Isolation and Molecular Identification of Monilinia fructigena in Almaty Region of Kazakhstan
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of Monilinia Isolates
2.2. Morphological Characterization and Assessment of Isolate Aggressiveness
2.3. Real-Time PCR Identification
2.4. Target Sequencing of Ribosomal and Genomic DNA Regions
2.5. Monilinia sp. Identification Using Whole Genome Sequencing
3. Results and Discussion
3.1. Morphological Characterization of Monilinia Isolates and Assessment of Their Pathogenicity
3.2. Species Identification of Monilinia Isolates Using PCR and Target Sequencing Methods
3.3. Phylogenetic Analysis of Monilinia Isolates Based on ITS and TEF-1 Regions
3.4. Whole Genome Sequencing of Selected Monilinia Fructigena Isolate
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akhoon, B.A.; Gupta, S.K.; Dhar, M.K. Dissecting the genome, secretome, and effectome repertoires of Monilinia spp.: The causal agent of brown rot disease: A comparative analysis. Postharvest Biol. Technol. 2023, 195, 112120. [Google Scholar] [CrossRef]
- Jia, F.; Chen, M.; Liu, C.; Chen, S.; Liu, W.; Huang, K.; Sun, X.; Ma, G.; Chen, G. Streptomyces Rapamycinicus HCD1–10: An Effective Biocontrol Actinomycetes against Postharvest Chinese Flat Peach Brown Rot Caused by Monilinia fructicola. Sci. Hortic. 2024, 327, 112836. [Google Scholar] [CrossRef]
- Monilinia fructigena (MONIFG) [World Distribution]|EPPO Global Database. Available online: https://gd.eppo.int/taxon/MONIFG/distribution (accessed on 2 June 2025).
- Van Leeuwen, G.C.M.; Baa Yen, R.P.; Holb, I.J.; Jeger, M.J. Distinction of the Asiatic Brown Rot Fungus Monilia polystroma sp. Nov. from M. fructigena. Mycol. Res. 2002, 106, 444–451. [Google Scholar] [CrossRef]
- Xu, X.-M.; Robinson, J.D. Epidemiology of Brown Rot (Monilinia fructigena) on Apple: Infection of Fruits by Conidia. Plant Pathol. 2000, 49, 201–206. [Google Scholar] [CrossRef]
- Rungjindamai, N.; Jeffries, P.; Xu, X.-M. Epidemiology and Management of Brown Rot on Stone Fruit Caused by Monilinia laxa. Eur. J. Plant Pathol. 2014, 140, 1–17. [Google Scholar] [CrossRef]
- Kostyukova, V.; Koksharov, D.; Taskuzhina, A.; Pozharskiy, A.; Gritsenko, D. DNA Barcoding of Monilinia fructigena and Gymnosporangium Sabinae from Kazakhstan. Phytopathology 2021, 111, 27. [Google Scholar] [CrossRef]
- PM 7/18 (3) Monilinia fructicola. EPPO Bull. 2020, 50, 5–18. [CrossRef]
- Poniatowska, A.; Michalecka, M.; Puławska, J. Phylogenetic Relationships and Genetic Diversity of Monilinia spp. Isolated in Poland Based on Housekeeping- and Pathogenicity-Related Gene Sequence Analysis. Plant Pathol. 2021, 70, 1640–1650. [Google Scholar] [CrossRef]
- Fischer, J.M.M.; Savi, D.C.; Aluizio, R.; May De Mio, L.L.; Glienke, C. Characterization of Monilinia Species Associated with Brown Rot in Stone Fruit in Brazil. Plant Pathol. 2017, 66, 423–436. [Google Scholar] [CrossRef]
- Zhu, X.-Q.; Niu, C.-W.; Chen, X.-Y.; Guo, L.-Y. Monilinia Species Associated with Brown Rot of Cultivated Apple and Pear Fruit in China. Plant Dis. 2016, 100, 2240–2250. [Google Scholar] [CrossRef]
- Yin, L.-F.; Huang, S.; Tan, Q.; Zhou, Y.; Li, G.-Q.; Luo, C.-X. Identification of Monilia Species in Tibet and Characterization of M. yunnanensis in China. Plant Dis. 2022, 106, 1669–1674. [Google Scholar] [CrossRef] [PubMed]
- Aragona, M.; Haegi, A.; Valente, M.T.; Riccioni, L.; Orzali, L.; Vitale, S.; Luongo, L.; Infantino, A. New-Generation Sequencing Technology in Diagnosis of Fungal Plant Pathogens: A Dream Comes True? J. Fungi 2022, 8, 737. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Guo, L.; Xiao, C.; Zhu, X. Detection and Identification of Six Monilinia spp. Causing Brown Rot Using TaqMan Real-Time PCR from Pure Cultures and Infected Apple Fruit. Plant Dis. 2018, 102, 1527–1533. [Google Scholar] [CrossRef]
- Beeck, M.O.D.; Lievens, B.; Busschaert, P.; Declerck, S.; Vangronsveld, J.; Colpaert, J.V. Comparison and Validation of Some ITS Primer Pairs Useful for Fungal Metabarcoding Studies. PLoS ONE 2014, 9, e97629. [Google Scholar] [CrossRef]
- Carbone, I.; Kohn, L.M. A Method for Designing Primer Sets for Speciation Studies in Filamentous Ascomycetes. Mycologia 1999, 91, 553–556. [Google Scholar] [CrossRef]
- Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef]
- Okonechnikov, K.; Golosova, O.; Fursov, M.; The UGENE Team. Unipro UGENE: A Unified Bioinformatics Toolkit. Bioinformatics 2012, 28, 1166–1167. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Li, H. Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Kim, D.; Gilchrist, C.L.M.; Chun, J.; Steinegger, M. UFCG: Database of Universal Fungal Core Genes and Pipeline for Genome-Wide Phylogenetic Analysis of Fungi. Nucleic Acids Res. 2023, 51, D777–D784. [Google Scholar] [CrossRef]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Simão, F.A.; Zdobnov, E.M. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol. Biol. Evol. 2021, 38, 4647–4654. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef]
- Schliep, K.P. Phangorn: Phylogenetic Analysis in R. Bioinformatics 2011, 27, 592–593. [Google Scholar] [CrossRef]
- M.-Sagasta, E. Monilia Disease. EPPO Bull. 1977, 7, 105–116. [Google Scholar] [CrossRef]
- Byrde, R.J.W.; Willetts, H.J. The Brown Rot Fungi of Fruit: Their Biology and Control; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 978-1-4831-5189-2. [Google Scholar]
- Wyatt, T.T.; Wösten, H.A.B.; Dijksterhuis, J. Chapter Two—Fungal Spores for Dispersion in Space and Time. In Advances in Applied Microbiology; Sariaslani, S., Gadd, G.M., Eds.; Academic Press: Cambridge, MA, USA, 2013; Volume 85, pp. 43–91. [Google Scholar]
- Vasić, M.; Duduk, N.; Vico, I.; Rančić, D.; Pajić, V.; Backhouse, D. Comparative Study of Monilinia fructigena and Monilia polystroma on Morphological Features, RFLP Analysis, Pathogenicity and Histopathology. Eur. J. Plant Pathol. 2016, 144, 15–30. [Google Scholar] [CrossRef]
- Papavasileiou, A.; Madesis, P.B.; Karaoglanidis, G.S. Identification and Differentiation of Monilinia Species Causing Brown Rot of Pome and Stone Fruit Using High-Resolution Melting (HRM) Analysis. Phytopathology 2016, 106, 1055–1064. [Google Scholar] [CrossRef]
- Ioos, R.; Frey, P. Genomic Variation within Monilinia laxa, M. fructigena and M. fructicola, and Application to Species Identification by PCR. Eur. J. Plant Pathol. 2000, 106, 373–378. [Google Scholar] [CrossRef]
- Fulton, C.E.; van Leeuwen, G.C.M.; Brown, A.E. Genetic Variation Among and Within Monilinia Species Causing Brown Rot of Stone and Pome Fruits. Eur. J. Plant Pathol. 1999, 105, 495–500. [Google Scholar] [CrossRef]
- Vasić, M.; Vico, I.; Jurick, W.M.; Duduk, N. Distribution and Characterization of Monilinia spp. Causing Apple Fruit Decay in Serbia. Plant Dis. 2018, 102, 359–369. [Google Scholar] [CrossRef]
- De Miccolis Angelini, R.M.; Landi, L.; Raguseo, C.; Pollastro, S.; Faretra, F.; Romanazzi, G. Tracking of Diversity and Evolution in the Brown Rot Fungi Monilinia fructicola, Monilinia fructigena, and Monilinia laxa. Front. Microbiol. 2022, 13, 854852. [Google Scholar] [CrossRef]
Primer Name | Nucleotide Sequence (5′–3′) | Amplification Program | Reference |
---|---|---|---|
ITS86F | GTGAATCATCGAATCTTTGAA | 95 °C—2 min; 40 cycles: 95 °C—30 secs, 52 °C—30 secs, 72 °C—1 min; 72 °C—10 min | [15] |
ITS4R | TCCTCCGCTTATTGATTGC | ||
EF1-688F | CGGYCACTTGATCTACAAGTGC | 94 °C—7 min; 25 cycles: 95 °C—1 min, 50 °C—1 min, 72 °C—1 min; 72 °C—10 min | [16] |
EF1-1251R | CCTCGAACTCACCAGTACCG |
Species Name | Target Accession No. | |
---|---|---|
ITS | TEF1-α | |
Monilinia fructicola | KY038837.1 | OP090631.1 |
Monilinia fructigena | KX982698.1 | LT632536.1 |
Monilinia laxa | OM686844.1 | OP090640.1 |
Monilinia polystroma | OQ170786.1 | LT632541.1 |
Isolate | 1_esik | 2_esik | 3_esik | 4_esik | 5_esik | 6_esik | 7_esik | 8_esik | 9_esik | |
---|---|---|---|---|---|---|---|---|---|---|
M. fructigena | Ct | 24 | 21 | 26 | 22 | 22 | 23 | 23 | 22 | 21 |
∆Rnmax | 65,823.0 | 64,061.8 | 57,020.2 | 57,278.0 | 57,742.2 | 54,084.1 | 59,017.6 | 58,518.2 | 65,440.0 | |
M. polystroma | Ct | 25 | 23 | 27 | 24 | 23 | 23 | 24 | 24 | 23 |
∆Rnmax | 35,181.4 | 34,681.2 | 31,014.6 | 31,946.8 | 30,499.6 | 30,235.1 | 31,137.8 | 26,368.2 | 31,721.0 |
Sample | Total Reads | Mean MAPQ | Percentage of the Mapped Reads * | Total Bases Aligned | Mean Coverage Depth |
---|---|---|---|---|---|
ITS | |||||
isolate_1_esik | 11,253 | 59.4010 | 95.24% | 1,906,357 | 6748.09 |
isolate_2_esik | 3048 | 59.3599 | 95.04% | 503,094 | 1946.62 |
isolate_3_esik | 9859 | 59.2935 | 94.72% | 1,637,886 | 6437.12 |
isolate_4_esik | 3483 | 59.4175 | 95.34% | 589,480 | 2316.46 |
isolate_5_esik | 6493 | 59.2566 | 94.52% | 1,076,168 | 4195.96 |
isolate_6_esik | 5966 | 59.4346 | 95.47% | 1,032,229 | 3076.02 |
isolate_7_esik | 9537 | 59.3728 | 95.22% | 1,613,809 | 6243.78 |
isolate_8_esik | 6633 | 59.5251 | 96.32% | 1,140,997 | 2282.48 |
isolate_9_esik | 3936 | 59.3501 | 3743 | 657,793 | 2545.00 |
TEF-1 | |||||
isolate_1_esik | 4068 | 59.9543 | 99.8% | 1,816,901 | 3804.63 |
isolate_2_esik | 25,907 | 59.9646 | 99.8% | 11,736,748 | 24,581.78 |
isolate_3_esik | 1121 | 60.0000 | 100% | 508,897 | 1065.77 |
isolate_4_esik | 7185 | 59.9634 | 99.8% | 3,232,201 | 6769.51 |
isolate_5_esik | 20,091 | 59.9716 | 99.85% | 9,095,295 | 19,048.28 |
isolate_6_esik | 18,992 | 59.9672 | 99.83% | 8,657,001 | 18,131.47 |
isolate_7_esik | 7259 | 59.9759 | 99.86% | 3,273,728 | 6855.90 |
isolate_8_esik | 13,774 | 59.9808 | 99.88% | 6,240,709 | 13,068.47 |
isolate_9_esik | 25,915 | 59.9491 | 99.74% | 11,673,685 | 24,447.62 |
Species | Genome Accession (NCBI Reference Genomes) | Number of Scaffolds | Total Assembly Length, Mb | Mapped Read Percentage | Average Alignment Coverage Per Scaffold, Percent | Average Coverage Depth Per Scaffold | Average Mapping Quality Per Scaffold |
---|---|---|---|---|---|---|---|
M. frucigena | GCA_003260565 | 131 | 43.1 | 94.3095 | 95.8022 | 32.3539 | 42.8123 |
M. fructicola | GCA_008692225 | 20 | 44 | 65.8185 | 89.2557 | 27.0221 | 37.2900 |
M. laxa | GCA_009299455 | 49 | 42.8 | 84.2919 | 78.9134 | 41.7116 | 30.7935 |
M. polysroma | GCA_002909645 | 1188 | 44.5 | 91.9791 | 59.5105 | 13.1558 | 27.9712 |
M. aucupariae | GCA_002162555 | 505 | 54.4 | 53.2453 | 47.1104 | 80.2229 | 18.0861 |
M. vaccinii-corymbosi | GCA_017357885 | 9 | 30 | 39.9030 | 79.186 | 9.8027 | 38.0222 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostyukova, V.; Pozharskiy, A.; Dulat, B.; Gritsenko, D. Isolation and Molecular Identification of Monilinia fructigena in Almaty Region of Kazakhstan. Horticulturae 2025, 11, 1029. https://doi.org/10.3390/horticulturae11091029
Kostyukova V, Pozharskiy A, Dulat B, Gritsenko D. Isolation and Molecular Identification of Monilinia fructigena in Almaty Region of Kazakhstan. Horticulturae. 2025; 11(9):1029. https://doi.org/10.3390/horticulturae11091029
Chicago/Turabian StyleKostyukova, Valeriya, Alexandr Pozharskiy, Bakyt Dulat, and Dilyara Gritsenko. 2025. "Isolation and Molecular Identification of Monilinia fructigena in Almaty Region of Kazakhstan" Horticulturae 11, no. 9: 1029. https://doi.org/10.3390/horticulturae11091029
APA StyleKostyukova, V., Pozharskiy, A., Dulat, B., & Gritsenko, D. (2025). Isolation and Molecular Identification of Monilinia fructigena in Almaty Region of Kazakhstan. Horticulturae, 11(9), 1029. https://doi.org/10.3390/horticulturae11091029