Influence of Chlorella sorokiniana and Plant Growth Regulators During the Micropropagation of Callicarpa peichieniana
Abstract
1. Introduction
2. Materials and Methods
2.1. Explant Source, Decontamination, and Bulking
2.2. Adventitious Bud Induction
2.3. Adventitious Bud Proliferation
2.4. Adventitious Root Induction
2.5. Acclimatization and Transplantation
2.6. Genetic Fidelity Assessment Through ISSR Molecular Markers
2.7. Experimental Design and Data Analysis
3. Results
3.1. Effect of Explant Types and 6-BA Concentrations on Adventitious Bud Induction
3.2. Effect of 6-BA, TDZ and Combination of 6-BA and NAA Concentrations on Adventitious Bud Proliferation
3.3. Effect of IBA, NAA Concentrations on Adventitious Root Induction
3.4. Effect of Macroelements Concentrations on Adventitious Root Induction
3.5. Effect of Sucrose Concentrations on Adventitious Root Induction
3.6. Transplantation
3.7. Genetic Fidelity Analysis by ISSR
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Fang, W.Z. Flora Reipublicae Popularis Sinicae; Science Press: Beijing, China, 1982; Volume 65, pp. 24–79. [Google Scholar]
- Chen, S.L.; Gilbert, M.G. Flora of China; Miss. Bot. Gard. Press: St. Louis, MO, USA, 1994; Volume 17, pp. 1–49. [Google Scholar]
- Zaman, W.; Ye, J.F.; Ahmad, M.; Saqib, S.; Shinwari, Z.K.; Chen, Z.D. Phylogenetic exploration of traditional Chinese medicinal plants: A case study on Lamiaceae. Pak. J. Bot. 2022, 54, 1033–1040. [Google Scholar] [CrossRef]
- Li, B.Z.; Qin, D.H.; Fang, D. Preliminary study on folk medicinal plants of Zhuang Minority in Guangxi (III). Guangxi Med. J. 1984, 6, 261–264. [Google Scholar]
- Yang, L.; Zhang, T.H.; Bai, X.; Wu, Y.N.; Luo, H.B.; Xie, L.X.; He, X.X.; Peng, G.T. Inhibition of the crude extracts from fourteen species of Callicarpa Linn. plants towards Phosphodiesterase-4. Guangdong Pharm. Univ. 2015, 31, 328–331. [Google Scholar]
- Liu, Z.C.; Zhu, X.X.; Fan, Q.; Zhao, W.Y.; Liao, W.B.; Shen, H.X.; Wang, L. Latitudinal zonalization characteristics of the Exbucklandia tonkinensis communities from Hainan Island to the midsection of the Luoxiao Mountains. Acta Ecol. Sin. 2017, 37, 3445–3458. [Google Scholar] [CrossRef]
- Blakesley, D.; Elliott, S.; Kuarak, C.; Navakitbumrung, P.; Zangkum, S.; Anusarnsunthorn, V. Propagating framework tree species to restore seasonally dry tropical forest: Implications of seasonal seed dispersal and dormancy. For. Ecol. Manag. 2002, 164, 31–38. [Google Scholar] [CrossRef]
- Prashant, S.P.; Bhawana, M. An update on biotechnological intervention mediated by plant tissue culture to boost secondary metabolite production in medicinal and aromatic plants. Physiol. Plant. 2024, 176, e14400. [Google Scholar] [CrossRef]
- Wu, H.F.; Liu, N.X.; Yao, H.; Zhuge, H. Tissue culture and rapid propagation of Callicarpa formosana Rolfe. J. Plant Physiol. 2008, 44, 738. [Google Scholar]
- Huang, S.; Pan, M.; Qi, H.S.; Wang, J.F.; Lü, D.R. Production technologies of Callicarpa nudiflora Hook. et Arn. test-tube plantlets. Hubei Agric. Sci. 2014, 53, 3121–3123+3127. [Google Scholar]
- Gangola, S.; Joshi, S.; Kandpal, N.; Bhandari, G.; Gupta, S.; Jadon, V.S.; Sharma, V. Micropropagation and antimicrobial activity of Callicarpa Macrophylla (Priyangu) against medically important pathogens. J. Adv. Zool. 2023, 44, 331–334. [Google Scholar]
- Deng, Y. Rapid Seedling Raising Method of Callicarpa bodinieri H. Lév Tissue Culture and Transplanting Method of Rooted Seedlings. CN Patent 201210190349.7, 19 September 2012. [Google Scholar]
- Zhu, H.X.; Lu, M.; Dai, Q.L.; Huang, F.Y.; Chen, B.W.; Gao, F.; Zhang, X.R.; Ran, T.T.; Tao, S. A Method for Rapid and Efficient Propagation of Callicarpa japonica Thunb. CN Patent 202110588987.3, 23 July 2021. [Google Scholar]
- Kärkönen, A.; Simola, L.K.; Koponen, T. Micropropagation of several Japanese woody plants for horticultural purposes. Ann. Bot. Fennici. 1999, 36, 21–31. [Google Scholar]
- ΠAΥΛOΠO′ΛOΥ, Ι.Σ. In Vitro, Regoneration, Microcutting Rooting and Explant Encapsulation in Sodium Aglinente of Beautyberry (Callicarpa mollis); Aristotle University of Thessaloniki: Thessaloniki, Greece, 2009. [Google Scholar]
- Khezri, M.; Asghari-Zakaria, R.; Zare, N. Biosynthesis of Natural Products in Plants; Springer: Singapore, 2024; pp. 267–291. [Google Scholar]
- Huang, J.; Chen, Q.S.; Zhang, M.; Zhou, P. A Method for Rooting Outside the Bottle of Tissue Culture Seedlings of Callicarpa cathayana Hung T. Chang. CN Patent 201910946960, 14 February 2019. [Google Scholar]
- Pan, M.; Jiang, D.Q.; Yun, Y.; Huang, S.; Wang, J.F.; Lü, D.R.; Qi, H.S. Sterile Sowing and Rapid Tissue Culture Propagation Method of Callicarpa nudiflora Hook. & Arn. CN Patent 201310079154, 5 June 2013. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Sidik, N.J.; Agha, H.M.; Alkamil, A.A.; Alsayadi, M.M.S.; Mohammed, A.A. A mini review of plant tissue culture: The role of media optimization, growth regulators in modern agriculture, callus induction and the applications. AUIQ Complement. Biol. Syst. 2024, 1, 96–109. [Google Scholar] [CrossRef]
- Yao, H.; Liu, N.X.; Wu, H.F.; Zhuge, H. Tissue culture and rapid propagation of Callicarpa macrophylla Vahl. J. Plant Physiol. 2008, 44, 135. [Google Scholar]
- Zhu, H.L.; Xu, J.; Chen, J.X.; Xiong, H.Y.; Wang, X.L. Establishment of tissue culture and rapid propagation system of Callicarpa nudiflora. Guizhou Agric. Sci. 2015, 43, 144–147. [Google Scholar]
- Kaur, S.; Ijaz, S.; Nasir, B. Trends in Plant Biotechnology; Springer: Singapore, 2024; pp. 1–21. [Google Scholar]
- Pasternak, T.P.; Steinmacher, D. Plant Growth Regulation in Cell and Tissue Culture In Vitro. Plants 2024, 13, 327. [Google Scholar] [CrossRef]
- Huang, D.M.; Lin, F.; Xu, Y.; Li, Y.J.; Li, Y.X.; Ma, W.H.; Li, J.Y. Study on fast propagation via tissue culture for Callicarpa nudiflora. J. Agric. 2014, 4, 63–66. [Google Scholar]
- Jwala, A.; Shekhar, K.A. Plant Tissue Culture: Modern Techniques and Practices; Campus Books International: New Delhi, India, 2013. [Google Scholar]
- Pan, M.; Huang, S.; Wang, J.F.; Lü, D.R.; Qi, H.S. Tissue culture and rapid propagation of Callicarpa nudiflora. Chin. Agric. Sci. Bull. 2013, 29, 127–132. [Google Scholar]
- He, C.X.; Luo, X.M.; Zheng, C.; Wu, J.C.; Zhang, Y.F.; Mei, Y.X.; Zhu, X.F.; Yang, X.X.; Wang, X.H.; Shen, X.L.; et al. A Method of Hardening Seedlings of Callicarpa bodinieri Tissue Culture Seedlings. CN Patent 201610716690.X, 11 January 2016. [Google Scholar]
- Wang, J.F.; Lü, D.R.; Huang, S.; Qi, H.S. Study on selection of substrates for transplanting of tube plantlets of Callicarpa nudiflora. Mod. Agric. Sci. Tech. 2013, 172–173. [Google Scholar]
- Manchanda, P.; Sharma, D.; Kaur, G.; Kaur, H.; Vanshika. Exploring the significance of somaclonal variations in horticultural crops. Mol. Biotechnol. 2025, 67, 2185–2203. [Google Scholar] [CrossRef]
- Feijó, E.V.R.D.S.; Barbosa, B.L.; van den Berg, C.; Oliveira, L.M.D. Genetic diversity of Lippia origanoides Kunth. in natural populations using ISSR markers. Ciência Agrotecnologia 2022, 46, e000822. [Google Scholar] [CrossRef]
- Hatzilazarou, S.; Kantere, C.; Kotoula, A.-A.; Economou, A.; Bertsouklis, K.; Darras, A.; Kostas, S. In Vitro Propagation and Genetic Stability Assessment Using the ISSR Markers of Stachys byzantina K. Koch, a Promising Ornamental Species. Horticulturae 2025, 11, 530. [Google Scholar] [CrossRef]
- Khasim, S.M.; Long, C.; Thammasiri, K.; Lutken, H. Medicinal Plants: Biodiversity, Sustainable Utilization and Conservation; Springer: Singapore, 2020; pp. 677–691. [Google Scholar]
- Ibrahim, M.A.; Ali, A.H.; Hashem, M.S. The use of blue-green algae in increasing the efficiency of the tissue culture system in date palm Phoenix dactylifera L. cv. “Barhee”. AAB Bioflux 2018, 10, 97–103. [Google Scholar]
- Hamza, E.M.; Hamouda, R.A. A novel alternative method for in vitro potato cultivation and microtuberization using filtrates of various algae types instead of plant tissue culture nutrient media. Agric. Environ. Sci. 2013, 13, 848–856. [Google Scholar]
- Molnár, Z.; Virág, E.; Ördög, V. Natural substances in tissue culture media of higher plants. Acta Biol. Szeged. 2011, 55, 123–127. [Google Scholar]
- de Sena Filho, J.G.; Rabbani, A.R.C.; dos Santos Silva, T.R.; da Silva, A.V.C.; Souza, I.A.; Santos, M.J.B.A.; de Jesus, J.R.; de Lima Nogueira, P.C.; Duringer, J.M. Chemical and molecular characterization of fifteen species from the Lantana (Verbenaceae) genus. Biochem. Syst. Ecol. 2012, 45, 130–137. [Google Scholar] [CrossRef]
- Julião, S.A.; Lopes, J.M.; Zorzatto, C.; Matos, E.M.; Viccini, L.F. Genome status of Lippia alba polyploid complex long-term in vitro cultivated. Eur. J. Med. Plants 2020, 30, 1–14. [Google Scholar] [CrossRef]
- Coelho, A.D.; Leite, J.J.F.; Santos, G.C.; de Assis, R.M.A.; Marques, É.A.; de Carvalho, A.A.; Bertolucci, S.K.V.; Pinto, J.E.B.P. Different types of explants and natural ventilation systems influence the accumulation of dry weight and of total phenolic compounds in Aloysia gratissima (Verbenaceae). Res. Soc. Dev. 2022, 11, e203111234446. [Google Scholar] [CrossRef]
- Kumar, A.; Anam, A.; Singh, A.K.; Naseem, M. In vitro regeneration of plantlets from nodal culture of Verbena officinalis L. Int. J. Mendel. 2019, 36, 13–20. [Google Scholar]
- Mao, Y.P.; Zou, Y.; Tang, H.M.; Zhang, X.; Zhao, Y.M. Germination and rapid propagation of Verbena bonariensis. J. Mianyang Teach. Coll. 2018, 37, 81–86. [Google Scholar]
- Ara, N.; Azam, F.S.; Lithy, S.S.; Rahmatullah, M. A study of plant growth hormones on in vitro clonal propagation of fever tea (Lippia javanica): A medicinal shrub. AEJSA 2010, 4, 274–279. [Google Scholar]
- Boustani, A.; Omidi, M.; Torabi, S.; Zarekarizi, A.R. Callus induction and plant regeneration in lemon verbena (Lippia citrodora L.), an important medicinal plant. Trakia J. Sci. 2016, 14, 30–38. [Google Scholar] [CrossRef]
- Marino, C.; Ponce, M.T.; Videla, M.E.; Fioretti, S.; Cirrincione, M. Micropropagation of Glandularia perakii Cov. et Schn. (Verbenaceae): A native species with ornamental potential. Biocell 2003, 27, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Thimann, K.V.; Bonner, J. The mechanism of the action of the growth substance of plants. Proc. R. Soc. Lond. Ser. B 1933, 113, 126–149. [Google Scholar]
- Zhang, J.H. Cutting Propagation Techniques and Rooting Mechanism of Callicarpa nudiflora Hook. et Arn; Chinese Academy of Forestry: Beijing, China, 2014. [Google Scholar]
- Fang, L.Q. Research on cutting propagation of Callicarpa macropylla and Callicarpa dichotoma. J. Anhui Agric. Sci. 2010, 38, 13175–13176. [Google Scholar]
- Sledge, W.A. The rooting of woody cuttings considered from the standpoint of anatomy. J. Pomol. Hortic. Sci. 1930, 8, 1–22. [Google Scholar] [CrossRef]
- Li, S.W.; Xue, L.; Xu, S.; Feng, H.; An, L. Mediators, genes and signaling in adventitious rooting. Bot. Rev. 2009, 75, 230–247. [Google Scholar] [CrossRef]
- Cassells, A.C. Plant Cell Culture Protocols; Humana Press: Totowa, NJ, USA, 2012; pp. 57–80. [Google Scholar]
- Metting, B.; Pyne, J.W. Biologically active compounds from microalgae. Enzym. Microb. Technol. 1986, 8, 386–394. [Google Scholar] [CrossRef]
- Emara, H.A.; Hamza, E.M.; Hamouda, R.A.; El Masry, M.H.; El Sayed, F.N. The efficiency of algae employment in Stevia rebaudiana micropropagation. Middle East J. Agric. Res. 2019, 8, 425–437. [Google Scholar]
- Zhu, L.W.; Zhou, L.; Li, X.; Li, W.; Huang, S.; Kang, L.P. Research progress of the Callicarpa L. and predictive analysis on its quality marker. J. Tianjin Univ. Tradit. Chin. Med. 2023, 42, 243–256. [Google Scholar]
- Park, S.Y.; Paek, K.Y. Production of Biomass and Bioactive Compounds Using Bioreactor Technology; Springer: Dordrecht, The Netherlands, 2014; pp. 337–368. [Google Scholar]
- Xie, Y.; Zhang, Z.; Ma, R.; Liu, X.; Miao, M.; Ho, S.H.; Chang, J.S. High-cell-density heterotrophic cultivation of microalga Chlorella sorokiniana FZU60 for achieving ultra-high lutein production efficiency. Bioresour. Technol. 2022, 365, 128130. [Google Scholar] [CrossRef] [PubMed]
Explant Types | 6-BA (mg/L) | Average Number of Adventitious Buds | Growth | |
---|---|---|---|---|
Adventitious Buds | Chlorella sorokiniana | |||
Apical bud | 0 | 1.00 ± 0.00 d | + | Δ |
0.1 | 4.22 ± 0.40 a | ++ | ||
0.3 | 3.33 ± 0.19 b | +++ | ||
0.5 | 5.00 ± 0.00 a | ++++ | ||
1.0 | 4.67 ± 0.19 a | ++ | ||
Stem segment | 0 | 2.00 ± 0.00 c | +++ | Δ |
0.1 | 2.00 ± 0.00 c | + | ||
0.3 | 2.55 ± 0.40 c | + | ||
0.5 | 2.44 ± 0.44 c | ++ | ||
1.0 | 2.44 ± 0.22 c | ++ |
PGR Concentrations (mg/L) | Proliferation Coefficient | Average Height of Adventitious Buds (cm) | Growth | |||
---|---|---|---|---|---|---|
6-BA | NAA | TDZ | Adventitious Buds | Chlorella sorokiniana | ||
0 | 0 | 0 | 2.00 ± 0.16 hi | 0.91 ± 0.06 b | +++ | Δ |
0.5 | 0 | 0 | 3.97 ± 0.09 cd | 1.20 ± 0.08 a | +++ | Δ |
1.0 | 0 | 0 | 4.11 ± 0.15 c | 0.86 ± 0.05 b | +++ | Δ |
1.5 | 0 | 0 | 4.94 ± 0.16 b | 0.54 ± 0.03 de | +++++ | Δ |
2.0 | 0 | 0 | 5.83 ± 0.20 a | 0.73 ± 0.05 c | +++++++ | ΔΔ |
3.0 | 0 | 0 | 5.58 ± 0.21 ab | 0.58 ± 0.03 d | ++++++ | ΔΔ |
1.5 | 0.1 | 0 | 3.84 ± 0.15 cd | 0.51 ± 0.03 def | +++++ | Δ |
2.0 | 0.1 | 0 | 2.26 ± 0.18 ghi | 0.33 ± 0.01 f | ++ | Δ |
3.0 | 0.1 | 0 | 3.07 ± 0.13 def | 0.41 ± 0.02 def | ++++ | Δ |
1.5 | 0.2 | 0 | 3.27 ± 0.18 cde | 0.49 ± 0.03 def | ++++ | Δ |
2.0 | 0.2 | 0 | 2.19 ± 0.15 ghi | 0.35 ± 0.01 ef | ++ | Δ |
3.0 | 0.2 | 0 | 2.71 ± 0.19 fgh | 0.42 ± 0.02 def | ++ | Δ |
1.5 | 0.4 | 0 | 1.91 ± 0.16 hi | 0.38 ± 0.01 ef | ++ | Δ |
2.0 | 0.4 | 0 | 2.13 ± 0.17 ghi | 0.36 ± 0.01 ef | ++ | Δ |
3.0 | 0.4 | 0 | 1.73 ± 0.08 i | 0.36 ± 0.01 ef | + | Δ |
0 | 0 | 0.02 | 3.80 ± 0.09 cd | 0.52 ± 0.03 def | ++++ | Δ |
0 | 0 | 0.04 | 2.72 ± 0.20 fgh | 0.37 ± 0.02 ef | ++++ | Δ |
0 | 0 | 0.08 | 2.88 ± 0.19 efg | 0.44 ± 0.02 def | ++++ | Δ |
Auxin Concentrations (mg/L) | Rooting Rate (%) | Average Number of Adventitious Roots | Average Length of Adventitious Roots (cm) | Growth | ||
---|---|---|---|---|---|---|
IBA | NAA | Adventitious Roots | Chlorella sorokiniana | |||
0 | 0 | 83.33 ± 1.02 b | 3.80 ± 0.55 b | 0.72 ± 0.07 a | + | Δ |
0.1 | 0 | 94.44 ± 0.68 ab | 3.47 ± 0.22 b | 0.68 ± 0.04 a | + | Δ |
0.5 | 0 | 94.44 ± 0.70 ab | 3.41 ± 0.30 b | 0.47 ± 0.30 b | + | Δ |
1.0 | 0 | 94.44 ± 0.0.73 ab | 2.68 ± 0.23 c | 0.45 ± 0.02 b | ++ | Δ |
0 | 0.05 | 94.44 ± 0.68 ab | 2.09 ± 0.26 c | 0.43 ± 0.02 b | + | Δ |
0 | 0.1 | 100 ± 0.62 a | 6.36 ± 0.43 a | 0.66 ± 0.03 a | +++ | ΔΔ |
0 | 0.2 | 100 ± 0.77 a | 3.47 ± 0.49 b | 0.48 ± 0.02 b | + | Δ |
Macroelements Concentrations (%) | Rooting Rate (%) | Average Number of Adventitious Roots | Average Length of Adventitious Roots (cm) | Growth | |
---|---|---|---|---|---|
Adventitious Roots | Chlorella sorokiniana | ||||
100%MS | 94.44 ± 1.68 a | 2.18 ± 0.37 b | 0.43 ± 0.02 c | ++ | Δ |
50%MS | 100 ± 1.19 a | 5.42 ± 0.22 a | 1.32 ± 0.05 a | +++ | |
25%MS | 86.11 ± 2.43 b | 2.90 ± 0.51 b | 0.41 ± 0.02 c | + | |
12.5%MS | 83.33 ± 2.43 b | 2.40 ± 0.50 b | 0.55 ± 0.04 b | + |
Sucrose Concentrations (g/L) | Rooting Rate (%) | Average Number of Adventitious Roots | Average Length of Adventitious Roots (cm) | Growth | |
---|---|---|---|---|---|
Adventitious Roots | Chlorella sorokiniana | ||||
0 | 2.78 ± 1.35 c | 1.00 ± 0.00 c | 0.10 ± 0.00 c | - | × |
10 | 25.00 ± 1.65 b | 1.78 ± 0.48 bc | 0.40 ± 0.05 b | + | Δ |
20 | 88.89 ± 1.43 a | 2.91 ± 0.26 a | 0.46 ± 0.04 ab | ++ | Δ |
30 | 91.67 ± 1.43 a | 2.03 ± 0.31 b | 0.52 ± 0.06 a | ++ | Δ |
Substrate Types | Survival Rate (%) | Plantlets Growth | |
---|---|---|---|
4 Weeks | 4 Months | ||
Peat | 100 ± 0.00 a | 91.67 ± 3.94 b | ++ |
Coconut coir | 97.22 ± 2.78 ab | 83.33 ± 5.73 c | + |
Peat/perlite = 1∶1 (v/v) | 94.44 ± 3.87 ab | 83.33 ± 5.79 c | + |
Coconut coir/perlite = 1∶1 (v/v) | 100 ± 0.00 a | 100 ± 0.00 a | +++ |
Peat/coconut coir/perlite = 1∶1∶1 (v/v/v) | 88.89 ± 5.31 b | 77.78 ± 6.12 cd | + |
Primer Name | Primer Sequence (5′→3′) | Tm (℃) | Number of Amplified Fragments | Number of Monomorphic Bands | Number of Polymorphic Bands | Amplification Length Range (bp) |
---|---|---|---|---|---|---|
UBC809 | AGAGAGAGAGAGAGAGG | 50 | 1 | 1 | 0 | 100–200 |
UBC818 | CACACACACACACACAG | 51 | 3 | 3 | 0 | 250–750 |
UBC820 | GTGTGTGTGTGTGTGTC | 51 | 1 | 1 | 0 | 250–500 |
UBC830 | TGTGTGTGTGTGTGTGG | 53 | 2 | 1 | 1 | 250–500 |
UBC835 | AGAGAGAGAGAGAGAGYC | 50 | 2 | 2 | 0 | 500–1000 |
UBC842 | GAGAGAGAGAGAGAGAYG | 50 | 3 | 3 | 0 | 250–750 |
UBC845 | CTCTCTCTCTCTCTCTRG | 50 | 4 | 4 | 0 | 100–1000 |
UBC848 | CACACACACACACACARG | 53 | 2 | 2 | 0 | 100–500 |
UBC850 | GTGTGTGTGTGTGTGTYC | 53 | 4 | 4 | 0 | 250–1000 |
Total | 22 | 21 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Guo, M.; Xu, J.; Xiong, Y.; Liu, J.; Ma, G.; Zeng, S.; Wu, K.; Fang, L. Influence of Chlorella sorokiniana and Plant Growth Regulators During the Micropropagation of Callicarpa peichieniana. Horticulturae 2025, 11, 1016. https://doi.org/10.3390/horticulturae11091016
Zhang Y, Guo M, Xu J, Xiong Y, Liu J, Ma G, Zeng S, Wu K, Fang L. Influence of Chlorella sorokiniana and Plant Growth Regulators During the Micropropagation of Callicarpa peichieniana. Horticulturae. 2025; 11(9):1016. https://doi.org/10.3390/horticulturae11091016
Chicago/Turabian StyleZhang, Yiteng, Manna Guo, Jinfeng Xu, Yuping Xiong, Junyu Liu, Guohua Ma, Songjun Zeng, Kunlin Wu, and Lin Fang. 2025. "Influence of Chlorella sorokiniana and Plant Growth Regulators During the Micropropagation of Callicarpa peichieniana" Horticulturae 11, no. 9: 1016. https://doi.org/10.3390/horticulturae11091016
APA StyleZhang, Y., Guo, M., Xu, J., Xiong, Y., Liu, J., Ma, G., Zeng, S., Wu, K., & Fang, L. (2025). Influence of Chlorella sorokiniana and Plant Growth Regulators During the Micropropagation of Callicarpa peichieniana. Horticulturae, 11(9), 1016. https://doi.org/10.3390/horticulturae11091016