosynthesis efficiency, and nutritional quality of aeroponically grown butterhead lettuce. Int. J. Agric. Biol. Eng. 2022, 15, 79–88. [Google Scholar]
- Dou, H.; Li, X.; Li, Z.; Song, J.; Yang, Y.; Yan, Z. Supplementary far-red light for photosynthetic active radiation differentially influences the photochemical efficiency and biomass accumulation in greenhouse-grown lettuce. Plants 2024, 13, 2169. [Google Scholar] [CrossRef]
- Shyamala, B.J.; Jamuna, P. Nutritional content and antioxidant properties of pulp waste from Daucus carota and Beta vulgaris. Malays. J. Nutr. 2010, 16, 397–408. [Google Scholar] [PubMed]
- Wu, W.; Xuan, Y. Spectrophotometer method to determine the iron content in vegetables. Guangdong Agric. Sci. 2011, 38, 169–170. [Google Scholar]
- Tunio, M.H.; Gao, J.M.; Mohamed, T.M.K.; Ahmad, F.; Abbas, I.; Shaikh, S.A. Comparison of nutrient use efficiency, antioxidant assay, and nutritional quality of butter-head lettuce (Lactuca sativa L.) in five cultivation systems. Int. J. Agric. Biol. Eng. 2023, 16, 95–103. [Google Scholar] [CrossRef]
- Mohamad, A.; Zehouri, A. The effect of the boiling process on the Oxalic acid content of some vegetables in the Syrian local market. Res. J. Pharm. Technol. 2021, 14, 5335. [Google Scholar] [CrossRef]
- Song, J.; Fan, Y.; Li, X.; Li, Y.; Mao, H.; Zuo, Z.; Zou, Z. Effects of daily light integral on tomato (Solanum lycopersicon L.) grafting and quality in a controlled environment. Int. J. Agric. Biol. Eng. 2022, 15, 44–50. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Z.; Wu, X.; Wang, W.; Yang, C.; Xu, G.; Wu, C.; Bao, E. Open-field agrivoltaic system impacts on photothermal environment and light environment simulation analysis in eastern China. Agronomy 2023, 13, 1820. [Google Scholar] [CrossRef]
- He, J.; Qin, L.; Chow, W. Impacts of LED spectral quality on leafy vegetables: Productivity closely linked to photosynthetic performance or associated with leaf traits? Int. J. Agric. Biol. Eng. 2019, 12, 16–25. [Google Scholar] [CrossRef]
- Park, B.G.; Lee, J.H.; Shin, E.J.; Kim, E.A.; Nam, S.Y. Light quality influence on growth performance and physiological activity of coleus cultivars. Int. J. Plant Biol. 2024, 15, 807–826. [Google Scholar] [CrossRef]
- Nguyen, T.; Vu, N.; Nguyen, Q.; Tran, T.; Cao, P.; Kim, I.; Jang, D. Growth and quality of hydroponic cultivated spinach (Spinacia oleracea L.) affected by the light intensity of red and blue LEDs. Sains Malays. 2022, 51, 473–483. [Google Scholar] [CrossRef]
- Thuy, P.; Khanh, N.; Duy, N. Effects of led light intensity and carbon dioxide concentration on the growth of spinach (Spinacia oleracea L.) in a plant factory. VNU J. Sci. Nat. Sci. Technol. 2022, 39, 40–49. [Google Scholar] [CrossRef]
- Tang, W.; Guo, H.; Baskin, C.; Xiong, W.; Yang, C.; Li, Z.; Song, H.; Wang, T.; Yin, J.; Wu, X.; et al. Effect of light intensity on morphology, photosynthesis and carbon metabolism of alfalfa (Medicago sativa L.) seedlings. Plants 2022, 11, 1688. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Liu, X.; Xu, Z.; Jiao, X. Effects of light intensity on leaf microstructure and growth of rape seedlings cultivated under a combination of red and blue LEDs. J. Integr. Agric. 2017, 16, 97–105. [Google Scholar] [CrossRef]
- Gao, W.; He, D.; Ji, F.; Zhang, S.; Zheng, J. Effects of daily light integral and LED spectrum on growth and nutritional quality of hydroponic spinach. Agronomy 2020, 10, 1082. [Google Scholar] [CrossRef]
- Lin, K.; Huang, M.; Huang, W.; Hsu, M.; Yang, Z.; Yang, C. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci. Hortic. 2013, 150, 86–91. [Google Scholar] [CrossRef]
- Wollaeger, H.; Runkle, E. Growth and acclimation of impatiens, salvia, petunia, and tomato seedlings to blue and red light. HortScience 2015, 50, 522–529. [Google Scholar] [CrossRef]
- Savvides, A.; Fanourakis, D.; Van Ieperen, W. Co-ordination of hydraulic and stomatal conductances across light qualities in cucumber leaves. J. Exp. Bot. 2011, 63, 1135–1143. [Google Scholar] [CrossRef]
- Pennisi, G.; Orsini, F.; Blasioli, S.; Cellini, A.; Crepaldi, A.; Braschi, I.; Spinelli, F.; Nicola, S.; Fernández, J.; Stanghellini, C.; et al. Resource use efficiency of indoor lettuce (Lactuca sativa L.) cultivation as affected by red:blue ratio provided by LED lighting. Sci. Rep. 2019, 9, 14127. [Google Scholar] [CrossRef]
- Nie, R.; Wei, X.; Jin, N.; Su, S.; Chen, X. Response of photosynthetic pigments, gas exchange and chlorophyll fluorescence parameters to light quality in Phoebe bournei seedlings. Plant Growth Regul. 2024, 103, 675–687. [Google Scholar] [CrossRef]
- Wang, J.; Lu, W.; Tong, Y.; Yang, Q. Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Front. Plant Sci. 2016, 7, 250. [Google Scholar] [CrossRef] [PubMed]
- Shang, W.; Song, Y.; Zhang, C.; Shi, L.; Shen, Y.; Li, X.; Wang, Z.; He, S. Effects of light quality on growth, photosynthetic characteristics, and endogenous hormones in in vitro-cultured Lilium plantlets. Hortic. Environ. Biotechnol. 2023, 64, 65–81. [Google Scholar] [CrossRef]
- Wittmann, D.; Geigenberger, P.; Grimm, B. NTRC and TRX-f coordinately affect the levels of enzymes of chlorophyll biosynthesis in a light-dependent manner. Cells 2023, 12, 1670. [Google Scholar] [CrossRef]
- Yuan, M.; Zhao, Y.; Zhang, Z.; Chen, Y.; Ding, C.; Yuan, S. Light regulates transcription of chlorophyll biosynthetic genes during chloroplast biogenesis. Crit. Rev. Plant Sci. 2017, 36, 35–54. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Niu, D.; Liu, X. Effects of abiotic stress on chlorophyll metabolism. Plant Sci. 2024, 342, 112030. [Google Scholar] [CrossRef]
- Ramalho, J.C.; Marques, N.C.; Semedo, J.N.; Matos, M.C.; Quartin, V.L. Photosynthetic performance and pigment composition of leaves from two tropical species is determined by light quality. Plant Biol. 2002, 4, 112–120. [Google Scholar] [CrossRef]
- Matsuda, R.; Ohashi-kaneko, K.; Fujiwara, K.; Kurata, K. Effects of blue light deficiency on acclimation of light energy partitioning in PSII and CO2 assimilation capacity to high irradiance in spinach leaves. Plant. Cell Physiol. 2008, 49, 664–670. [Google Scholar] [CrossRef]
- Vaštakaitė-Kairienė, V.; Brazaitytė, A.; Miliauskienė, J.; Runkle, E. Red to blue light ratio and iron nutrition influence growth, metabolic response, and mineral nutrients of spinach grown indoors. Sustainability 2022, 14, 12564. [Google Scholar] [CrossRef]
- Pennisi, G.; Pistillo, A.; Orsini, F.; Cellini, A.; Spinelli, F.; Nicola, S.; Fernández, J.; Crepaldi, A.; Gianquinto, G.; Marcelis, L. Optimal light intensity for sustainable water and energy use in indoor cultivation of lettuce and basil under red and blue LEDs. Sci. Hortic. 2020, 272, 109508. [Google Scholar] [CrossRef]
- Mao, H.; Hang, T.; Zhang, X.; Lu, N. Both multi-segment light intensity and extended photoperiod lighting strategies, with the same daily light integral, promoted Lactuca sativa L. growth and photosynthesis. Agronomy 2019, 12, 857. [Google Scholar] [CrossRef]
- Zha, L.; Liu, W. Effects of light quality, light intensity, and photoperiod on growth and yield of cherry radish grown under red plus blue LEDs. Hortic. Environ. Biotechnol. 2018, 59, 511–518. [Google Scholar] [CrossRef]
- Ménard, C.; Dorais, M.; Hovi, T.; Gosselin, A. Developmental and physiological responses of tomato and cucumber to additional blue light. Acta Hortic. 2006, 711, 291–296. [Google Scholar] [CrossRef]
- Fukunaga, K.; Fujikawa, Y.; Esaka, M. Light regulation of ascorbic acid biosynthesis in rice via light responsive cis-elements in genes encoding ascorbic acid biosynthetic enzymes. Biosci. Biotechnol. Biochem. 2010, 74, 888–891. [Google Scholar] [CrossRef] [PubMed]
- Meas, S.; Luengwilai, K.; Thongket, T. Enhancing growth and phytochemicals of two amaranth microgreens by LEDs light irradiation. Sci. Hortic. 2020, 265, 109204. [Google Scholar] [CrossRef]
- Saito, Y.; Shimizu, H.; Nakashima, H.; Miyasaka, J.; Ohdoi, K. The effect of light quality on growth of lettuce. IFAC Proc. Vol. 2010, 43, 294–298. [Google Scholar] [CrossRef]
- Ohashi-Kaneko, K.; Takase, M.; Kon, N.; Fujiwara, K.; Fujiwara, K. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environ. Control Biol. 2007, 45, 189–198. [Google Scholar] [CrossRef]
- Briat, J.; Fobis-Loisy, I.; Grignon, N.; Lobréaux, S.; Pascal, N.; Savino, G.; Thoiron, S.; von Wirén, N.; van Wuytswinkel, O. Cellular and molecular aspects of iron metabolism in plants. Biol. Cell 1995, 84, 69–81. [Google Scholar] [CrossRef]
- Briat, J.; Curie, C.; Gaymard, F. Iron utilization and metabolism in plants. Curr. Opin. Plant Biol. 2007, 10, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Alrifai, O.; Hao, X.; Marcone, M.; Tsao, R. Current review of the modulatory effects of led lights on photosynthesis of secondary metabolites and future perspectives of microgreen vegetables. J. Agric. Food Chem. 2019, 67, 6075–6090. [Google Scholar] [CrossRef] [PubMed]
- Viršilė, A.; Brazaitytė, A.; Vaštakaitė-Kairienė, V.; Miliauskienė, J.; Jankauskienė, J.; Novičkovas, A.; Laužikė, K.; Samuolienė, G. The distinct impact of multi-color LED light on nitrate, amino acid, soluble sugar and organic acid contents in red and green leaf lettuce cultivated in controlled environment. Food Chem. 2019, 310, 125799. [Google Scholar] [CrossRef]
- Cai, X.; Xu, C.; Wang, X.; Ge, C.; Wang, Q. The oxalic acid in plants: Biosynthesis, degradation and its accumulation regulation. Plant Physiol. J. 2015, 51, 267–272. [Google Scholar]
- Razzak, M.; Asaduzzaman, M.; Tanaka, H.; Asao, T. Effects of supplementing green light to red and blue light on the growth and yield of lettuce in plant factories. Sci. Hortic. 2022, 305, 111429. [Google Scholar] [CrossRef]
Treatment | Leaf Number Piece·Plant−1 | Leaf Length cm | Leaf Width cm | Leaf Area cm2·Plant−1 |
---|---|---|---|---|
P200-L0.6 | 7.3 ± 1.0 d | 9.7 ± 1.0 d | 6.0 ± 0.6 d | 37.5 ± 5.1 f |
P250-L0.6 | 8.2 ± 0.4 cd | 11.5 ± 1.1 bc | 6.5 ± 0.7 cd | 53.6 ± 3.8 d |
P300-L0.6 | 9.2 ± 1.0 b | 12.8 ± 2.1 b | 7.2 ± 0.2 b | 69.5 ± 3.5 b |
P350-L0.6 | 7.9 ± 0.6 cd | 11.0 ± 0.9 c | 6.2 ± 0.6 cd | 44.9 ± 1.6 cd |
P200-L1.2 | 8.4 ± 0.5 c | 12.3 ± 0.7 bc | 6.4 ± 0.5 cd | 53.5 ± 2.6 d |
P250-L1.2 | 10.8 ± 0.5 a | 13.5 ± 0.6 ab | 7.9 ± 0.5 ab | 64.7 ± 2.9 c |
P300-L1.2 | 11.0 ± 1.0 a | 14.7 ± 1.9 a | 8.7 ± 1.4 a | 98.3 ± 5.6 a |
P350-L1.2 | 9.3 ± 0.6 b | 12.7 ± 1.4 b | 6.7 ± 0.7 c | 68.5 ± 4.4 b |
P200-L2.4 | 8.7 ± 0.5 bc | 12.2 ± 1.2 bc | 7.0 ± 0.8 bc | 63.0 ± 3.8 c |
P250-L2.4 | 8.8 ± 1.3 bc | 11.5 ± 1.5 bc | 7.0 ± 0.7 bc | 52.0 ± 4.8 de |
P300-L2.4 | 9.3 ± 0.5 b | 11.5 ± 1.6 bc | 6.8 ± 0.8 bc | 50.9 ± 2.2 de |
P350-L2.4 | 8.8 ± 0.4 bc | 10.7 ± 0.6 cd | 6.6 ± 0.6 c | 51.4 ± 4.4 de |
Treatment | Chlorophyll a Content mg·g−1 | Chlorophyll b Content mg·g−1 | Carotenoid Content mg·g−1 | Total Chlorophyll Content mg·g−1 | Chlorophyll a/b |
---|---|---|---|---|---|
P200-L0.6 | 1.45 ± 0.21 cd | 0.47 ± 0.06 c | 2.19 ± 0.27 c | 3.05 ± 0.15 d | 0.27 ± 0.04 bc |
P250-L0.6 | 1.66 ± 0.15 bc | 0.56 ± 0.07 b | 2.48 ± 0.33 bc | 2.97 ± 0.17 de | 0.26 ± 0.05 bc |
P300-L0.6 | 1.78 ± 0.13 b | 0.55 ± 0.03 b | 2.59 ± 0.16 b | 3.22 ± 0.14 c | 0.25 ± 0.03 bc |
P350-L0.6 | 1.33 ± 0.21 d | 0.49 ± 0.09 cd | 2.06 ± 0.30 cd | 2.71 ± 0.17 e | 0.23 ± 0.04 c |
P200-L1.2 | 1.78 ± 0.21 b | 0.55 ± 0.06 b | 2.62 ± 0.27 b | 3.25 ± 0.16 c | 0.29 ± 0.04 b |
P250-L1.2 | 2.16 ± 0.20 a | 0.59 ± 0.08 ab | 3.12 ± 0.32 a | 3.65 ± 0.17 a | 0.37 ± 0.06 a |
P300-L1.2 | 2.22 ± 0.16 a | 0.64 ± 0.05 a | 3.20 ± 0.20 a | 3.48 ± 0.18 b | 0.34 ± 0.03 a |
P350-L1.2 | 1.47 ± 0.26 cd | 0.42 ± 0.10 cd | 2.18 ± 0.26 c | 3.46 ± 0.20 b | 0.29 ± 0.05 bc |
P200-L2.4 | 1.28 ± 0.06 d | 0.41 ± 0.01 d | 1.91 ± 0.07 d | 3.11 ± 0.17 cd | 0.23 ± 0.02 c |
P250-L2.4 | 1.33 ± 0.26 d | 0.42 ± 0.07 d | 1.99 ± 0.27 cd | 3.20 ± 0.14 cd | 0.25 ± 0.02 bc |
P300-L2.4 | 1.50 ± 0.10 c | 0.45 ± 0.03 cd | 2.19 ± 0.12 c | 3.35 ± 0.16 bc | 0.25 ± 0.02 c |
P350-L2.4 | 1.25 ± 0.23 d | 0.42 ± 0.10 cd | 1.91 ± 0.22 d | 2.98 ± 0.16 de | 0.24 ± 0.04 c |
Treatment | Net Photosynthetic Rate μmol·m−2·s−1 | Stomatal Conductance mol·m−2·s−1 | Intercellular CO2 Concentration μmol·mol−1 | Transpiration Rate mmol·m−2·s−1 |
---|---|---|---|---|
P200-L0.6 | 10.2 ± 1.3 e | 0.642 ± 0.080 bc | 474 ± 27 a | 1.35 ± 0.20 de |
P250-L0.6 | 12.4 ± 1.1 cd | 0.700 ± 0.051 b | 458 ± 23 a | 1.52 ± 0.28 cd |
P300-L0.6 | 12.6 ± 1.2 cd | 0.738 ± 0.129 b | 452 ± 19 a | 1.88 ± 0.22 c |
P350-L0.6 | 10.8 ± 1.1 e | 0.630 ± 0.062 c | 471 ± 26 a | 1.28 ± 0.20 e |
P200-L1.2 | 13.0 ± 1.3 cd | 0.660 ± 0.038 bc | 457 ± 16 a | 1.68 ± 0.15 c |
P250-L1.2 | 14.8 ± 1.2 b | 0.788 ± 0.093 ab | 438 ± 28 ab | 2.29 ± 0.29 b |
P300-L1.2 | 16.4 ± 0.9 a | 0.874 ± 0.087 a | 424 ± 25 b | 2.55 ± 0.21 a |
P350-L1.2 | 13.7 ± 1.5 bc | 0.607 ± 0.061 c | 461 ± 33 a | 1.67 ± 0.36 cd |
P200-L2.4 | 12.0 ± 1.0 d | 0.588 ± 0.105 c | 466 ± 19 a | 1.46 ± 0.17 d |
P250-L2.4 | 13.4 ± 1.2 c | 0.642 ± 0.056 bc | 457 ± 23 a | 1.77 ± 0.23 c |
P300-L2.4 | 13.3 ± 1.1 c | 0.670 ± 0.066 bc | 453 ± 20 a | 1.88 ± 0.32 c |
P350-L2.4 | 11.6 ± 1.4 de | 0.688 ± 0.041 b | 467 ± 17 a | 1.72 ± 0.20 c |
Trait Variable | First Principal Component (PC1) | Second Principal Component (PC2) |
---|---|---|
Leaf length | 0.3344 | −0.0634 |
Leaf width | 0.3310 | −0.0796 |
Leaf area | 0.3282 | −0.0678 |
Total chlorophyll content | 0.3033 | 0.1975 |
Carotenoid content | 0.2890 | −0.0266 |
Shoot fresh mass | 0.3474 | −0.1007 |
Shoot dry mass | 0.3428 | 0.0361 |
Vitamin C content | 0.3214 | 0.1785 |
Iron content | −0.0242 | 0.6610 |
Nitrate nitrogen content | 0.0522 | 0.6557 |
Titratable acid content | 0.2072 | 0.0899 |
Eigenvalue | 7.8269 | 2.1784 |
Percentage of variance (%) | 65.22% | 18.15% |
Cumulative (%) | 65.22% | 83.37% |
Treatment | Principal Components | Comprehensive Score | Rank | |
---|---|---|---|---|
F1 | F2 | |||
P200-L0.6 | −1.1497 | 0.8138 | −0.6021 | 11 |
P250-L0.6 | −0.2525 | 1.5426 | 0.1153 | 5 |
P300-L0.6 | 0.4051 | 1.6279 | 0.5597 | 3 |
P350-L0.6 | −0.7941 | 0.8801 | −0.3582 | 7 |
P200-L1.2 | −0.3287 | −0.5310 | −0.3108 | 6 |
P250-L1.2 | 1.3995 | −0.1067 | 0.8934 | 2 |
P300-L1.2 | 2.3372 | −0.0449 | 1.5163 | 1 |
P350-L1.2 | 0.4457 | −0.8167 | 0.1424 | 4 |
P200-L2.4 | −0.4477 | −1.2387 | −0.5169 | 10 |
P250-L2.4 | −0.4874 | −0.4147 | −0.3932 | 9 |
P300-L2.4 | −0.4668 | −0.4087 | −0.3786 | 8 |
P350-L2.4 | −0.6606 | −1.3031 | −0.6674 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, P.; Wang, C.; Tursun, R.; Zeng, X.; Cai, W.; Song, J.; Geng, W. Synergistic Regulation of Growth and Quality in Substrate-Grown Spinach by LED Light Quality and Intensity in PFALs. Horticulturae 2025, 11, 1065. https://doi.org/10.3390/horticulturae11091065
Yu P, Wang C, Tursun R, Zeng X, Cai W, Song J, Geng W. Synergistic Regulation of Growth and Quality in Substrate-Grown Spinach by LED Light Quality and Intensity in PFALs. Horticulturae. 2025; 11(9):1065. https://doi.org/10.3390/horticulturae11091065
Chicago/Turabian StyleYu, Pengpeng, Chenzhi Wang, Rezwangul Tursun, Xianchao Zeng, Wei Cai, Jinxiu Song, and Wei Geng. 2025. "Synergistic Regulation of Growth and Quality in Substrate-Grown Spinach by LED Light Quality and Intensity in PFALs" Horticulturae 11, no. 9: 1065. https://doi.org/10.3390/horticulturae11091065
APA StyleYu, P., Wang, C., Tursun, R., Zeng, X., Cai, W., Song, J., & Geng, W. (2025). Synergistic Regulation of Growth and Quality in Substrate-Grown Spinach by LED Light Quality and Intensity in PFALs. Horticulturae, 11(9), 1065. https://doi.org/10.3390/horticulturae11091065