Construction of a Bin Genetic Map and QTL Mapping of Red Skin in Interspecific Pear Population
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. DNA Extraction
2.3. Sequencing Library Construction and SNP Genotyping
2.4. High-Density Genetic Bin Map Construction
2.5. QTL Mapping of Red Skin
2.6. Expression Analysis
3. Results
3.1. Specific-Locus Amplified Fragment (SLAF)-Seq and SNP Identification
3.2. Construction of the Bin Genetic Linkage Map
3.3. Collinearity of the Genetic and Physical Maps
3.4. QTLs Associated with Red Skin
3.5. Identification and Expression Analysis of Candidate Genes Associated with Red Skin
3.6. Bin Marker Screening Associated with Red Skin
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.M.; Zhang, M.Y.; Li, X.L.; Khan, A.; Kumar, S.; Allan, A.C.; Kui, L.W.; Espley, R.V.; Wang, C.H.; Wang, R.Z.; et al. Pear genetics: Recent advances, new prospects, and a roadmap for the future. Hortic. Res. 2022, 9, uhab040. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.T.; Xu, J.B.; Korban, S.S.; Fei, Z.J.; Tao, S.T.; Ming, R.; Tai, S.S.; Khan, A.M.; Postman, J.D.; et al. Diversification and independent domestication of Asian and European pears. Genome Biol. 2018, 19, 77. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.N.; Yao, G.F.; Zheng, D.M.; Zhang, S.L.; Wang, C.; Zhang, M.Y.; Wu, J. Expression differences of anthocyanin biosynthesis genes reveal regulation patterns for red pear coloration. Plant Cell Rep. 2015, 34, 189–198. [Google Scholar] [CrossRef]
- Steyn, W.J.; Holcroft, D.M.; Wand, S.J.E.; Jacobs, G. Anthocyanin degradation in detached pome fruit with reference to preharvest red color loss and pigmentation patterns of blushed and fully red pears. J. Am. Soc. Hortic. Sci. 2004, 129, 13–19. [Google Scholar] [CrossRef]
- Wang, Z.G.; Du, H.; Zhai, R.; Song, L.Y.; Ma, F.W.; Xu, L.F. Transcriptome Analysis Reveals Candidate Genes Related to Color Fading of ‘Red Bartlett’ (Pyrus communis L.). Front. Plant Sci. 2017, 8, 455. [Google Scholar] [CrossRef]
- Wu, M.; Liu, J.L.; Song, L.Y.; Li, X.Y.; Cong, L.; Yue, R.R.; Yang, C.Q.; Liu, Z.; Xu, L.F.; Wang, Z.G. Differences among the Anthocyanin Accumulation Patterns and Related Gene Expression Levels in Red Pears. Plants 2019, 8, 100. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.T.; Li, S.L.; Gu, X.J.; Lei, D.Y.; Zhao, B.; Tang, H.L.; Lin, Y.X.; Wang, Y.; Li, M.Y.; Chen, Q.; et al. Anthocyanin Accumulation and Related Gene Expression Profile in ‘Red Zaosu’ Pear and Its Green Mutant. Agriculture 2021, 11, 898. [Google Scholar] [CrossRef]
- Ou, C.Q.; Zhang, X.L.; Wang, F.; Zhang, L.Y.; Zhang, Y.J.; Fang, M.; Wang, J.H.; Wang, J.X.; Jiang, S.L.; Zhang, Z.H. A 14 nucleotide deletion mutation in the coding region of the PpBBX24 gene is associated with the red skin of “Zaosu Red” pear (Pyrus pyrifolia White Pear Group): A deletion in the PpBBX24 gene is associated with the red skin of pear. Hortic. Res. 2020, 7, 39. [Google Scholar] [CrossRef]
- Sun, Y.; Qian, M.; Wu, R.; Niu, Q.; Teng, Y.; Zhang, D. Postharvest pigmentation in red Chinese sand pears (Pyrus pyrifolia Nakai) in response to optimum light and temperature. Postharvest Biol. Technol. 2014, 91, 64–71. [Google Scholar] [CrossRef]
- Yao, W.; Lei, D.; Zhou, X.; Wang, H.; Lu, J.; Lin, Y.; Zhang, Y.; Wang, Y.; He, W.; Li, M.; et al. Effect of Different Culture Conditions on Anthocyanins and Related Genes in Red Pear Callus. Agronomy 2023, 13, 2032. [Google Scholar] [CrossRef]
- Tao, R.Y.; Bai, S.L.; Ni, J.B.; Yang, Q.S.; Zhao, Y.; Teng, Y.W. The blue light signal transduction pathway is involved in anthocyanin accumulation in ‘Red Zaosu’ pear. Planta 2018, 248, 37–48. [Google Scholar] [CrossRef]
- Ni, J.B.; Zhao, Y.; Tao, R.Y.; Yin, L.; Gao, L.; Strid, Å.; Qian, M.J.; Li, J.C.; Li, Y.J.; Shen, J.Q.; et al. Ethylene mediates the branching of the jasmonate-induced flavonoid biosynthesis pathway by suppressing anthocyanin biosynthesis in red Chinese pear fruits. Plant Biotechnol. J. 2020, 18, 1223–1240. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Bourke, P.M.; Li, S.K.; Lin, M.M.; Sun, L.M.; Gu, H.; Li, Y.K.; Visser, R.G.F.; Qi, X.J.; Maliepaard, C.; et al. QTL mapping of fruit quality traits in tetraploid kiwiberry (Actinidia arguta). Hortic. Plant J. 2025, 11, 1090–1102. [Google Scholar] [CrossRef]
- Nashima, K.; Takeuchi, M.; Moromizato, C.; Omine, Y.; Shoda, M.; Urasaki, N.; Tarora, K.; Irei, A.; Shirasawa, K.; Yamada, M.; et al. Identification of Quantitative Trait Loci of Fruit Quality and Color in Pineapples. Hortic. J. 2023, 92, 375–383. [Google Scholar] [CrossRef]
- Wang, D.S.; Cheng, B.B.; Zhang, J.J. High-density genetic map and quantitative trait loci map of skin color in hawthorn (Crataegus pinnatifida bge. Var. major NEBr.). Front. Genet. 2024, 15, 1405604. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.Y.; Shen, F.; Wang, W.Q.; Wu, B.; Wang, X.; Xiao, C.; Tian, Z.D.; Yang, X.L.; Yang, J.; Wang, Y.; et al. Quantitative trait loci-based genomics-assisted prediction for the degree of apple fruit cover color. Plant Genome 2020, 13, e20047. [Google Scholar] [CrossRef]
- Kishor, D.S.; Alavilli, H.; Lee, S.C.; Kim, J.G.; Song, K. Development of SNP Markers for White Immature Fruit Skin Color in Cucumber (Cucumis sativus L.) Using QTL-seq and Marker Analyses. Plants 2021, 10, 2341. [Google Scholar] [CrossRef]
- Brand, A.; Borovsky, Y.; Meir, S.; Rogachev, I.; Aharoni, A.; Paran, I. pc8.1, a major QTL for pigment content in pepper fruit, is associated with variation in plastid compartment size. Planta 2012, 235, 579–588. [Google Scholar] [CrossRef]
- Sooriyapathirana, S.S.; Khan, A.; Sebolt, A.M.; Wang, D.C.; Bushakra, J.M.; Lin-Wang, K.; Allan, A.C.; Gardiner, S.E.; Chagné, D.; Iezzoni, A.F. QTL analysis and candidate gene mapping for skin and flesh color in sweet cherry fruit (Prunus avium L.). Tree Genet. Genomes 2010, 6, 821–832. [Google Scholar] [CrossRef]
- Ürün, I.; Karci, H.; Attar, S.H.; Gölcü, A.E.; Sönmez, D.A.; Topçu, H.; Özgören, B.; Kafkas, S.; Kafkas, E. Identification of quantitative trait loci (QTL) and development of markers associated with fruit quality traits in strawberry (Fragaria × ananassa Duch.). Euphytica 2025, 221, 48. [Google Scholar] [CrossRef]
- Yamamoto, T.; Kimura, T.; Terakami, S.; Nishitani, C.; Sawamura, Y.; Saito, T.; Kotobuki, K.; Hayashi, T. Integrated reference genetic linkage maps of pear based on SSR and AFLP markers. Breed. Sci. 2007, 57, 321–329. [Google Scholar] [CrossRef]
- Terakami, S.; Kimura, T.; Nishitani, C.; Sawamura, Y.; Saito, T.; Hirabayashi, T.; Yamamoto, T. Genetic Linkage Map of the Japanese Pear ‘Housui’ Identifying Three Homozygous Genomic Regions. J. Jpn. Soc. Hortic. Sci. 2009, 78, 417–424. [Google Scholar] [CrossRef]
- Gabay, G.; Dahan, Y.; Izhaki, Y.; Faigenboim, A.; Ben-Ari, G.; Elkind, Y.; Flaishman, M.A. High-resolution genetic linkage map of European pear (Pyrus communis) and QTL fine-mapping of vegetative budbreak time. BMC Plant Biol. 2018, 18, 175. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Jeong, H.J.; Yang, H.B.; Kang, S.M.; Kwon, J.K.; Kim, S.; Choi, D.; Kang, B.C. An ultra-high-density bin map facilitates high-throughput QTL mapping of horticultural traits in pepper (Capsicum annuum). DNA Res. 2016, 23, 81–91. [Google Scholar] [CrossRef]
- Patil, G.; Vuong, T.D.; Kale, S.; Valliyodan, B.; Deshmukh, R.; Zhu, C.S.; Wu, X.L.; Bai, Y.H.; Yungbluth, D.; Lu, F.; et al. Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean using high-density linkage mapping. Plant Biotechnol. J. 2018, 16, 1939–1953. [Google Scholar] [CrossRef]
- Jiang, N.F.; Shi, S.L.; Shi, H.; Khanzada, H.; Wassan, G.M.; Zhu, C.L.; Peng, X.S.; Yu, Q.Y.; Chen, X.R.; He, X.P.; et al. Mapping QTL for Seed Germinability under Low Temperature Using a New High-Density Genetic Map of Rice. Front. Plant Sci. 2017, 8, 1223. [Google Scholar] [CrossRef]
- Fu, W.H.; Zhao, L.; Qiu, W.J.; Xu, X.; Ding, M.; Lan, L.M.; Qu, S.C.; Wang, S.H. Whole-genome resequencing identifies candidate genes and allelic variation in the MdNADP-ME promoter that regulate fruit malate and fructose contents in apple. Plant Commun. 2024, 5, 100973. [Google Scholar] [CrossRef]
- Yao, G.F.; Ming, M.L.; Allan, A.C.; Gu, C.; Li, L.T.; Wu, X.; Wang, R.Z.; Chang, Y.J.; Qi, K.J.; Zhang, S.L.; et al. Map-based cloning of the pear gene MYB114 identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis. Plant J. 2017, 92, 437–451. [Google Scholar] [CrossRef] [PubMed]
- Inoue, E.; Kasumi, M.; Sakuma, F.; Anzai, H.; Amano, K.; Hara, H. Identification of RAPD marker linked to fruit skin color in Japanese pear (Pyrus pyrifolia Nakai). Sci. Hortic. 2006, 107, 254–258. [Google Scholar] [CrossRef]
- Yamamoto, T.; Terakami, S.; Takada, N.; Nishio, S.; Onoue, N.; Nishitani, C.; Kunihisa, M.; Inoue, E.; Iwata, H.; Hayashi, T.; et al. Identification of QTLs controlling harvest time and fruit skin color in Japanese pear (Pyrus pyrifolia Nakai). Breed. Sci. 2014, 64, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Oh, S.; Han, H.Y.D.; Kim, D. QTL Analysis and CAPS Marker Development Linked with Russet in Pear (Pyrus spp.). Plants 2022, 11, 3196. [Google Scholar] [CrossRef] [PubMed]
- Ntladi, S.M.; Human, J.P.; Bester, C.; Vervalle, J.; Roodt-Wilding, R.; Tobutt, K.R. Quantitative trait loci (QTL) mapping of blush skin and flowering time in a European pear (Pyrus communis) progeny of ‘Flamingo’ × ‘Abate Fetel’. Tree Genet. Genomes 2018, 14, 70. [Google Scholar] [CrossRef]
- Yue WenQuan, Y.W.; Zhang Hai, Z.H.; Liu JinLi, L.J.; Xu JinTao, X.J.; Hao BaoFeng, H.B.; Gao LiJuan, G.L.; Li LongFei, L.L. Breeding Report of a New Red Pear Cultivar ‘Xianghongli’. Agric. Sci. Technol. 2016, 17, 2569. [Google Scholar]
- Schenk, J.J.; Becklund, L.E.; Carey, S.J.; Fabre, P.P. What is the “modified” CTAB protocol? Characterizing modifications to the CTAB DNA extraction protocol. Appl. Plant Sci. 2023, 11, e11517. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Chen, S.F.; Zhou, Y.Q.; Chen, Y.R.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 884–890. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Rastas, P. Lep-MAP3: Robust linkage mapping even for low-coverage whole genome sequencing data. Bioinformatics 2017, 33, 3726–3732. [Google Scholar] [CrossRef]
- Chen, S.; Tian, Y.S.; Li, Z.T.; Li, Z.Q.; Liu, Y.; Wang, L.N.; Li, L.L.; Pang, Z.F.; Yang, C.J.; Wang, Q.B.; et al. Construction of a high-density genetic linkage map and QTL mapping for growth traits in hybrid Epinephelus fuscoguttatus (♀) and Epinephelus tukula (♂) progeny. Aquaculture 2022, 551, 737921. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, M.; Li, J.; Chi, Y.; Wang, K.; Peng, J.; Zhang, Y. Phenotypic Characters and Inheritance Tendency of Agronomic Traits in F1 Progeny of Pear. Plants 2025, 14, 1491. [Google Scholar] [CrossRef]
- Arends, D.; Prins, P.; Jansen, R.C.; Broman, K.W. R/qtl: High-throughput multiple QTL mapping. Bioinformatics 2010, 26, 2990–2992. [Google Scholar] [CrossRef]
- Zhang, X.J.; Wu, Y.J.; Wang, X.M.; Wang, W.F.; Huang, M.X.; Ma, Z.T.; Peng, J.Y. Ring Stripping, Ring Cutting, and Growth Regulators Promote Phase Change and Early Flowering in Pear Seedlings. Plants 2023, 12, 2933. [Google Scholar] [CrossRef]
- Ali, I.; Teng, Z.H.; Bai, Y.T.; Yang, Q.; Hao, Y.S.; Hou, J.; Jia, Y.B.; Tian, L.X.; Liu, X.Y.; Tan, Z.Y.; et al. A high density SLAF-SNP genetic map and QTL detection for fibre quality traits in Gossypium hirsutum. BMC Genom. 2018, 19, 879. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.F.; Zhang, Q.S.; Zhang, X.Q.; Tan, C.; Li, C.D. Construction of High-Density Genetic Map in Barley through Restriction-Site Associated DNA Sequencing. PLoS ONE 2015, 10, e0133161. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.X.; Ke, C.J.; Tang, W.Q.; Jiang, J.L.; Xia, J.; Xie, X.F.; Yang, M.; Duan, C.F.; Wu, W.R.; Zheng, Y. Construction of a High-Density Recombination Bin-Based Genetic Map Facilitates High-Resolution Mapping of a Major QTL Underlying Anthocyanin Pigmentation in Eggplant. Int. J. Mol. Sci. 2022, 23, 10258. [Google Scholar] [CrossRef] [PubMed]
- Qin, M.F.; Li, L.T.; Singh, J.; Sun, M.Y.; Bai, B.; Li, S.W.; Ni, J.P.; Zhang, J.Y.; Zhang, X.; Wei, W.L.; et al. Construction of a high-density bin-map and identification of fruit quality-related quantitative trait loci and functional genes in pear. Hortic. Res. 2022, 9, uhac141. [Google Scholar] [CrossRef]
- Oh, S.; Ahn, S.; Han, H.Y.D.; Kim, K.; Kim, S.A.; Kim, D. Genetic linkage maps and QTLs associated with fruit skin color and acidity in apple (Malus × domestica). Hortic. Environ. Biotechnol. 2023, 64, 299–310. [Google Scholar] [CrossRef]
- Frett, T.J.; Reighard, G.L.; Okie, W.R.; Gasic, K. Mapping quantitative trait loci associated with blush in peach Prunus persica (L.) Batsch. Tree Genet. Genomes 2014, 10, 367–381. [Google Scholar] [CrossRef]
- Sun, L.; Li, S.C.; Jiang, J.F.; Tang, X.P.; Fan, X.C.; Zhang, Y.; Liu, J.H.; Liu, C.H. New quantitative trait locus (QTLs) and candidate genes associated with the grape berry color trait identified based on a high-density genetic map. BMC Plant Biol. 2020, 20, 302. [Google Scholar] [CrossRef]
- Li, Y.Q.; Shan, X.T.; Gao, R.F.; Han, T.T.; Zhang, J.; Wang, Y.N.; Kimani, S.; Wang, L.; Gao, X. MYB repressors and MBW activation complex collaborate to fine-tune flower coloration in Freesia hybrida. Commun. Biol. 2020, 3, 396. [Google Scholar] [CrossRef]
- Gao, H.N.; Jiang, H.; Cui, J.Y.; You, C.X.; Li, Y.Y. Review: The effects of hormones and environmental factors on anthocyanin biosynthesis in apple. Plant Sci. 2021, 312, 111024. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.J.; Geng, Z.Q.; Wang, Y.X.; Wang, Y.G.; Liu, S.H.; Chen, C.W.; Song, A.P.; Jiang, J.F.; Chen, S.M.; Chen, F.D. A novel transcription factor CmMYB012 inhibits flavone and anthocyanin biosynthesis in response to high temperatures in chrysanthemum. Hortic. Res. 2021, 8, 248. [Google Scholar] [CrossRef]
- Alabd, A.; Ahmad, M.; Zhang, X.; Gao, Y.H.; Peng, L.; Zhang, L.; Ni, J.B.; Bai, S.L.; Teng, Y.W. Light-responsive transcription factor PpWRKY44 induces anthocyanin accumulation by regulating PpMYB10 expression in pear. Hortic. Res. 2022, 9, uhac199. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.Y.; Wang, L.; Wang, S.M.; Li, W.J.; Liu, D.; Guo, X.F.; Qu, B.H. Transcriptomic analysis of bagging-treated ‘Pingguo’ pear shows that MYB4-like1, MYB4-like2, MYB1R1 and WDR involved in anthocyanin biosynthesis are up-regulated in fruit peels in response to light. Sci. Hortic. 2019, 244, 428–434. [Google Scholar] [CrossRef]
- Yin, Y. Functional Study of FaMYB44.1 Transcription Factor in Regulating the Accumulation of Anthocyanins in Strawberry Fruits. Master’s Thesis, Yangzhou University, Yangzhou, China, 2023. [Google Scholar]
- Liu, X.Y.; Huang, Q.; Liang, Y.Q.; Lu, Z.; Liu, W.T.; Yuan, H.; Li, H.J. Genome-Wide Identification and Expression Analysis of ‘NanGuo’ Pear Revealed Key MYB Transcription Factor Family Genes Involved in Anthocyanin Accumulation. Horticulturae 2024, 10, 989. [Google Scholar] [CrossRef]
- Zhang, J.H.; Song, B.B.; Chen, G.S.; Yang, G.Y.; Ming, M.L.; Zhang, S.Q.; Xue, Z.L.; Han, C.H.; Li, J.M.; Wu, J. Transcriptome Analysis Identified PyNAC42 as a Positive Regulator of Anthocyanin Biosynthesis Induced by Nitrogen Deficiency in Pear (Pyrus spp.). Horticulturae 2024, 10, 980. [Google Scholar] [CrossRef]
- Cong, L.; Qu, Y.Y.; Sha, G.Y.; Zhang, S.C.; Ma, Y.F.; Chen, M.; Zhai, R.; Yang, C.Q.; Xu, L.F.; Wang, Z.G. PbWRKY75 promotes anthocyanin synthesis by activating PbDFR, PbUFGT, and PbMYB10b in pear. Physiol. Plant. 2021, 173, 1841–1849. [Google Scholar] [CrossRef]
- Hoy-Taek, K.I.M.; Robin, A.H.K.; Nou, I.-S. Parentage Confirmation of Korean Bred Pear Cultivars by Simple Sequence Repeat-Genotyping and S-Genotypes Analysis. Plant Breed. Biotechnol. 2016, 4, 198–211. [Google Scholar] [CrossRef]
- Teng, Y.W.; Tanabe, K.; Tamura, F.; Itai, A. Genetic relationships of Pyrus species and cultivars native to East Asia revealed by randomly amplified polymorphic DNA markers. J. Am. Soc. Hortic. Sci. 2002, 127, 262–270. [Google Scholar] [CrossRef]
- Nowak, B.; Tomkowiak, A.; Sobiech, A.; Bocianowski, J.; Kowalczewski, P.L.; Spychala, J.; Jamruszka, T. Identification and Analysis of Candidate Genes Associated with Yield Structure Traits and Maize Yield Using Next-Generation Sequencing Technology. Genes 2024, 15, 56. [Google Scholar] [CrossRef] [PubMed]
- Rameneni, J.J.; Islam, A.S.M.F.; Avila, C.A.; Shi, A. Improving genomic prediction of vitamin C content in spinach using GWAS-derived markers. BMC Genom. 2025, 26, 171. [Google Scholar] [CrossRef]
- Yang, F.; Lang, T.; Wu, J.; Zhang, C.; Qu, H.; Pu, Z.; Yang, F.; Yu, M.; Feng, J. SNP loci identification and KASP marker development system for genetic diversity, population structure, and fingerprinting in sweetpotato (Ipomoea batatas L.). BMC Genom. 2024, 25, 1245. [Google Scholar] [CrossRef]
Sample ID | Clean Data (bp) | Q20 (%) | Q30 (%) | GC (%) |
---|---|---|---|---|
Yuluxiang | 5067768460 | 97.56 | 93.38 | 38.01 |
Xianghong | 8145725873 | 96.94 | 91.47 | 38.04 |
F1 | 5633931370 | 97.26 | 93.07 | 38.82 |
Linkage Group | No. of Makers | Length (cM) | Xianghongli Length (cM) | Yuluxiang Length (cM) | Average | Max Gap (cM) |
---|---|---|---|---|---|---|
1 | 115 | 47.644 | 48.037 | 47.250 | 0.414 | 1.181 |
2 | 132 | 52.761 | 53.548 | 51.974 | 0.400 | 0.789 |
3 | 89 | 37.406 | 56.699 | 18.113 | 0.420 | 0.789 |
4 | 74 | 29.136 | 45.673 | 12.599 | 0.394 | 0.787 |
5 | 153 | 63.393 | 74.812 | 51.974 | 0.414 | 1.182 |
6 | 83 | 32.286 | 39.373 | 25.199 | 0.389 | 0.395 |
7 | 137 | 54.336 | 60.635 | 48.036 | 0.397 | 0.788 |
8 | 98 | 38.587 | 54.336 | 22.837 | 0.394 | 0.787 |
9 | 117 | 46.461 | 44.886 | 48.036 | 0.397 | 0.788 |
10 | 134 | 54.730 | 57.486 | 51.975 | 0.408 | 1.183 |
11 | 129 | 56.307 | 56.703 | 55.911 | 0.436 | 1.183 |
12 | 89 | 42.974 | 38.635 | 47.314 | 0.483 | 3.969 |
13 | 129 | 53.155 | 60.635 | 45.675 | 0.412 | 0.788 |
14 | 98 | 45.285 | 53.552 | 37.018 | 0.462 | 1.577 |
15 | 141 | 57.886 | 59.060 | 56.712 | 0.411 | 2.37 |
16 | 127 | 51.974 | 57.486 | 46.462 | 0.409 | 0.789 |
17 | 127 | 51.186 | 51.973 | 50.399 | 0.403 | 0.788 |
Total | 1972 | 815.507 | 913.529 | 717.484 | 0.414 | - |
LG | Chr | Pearson Correlation (r) |
---|---|---|
1 | 1 | 0.988 |
2 | 2 | 0.982 |
3 | 3 | 0.993 |
4 | 4 | 0.965 |
5 | 5 | 0.994 |
6 | 6 | 0.986 |
7 | 7 | 0.989 |
8 | 8 | 0.974 |
9 | 9 | 0.984 |
10 | 10 | 0.981 |
11 | 11 | 0.994 |
12 | 12 | 0.985 |
13 | 13 | 0.949 |
14 | 14 | 0.978 |
15 | 15 | 0.989 |
16 | 16 | 0.967 |
17 | 17 | 0.992 |
Peak Marker | Chr | Peak (cM) | LOD | Pve (%) | Length (cM) | Low Marker | Low (cM) | Up Marker | Up (cM) |
---|---|---|---|---|---|---|---|---|---|
Chr04-17031285 | Chr04 | 14.569 | 6.120 | 5.519 | 10.237 | Chr04-12913992 | 9.450 | Chr04-20042604 | 19.687 |
cChr05.loc28 | Chr05 | 28.000 | 6.826 | 7.806 | 7.087 | Chr05-14515042 | 24.018 | Chr05-18653007 | 31.105 |
Chr05-29761115 | Chr05 | 51.189 | 4.711 | 5.398 | 19.293 | Chr05-24931901 | 40.950 | Chr05-31851821 | 60.244 |
Gene | Chr | Start | End | Peak Marker | Peak Lod | TF Family |
---|---|---|---|---|---|---|
WRKY44 | Chr04 | 15153099 | 15154448 | Chr04-17031285 | 6.119 | WRKY |
WRKY24 | Chr04 | 19676055 | 19678450 | Chr04-17031285 | 6.119 | WRKY |
MYB44 | Chr05 | 14782424 | 14784058 | cChr05.loc28 | 6.826 | MYB |
ZAT6 | Chr05 | 15881865 | 15883200 | cChr05.loc28 | 6.826 | C2H2 |
TRB1 | Chr05 | 16490416 | 16501551 | cChr05.loc28 | 6.826 | MYB_related |
MYB4 | Chr05 | 18327376 | 18328912 | cChr05.loc28 | 6.826 | MYB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Tang, M.; Peng, J.; Ma, H.; Zhang, Y. Construction of a Bin Genetic Map and QTL Mapping of Red Skin in Interspecific Pear Population. Horticulturae 2025, 11, 994. https://doi.org/10.3390/horticulturae11080994
Zhang X, Tang M, Peng J, Ma H, Zhang Y. Construction of a Bin Genetic Map and QTL Mapping of Red Skin in Interspecific Pear Population. Horticulturae. 2025; 11(8):994. https://doi.org/10.3390/horticulturae11080994
Chicago/Turabian StyleZhang, Xiaojie, Mengyue Tang, Jianying Peng, Hui Ma, and Yuxing Zhang. 2025. "Construction of a Bin Genetic Map and QTL Mapping of Red Skin in Interspecific Pear Population" Horticulturae 11, no. 8: 994. https://doi.org/10.3390/horticulturae11080994
APA StyleZhang, X., Tang, M., Peng, J., Ma, H., & Zhang, Y. (2025). Construction of a Bin Genetic Map and QTL Mapping of Red Skin in Interspecific Pear Population. Horticulturae, 11(8), 994. https://doi.org/10.3390/horticulturae11080994